黑龙江省大庆市2016年中考数学试卷及答案解析(word版)
大庆中考数学试题及答案

大庆中考数学试题及答案本文为大庆中考数学试题及答案。
一、选择题1. 某数列的通项公式为an = 3n - 1,其中n为自然数。
则当n = 5时,数列的值为________。
A. 10B. 14C. 15D. 16【答案】B. 142. 若两个直角三角形的斜边相等,且一个直角边分别是15cm和20cm,那么另一个直角边长度为________cm。
A. 15B. 20C. 25D. 30【答案】C. 253. 如图所示,正方形ABCD中,线段AE是边BC的中线,AE =6cm,那么正方形ABCD的面积是________cm²。
(图略)A. 18B. 24C. 36D. 72【答案】DD. 72二、填空题1. 已知函数f(x) = 2x + a,若f(2) = 10,则实数a的值为_______。
【答案】62. 若1 < x < 2,那么不等式-3x + 2 > 0的解集为________。
【答案】x < 2/3三、解答题1. 计算 (a + b)³的值,并化简。
【解答】(a + b)³ = a³ + 3a²b + 3ab² + b³2. 已知直角三角形斜边长为10cm,另一直角边长为6cm,求该三角形的面积。
【解答】三角形面积公式为:面积 = 底边 * 高 / 2因此,面积 = 6 * 8 / 2 = 24cm²四、应用题某商场举行打折活动,打5折。
小明买了一张原价100元的商品,请计算小明购买该商品实际支付的金额。
【解答】打5折意味着打了50%的折扣,因此小明需要支付的金额为100元* 50% = 50元。
综上所述,本文介绍了大庆中考数学试题,并提供了答案和解析。
通过这些题目的训练,考生可以更好地理解数学题目的解法和应用。
希望本文能对考生的复习有所帮助。
黑龙江省大庆市中考数学一模试卷(含解析)

黑龙江省大庆市2016年中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.的相反数是()A.2 B.﹣2 C.﹣ D.2.a、b在数轴上的位置如图所示,则下列式子正确的是()A.a+b>0 B.a+b>a﹣b C.|a|>|b| D.ab<03.今年1月中旬以来的低温、雨雪、冰冻天气,造成全国多个地区发生不同程度的灾害,直接经济损失已达到了5.379×1010元,将此数据用亿元表示为()A.0.5379亿元B.5.379亿元C.53.79亿元D.537.9亿元4.下列式子正确的是()A. =±2B. =﹣2 C. =﹣2D. =﹣25.下列四种正多边形:①正三角形;②正方形;③正五边形;④正六边形,其中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个6.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V甲、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()A.V甲>V乙 S甲=S乙B.V甲<V乙 S甲=S乙C.V甲=V乙 S甲=S乙D.V甲>V乙 S甲<S乙7.化简的结果是()A.x+1 B. C.x﹣1 D.8.下列命题:①等腰三角形的角平分线平分对边;②对角线垂直且相等的四边形是正方形;③正六边形的边心距等于它的边长;④过圆外一点作圆的两条切线,其切线长相等.其中真命题有()个.A.1个B.2个C.3个D.4个9.下列说法正确的是()①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大;③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件.A.①② B.②③ C.②④ D.③④10.已知二次函数y=ax2﹣bx+b﹣a与x轴交于A、B两点,则线段AB的最小值为()A.B.2 C.D.无法确定二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.函数中,自变量x的取值范围是.12.不等式组的解集为.13.因式分解:(x+1)(x+2)+= .14.由几个小正方体搭成的几何体,其主视图、左视图相同,均如图所示,则搭成这个几何体最少需要个小正方体.15.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为(结果保留π).16.已知实数m、n满足m2=2﹣2m,n2=2﹣2n,则+= .17.如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为个.18.如图,等腰△ABC中,AB=AC,tan∠B=,BC=30,D为BC中点,射线DE⊥AC.将△ABC 绕点C顺时针旋转(点A的对应点为A′,点B的对应点为B′),射线A′B′分别交射线DA、DE于M、N.当DM=DN时,DM的长为.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:(﹣1)2016﹣cos45°﹣(﹣)﹣2+.20.大商超市为了吸引顾客,设立了一个抽奖活动.如图,活动规则:顾客单票(2016•大庆一模)如图,在▱ABCD中,E、F分别是边AB、CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.21.如图,在▱ABCD中,E、F分别是边AB、CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.22.图1为大庆龙凤湿地观光塔,游客可乘坐观光电梯进入观光层向四周瞭望,鸟瞰大庆城市风光.如图2,小英在距塔底D约200米的A处测得塔球底部平台B的仰角为45°,塔尖C的仰角为60°,求平台B到塔尖C的高度BC.(精确到个位,≈1.732)23.人口老龄化是全世界热点问题.为了让学生感受到人口老龄化所带来的一系列社会问题,从而渗透尊老、敬老教育,大庆市萨尔图区某中学组织该校初一年级学生开展了一项综合实践活动.该校初一年级的全体学生分别深入府明社区的两个小区调查每户家庭老年人的数量(60岁以上的老人).根据调查结果,该校学生将数据整理后绘制成的统计图如图所示,其中A组为1位老人/户,B组为2位老人/户,C组为3位老人/户,D组为4位老人/户,E组为5位老人/户,F组为6位老人/户.请根据上述统计图完成下列问题:(1)这次共调查了户家庭;(2)每户有六位老人所占的百分比为;(3)请把条形统计图补充完整;(4)本次调查的中位数落在组内,众数落在组;(5)若萨尔图区约有10万户家庭,请你估计其中每户4位老人的家庭有多少户?24.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.25.东风商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3000件;若按每件6元的价格销售,每月能卖出2000件,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?26.如图,A、B两个单位分别位于一条封闭式街道的两旁,A、B两个单位到街道的距离AC=48米、BD=24米,A、B两个单位的水平距离CE=96米,现准备修建一座与街道垂直的过街天桥.(1)天桥建在何处才能使由A到B的路线最短?(2)天桥建在何处才能使A、B到天桥的距离相等?分别在图1、图2中作图说明(不必说明理由)并通过计算确定天桥的具体位置.27.如图,直径为10的半圆O,tan∠DBC=,∠BCD的平分线交⊙O于F,E为CF延长线上一点,且∠EBF=∠GBF.(1)求证:BE为⊙O切线;(2)求证:BG2=FG•CE;(3)求OG的值.28.在平面直角坐标系中,有三点A(﹣1,0),B(0,),C(3,0).(1)求过点A、B、C的抛物线的解析式;(2)如图1,在线段AC上有一动点P,过P点作直线PD∥AB交BC于点D,求出△PBD面积的最大值;(3)如图2,在(2)的情况下,在抛物线上是否存在一点Q,使△QBD的面积与△PBD面积相等?如存在,直接写出Q点坐标;如不存在,请说明理由.2016年黑龙江省大庆市中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的相反数是()A.2 B.﹣2 C.﹣ D.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:的相反数是﹣.故选C.【点评】本题考查相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.属于基础题型,比较简单.2.a、b在数轴上的位置如图所示,则下列式子正确的是()A.a+b>0 B.a+b>a﹣b C.|a|>|b| D.ab<0【考点】绝对值;数轴.【分析】从a、b在数轴上的位置可以判断出a、b的符号及绝对值的大小,从而可以利用性质得出答案.【解答】解:从数轴上a、b的位置观察可知a在原点右侧,b在原点左侧,a离原点的距离小于b离原点的距离,可以得到结论a<0,b>0,|a|<|b|,则判断得到a+b<0,a﹣b>0,ab<0,从而推导得出a+b<a﹣b,由此得到A、B、C三个选项错误.故选:D.【点评】本题考察数轴上的点的性质,解题的关键是通过观察a、b离原点的距离得到a、b 的大小关系.3.今年1月中旬以来的低温、雨雪、冰冻天气,造成全国多个地区发生不同程度的灾害,直接经济损失已达到了5.379×1010元,将此数据用亿元表示为()A.0.5379亿元B.5.379亿元C.53.79亿元D.537.9亿元【考点】科学记数法—原数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.379×1010=5.379×1010×10﹣8(亿)=537.9(亿),故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列式子正确的是()A. =±2B. =﹣2 C. =﹣2D. =﹣2【考点】立方根;算术平方根.【分析】根据算术平方根的定义判断A、D;根据立方根的定义判断B、C.【解答】解:A、=2,故本选项错误;B、=﹣2,故本选项正确;C、=﹣2,故本选项错误;D、负数没有算术平方根,故本选项错误;故选B.【点评】本题考查了立方根与算术平方根的定义,熟练掌握定义是解题的关键.5.下列四种正多边形:①正三角形;②正方形;③正五边形;④正六边形,其中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①正三角形是轴对称图形不是中心对称图形;②正方形即是轴对称图形又是中心对称图形;③正五边形是轴对称图形不是中心对称图形;④正六边形即是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V甲、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()A.V甲>V乙 S甲=S乙B.V甲<V乙 S甲=S乙C.V甲=V乙 S甲=S乙D.V甲>V乙 S甲<S乙【考点】点、线、面、体.【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案.【解答】解:V甲=π•b2×a=πab2,V乙=π•a2×b=πba2,∵πab2<πba2,∴V甲<V乙,∵S甲=2πb•a=2πab,S乙=2πa•b=2πab,∴S甲=S乙,故选:B.【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.7.化简的结果是()A.x+1 B. C.x﹣1 D.【考点】分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.下列命题:①等腰三角形的角平分线平分对边;②对角线垂直且相等的四边形是正方形;③正六边形的边心距等于它的边长;④过圆外一点作圆的两条切线,其切线长相等.其中真命题有()个.A.1个B.2个C.3个D.4个【考点】命题与定理;正方形的判定;切线的性质;正多边形和圆.【分析】利用等腰三角形的性质、正方形的定义、正六边形的性质及切线长定理对几个命题进行判断即可.【解答】解:①等腰三角形的顶角平分线平分对边,故错误,是假命题;②对角线垂直且相等的平行四边形是正方形,故错误,是假命题;③正六边形的半径等于它的边长,故错误,是假命题;④过圆外一点作圆的两条切线,其切线长相等,正确,是真命题,真命题有1个,故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、正方形的定义、正六边形的性质及切线长定理,难度不大.9.下列说法正确的是()①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大;③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件.A.①② B.②③ C.②④ D.③④【考点】可能性的大小;全面调查与抽样调查;方差;随机事件.【分析】根据随机事件、方差的意义、调查方式和概率解答即可..【解答】解:①了解某市学生的视力情况需要采用抽查的方式,错误;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大,正确;③50个人中可能有两个人生日相同,可能性较大,错误;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件,正确;故选C.【点评】本题考查了全面调查与抽样调查,正确区分全面调查与抽样调查是解题关键,注意概率时事件发生可能性的大小,并不一定发生.10.已知二次函数y=ax2﹣bx+b﹣a与x轴交于A、B两点,则线段AB的最小值为()A.B.2 C.D.无法确定【考点】抛物线与x轴的交点.【分析】设A(x1,0),B(x2,0).根据根与系数的关系和两点间的距离公式进行解答.【解答】解:设A(x1,0),B(x2,0).依题意得 x1+x2=,x1•x2==﹣1.则AB=|x1﹣x2|===≥.故线段AB的最小值为,故选C.【点评】本题考查了抛物线与x轴的交点.熟记完全平方公式和几个公式的变形是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围;分式有意义的条件.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.不等式组的解集为﹣2<x≤3 .【考点】解一元一次不等式组.【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【解答】解:,由①式得x>﹣2;由②式得x≤3,所以不等式组的解为﹣2<x≤3,故答案为﹣2<x≤3.【点评】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.因式分解:(x+1)(x+2)+= (x+)2.【考点】提公因式法与公式法的综合运用.【分析】原式整理后,利用完全平方公式分解即可.【解答】解:原式=x2+3x+=(x+)2,故答案为:(x+)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.由几个小正方体搭成的几何体,其主视图、左视图相同,均如图所示,则搭成这个几何体最少需要 3 个小正方体.【考点】由三视图判断几何体.【分析】根据所给出的图形可知这个几何体共有2层,2列,先看第一层正方体可能的最少个数,再看第二层正方体的可能的最少个数,相加即可.【解答】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为:3.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为 2.5﹣π(结果保留π).【考点】扇形面积的计算.【分析】根据等边三角形的性质以及勾股定理得出△COF,△COM,△ABC以及扇形FOM的面积,进而得出答案.【解答】解:过点O作OE⊥AC于点E,连接FO,MO,∵△ABC是边长为4的等边三角形,D为AB边的中点,以CD为直径画圆,∴CD⊥AB,∠ACD=∠BCD=30°,AC=BC=AB=4,∴∠FOD=∠DOM=60°,AD=BD=2,∴CD=2,则CO=DO=,∴EO=,EC=EF=,则FC=3,∴S△COF=S△COM=××3=,S扇形OFM==π,S△ABC=×CD×4=4,∴图中影阴部分的面积为:4﹣2×﹣π=2.5﹣π.故答案为:2.5﹣π.【点评】此题主要考查了扇形面积公式以及三角形面积公式和等边三角形的性质等知识,正确分割图形求出是解题关键.16.已知实数m、n满足m2=2﹣2m,n2=2﹣2n,则+= ﹣4或2 .【考点】根与系数的关系.【分析】分两种情况:①当m=n时,②由m≠n时,得到m,n是方程x2+2x﹣2=0的两个不等的根,根据根与系数的关系进行求解.【解答】解:①当m=n时, +=2;②当m≠n时,则m,n是方程x2+2x﹣2=0的两个不相等的根,∴m+n=﹣2,mn=﹣2,∴+====﹣4,∴+=﹣4或2,故答案为:﹣4或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.17.如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为 3 个.【考点】反比例函数图象上点的坐标特征.【分析】先利用待定系数法求得反比例函数的解析式为y=;直线AB的解析式为y=﹣x+7;然后分别把x=2、3、4、5代入两个解析式,分别求出对应的纵坐标,再易得到图中阴影部分(不包括边界)所含格点的坐标.【解答】解:把A(1,6)代入y=,得k=1×6=6,∴反比例函数的解析式为y=;设直线AB的解析式为y=ax+b,把A(1,6),B(6,1)代入得,ax+b=6,a+b=1,解得a=﹣1,b=7,∴直线AB的解析式为y=﹣x+7;当x=2,y==3;y=﹣x+7=5;当x=3,y==2;y=﹣x+7=4;当x=4,y==;y=﹣x+7=3;当x=5,y==;y=﹣x+7=2,∴图中阴影部分(不包括边界)所含格点的有:(2,4),(3,3),(4,2),故答案为3.【点评】本题考查了待定系数法求反比例函数和一次函数的解析式.也考查了横纵坐标都为整数的点的坐标的确定方法.18.如图,等腰△ABC中,AB=AC,tan∠B=,BC=30,D为BC中点,射线DE⊥AC.将△ABC 绕点C顺时针旋转(点A的对应点为A′,点B的对应点为B′),射线A′B′分别交射线DA、DE于M、N.当DM=DN时,DM的长为6+5 .【考点】旋转的性质.【分析】过D作DH⊥A′M于H交AC于Q,过Q作QP⊥AD于P,过C作CK⊥MA′于K,过K 作KL⊥CE于L,KJ⊥DN于J,根据等腰三角形的性质得到AD⊥BC,BD=CD=15,解直角三角形得到AC=,CE=12,根据线段的和差得到AE=AC﹣EC=﹣12=,AD=,解直角三角形即可得到结论.【解答】解:过D作DH⊥A′M于H交AC于Q,过Q作QP⊥AD于P,过C作CK⊥MA′于K,过K作KL⊥CE于L,KJ⊥DN于J,∵AB=AC,D为BC中点,∴AD⊥BC,BD=CD=15,∵tan∠B=,∴AC=,CE=12,∴AE=AC﹣EC=﹣12=,AD=,AQ=,PQ==3,DP=9,tan∠QDP=,∵∠DNH=∠KCL,∴∠CKL=∠HDN,tan∠CKL=,∴CL=,KL==EJ,∴EL=KJ=12﹣,NJ=4﹣,∴EN=﹣(4﹣)=6﹣4,∴DN=6﹣4+9=6+5.故答案为:6+5.【点评】本题考查了旋转的性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:(﹣1)2016﹣cos45°﹣(﹣)﹣2+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】本题涉及乘方、特殊角的三角函数值、负整数指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣﹣9+=﹣8.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、特殊角的三角函数值、负整数指数幂、二次根式等考点的运算.20.大商超市为了吸引顾客,设立了一个抽奖活动.如图,活动规则:顾客单票(2016•大庆一模)如图,在▱ABCD中,E、F分别是边AB、CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.【考点】平行四边形的性质;全等三角形的判定;菱形的判定.【分析】(1)由平行四边形的性质得出AD=BC,AD∥BC,∠D=∠ABC,AB=CD,证出DF=BE,由SAS证明△ADF∽≌△CBE即可;(2)由矩形的性质得出∠ACB=90°,由直角三角形斜边上的中线性质得出CE=AB=AE,同理AF=FC,得出AF=FC=CE=EA,即可证出四边形AECF为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠D=∠ABC,AB=CD,又∵E、F分别是边AB、CD的中点,∴DF=BE,在△ADF和△CBE中,,∴△ADF∽≌△CBE(SAS);(2)解:四边形AECF为菱形;理由如下:∵四边形AGBC是矩形,∴∠ACB=90°,又∵E为AB中点,∴CE=AB=AE,同理AF=FC,∴AF=FC=CE=EA,∴四边形AECF为菱形.【点评】本题主要考查了平行四边形的性质、全等三角形的判定,菱形的判定,直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质得出AF=FC=CE=EA是解决问题的关键.21.如图,在▱ABCD中,E、F分别是边AB、CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.【考点】平行四边形的性质;全等三角形的判定;菱形的判定.【分析】(1)由平行四边形的性质得出AD=BC,AD∥BC,∠D=∠ABC,AB=CD,证出DF=BE,由SAS证明△ADF∽≌△CBE即可;(2)由矩形的性质得出∠ACB=90°,由直角三角形斜边上的中线性质得出CE=AB=AE,同理AF=FC,得出AF=FC=CE=EA,即可证出四边形AECF为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠D=∠ABC,AB=CD,又∵E、F分别是边AB、CD的中点,∴DF=BE,在△ADF和△CBE中,,∴△ADF∽≌△CBE(SAS);(2)解:四边形AECF为菱形;理由如下:∵四边形AGBC是矩形,∴∠ACB=90°,又∵E为AB中点,∴CE=AB=AE,同理AF=FC,∴AF=FC=CE=EA,∴四边形AECF为菱形.【点评】本题主要考查了平行四边形的性质、全等三角形的判定,菱形的判定,直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质得出AF=FC=CE=EA是解决问题的关键.22.图1为大庆龙凤湿地观光塔,游客可乘坐观光电梯进入观光层向四周瞭望,鸟瞰大庆城市风光.如图2,小英在距塔底D约200米的A处测得塔球底部平台B的仰角为45°,塔尖C的仰角为60°,求平台B到塔尖C的高度BC.(精确到个位,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,计算即可.【解答】解:在Rt△ADC中,∵AD=200,∠CAD=60°,∴DC=DA•tan60°=200,在Rt△ADB中,∠BAD=45°,∴BD=AD=200,∴BC=DC﹣DB=200﹣200≈146(米).答:平台B到塔尖C的高度BC约为146米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.人口老龄化是全世界热点问题.为了让学生感受到人口老龄化所带来的一系列社会问题,从而渗透尊老、敬老教育,大庆市萨尔图区某中学组织该校初一年级学生开展了一项综合实践活动.该校初一年级的全体学生分别深入府明社区的两个小区调查每户家庭老年人的数量(60岁以上的老人).根据调查结果,该校学生将数据整理后绘制成的统计图如图所示,其中A组为1位老人/户,B组为2位老人/户,C组为3位老人/户,D组为4位老人/户,E组为5位老人/户,F组为6位老人/户.请根据上述统计图完成下列问题:(1)这次共调查了500 户家庭;(2)每户有六位老人所占的百分比为8% ;(3)请把条形统计图补充完整;(4)本次调查的中位数落在 C 组内,众数落在 D 组;(5)若萨尔图区约有10万户家庭,请你估计其中每户4位老人的家庭有多少户?【考点】条形统计图;扇形统计图;中位数;众数.【分析】(1)根据C组有80户家庭,所占的百分比是20%,据此即可求得调查的总户数;(2)根据百分比的意义即可直接求解;(3)利用总数减去其它组的户数即可求得D组的户数,从而补全直方图;(4)利用总数10万乘以对应的比例即可求得.【解答】解:(1)调查的总户数是80÷20%=500,故答案是500;(2)每户有六位老人所占的百分比是: =8%;(3)D组的家庭数是500﹣60﹣120﹣80﹣20﹣40=160,;(4)次调查的中位数落在C组内,众数落在D组.故答案是:C,D;(5)估计其中每户4位老人的家庭有10×=3.2(万户).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.【考点】反比例函数综合题.【分析】(1)首先由反比例函数的解析式分别求得m、n的值,再进一步根据点A、B的坐标求得一次函数的解析式;(2)根据(1)中求得的解析式,令x=0,即可求得点C的坐标;(3)根据点A、C的坐标即可求得OC=1,OC边上的高是点A的横坐标,进一步求得三角形的面积.【解答】解:(1)由题意,把A(m,2),B(﹣2,n)代入中,得,∴A(1,2),B(﹣2,﹣1)将A、B代入y=kx+b中得:,∴,∴一次函数解析式为:y=x+1;(2)由(1)可知:当x=0时,y=1,∴C(0,1);(3)S△AOC=×1×1=.【点评】本题考查了反比例函数的综合应用,重点是由交点坐标求得函数的解析式,题目较难,同学们要重点掌握.25.东风商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3000件;若按每件6元的价格销售,每月能卖出2000件,假定每月销售件数y(件)与价格x (元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【考点】二次函数的应用.【分析】(1)设y=kx+b,把(5,3000),(6,2000)代入可求得;(2)设每月的利润为W元,根据:“总利润=每件利润×销售量”列出函数关系式,配方可得其最值情况.【解答】解:(1)由题意,可设y=kx+b,把(5,3000),(6,2000)代入得:,解得:k=﹣1000,b=8000,∴y与x之间的关系式为:y=﹣1000x+8000;(2)设每月的利润为W元,则W=(x﹣4)(﹣1000x+8000)=﹣1000(x﹣4)(x﹣8)=﹣1000(x﹣6)2+4000∴当x=6时,W取得最大值,最大值为4000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为4000元.【点评】本题主要考查二次函数的实际应用能力,准确抓住相等关系列出函数关系式是解题的关键,熟练掌握二次函数的性质是根本.。
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
【初中数学】黑龙江省大庆市2016年中考数学一模试卷(解析版) 人教版

黑龙江省大庆市2016年中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.的相反数是()A.2 B.﹣2 C.﹣D.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:的相反数是﹣.故选C.【点评】本题考查相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.属于基础题型,比较简单.2.a、b在数轴上的位置如图所示,则下列式子正确的是()A.a+b>0 B.a+b>a﹣b C.|a|>|b|D.ab<0【考点】绝对值;数轴.【分析】从a、b在数轴上的位置可以判断出a、b的符号及绝对值的大小,从而可以利用性质得出答案.【解答】解:从数轴上a、b的位置观察可知a在原点右侧,b在原点左侧,a离原点的距离小于b 离原点的距离,可以得到结论a<0,b>0,|a|<|b|,则判断得到a+b<0,a﹣b>0,ab<0,从而推导得出a+b<a﹣b,由此得到A、B、C三个选项错误.故选:D.【点评】本题考察数轴上的点的性质,解题的关键是通过观察a、b离原点的距离得到a、b的大小关系.3.今年1月中旬以来的低温、雨雪、冰冻天气,造成全国多个地区发生不同程度的灾害,直接经济损失已达到了5.379×1010元,将此数据用亿元表示为()A.0.5379亿元B.5.379亿元C.53.79亿元D.537.9亿元【考点】科学记数法—原数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.379×1010=5.379×1010×10﹣8(亿)=537.9(亿),故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列式子正确的是()A.=±2B.=﹣2 C.=﹣2D.=﹣2【考点】立方根;算术平方根.【分析】根据算术平方根的定义判断A、D;根据立方根的定义判断B、C.【解答】解:A、=2,故本选项错误;B、=﹣2,故本选项正确;C、=﹣2,故本选项错误;D、负数没有算术平方根,故本选项错误;故选B.【点评】本题考查了立方根与算术平方根的定义,熟练掌握定义是解题的关键.5.下列四种正多边形:①正三角形;②正方形;③正五边形;④正六边形,其中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:①正三角形是轴对称图形不是中心对称图形; ②正方形即是轴对称图形又是中心对称图形; ③正五边形是轴对称图形不是中心对称图形; ④正六边形即是轴对称图形又是中心对称图形, 故选:B .【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.如图,矩形ABCD ,AB=a ,BC=b ,a >b ;以AB 边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC 边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲、V 乙,侧面积分别为S 甲、S 乙,则下列式子正确的是( )A .V 甲>V 乙 S 甲=S 乙B .V 甲<V 乙 S 甲=S 乙C .V 甲=V 乙 S 甲=S 乙D .V 甲>V 乙 S 甲<S 乙 【考点】点、线、面、体.【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案. 【解答】解:V 甲=π•b 2×a=πab 2, V 乙=π•a 2×b=πba 2, ∵πab 2<πba 2, ∴V 甲<V 乙, ∵S 甲=2πb •a=2πab , S 乙=2πa •b=2πab , ∴S 甲=S 乙,【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.7.化简的结果是()A.x+1 B. C.x﹣1 D.【考点】分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.下列命题:①等腰三角形的角平分线平分对边;②对角线垂直且相等的四边形是正方形;③正六边形的边心距等于它的边长;④过圆外一点作圆的两条切线,其切线长相等.其中真命题有()个.A.1个B.2个C.3个D.4个【考点】命题与定理;正方形的判定;切线的性质;正多边形和圆.【分析】利用等腰三角形的性质、正方形的定义、正六边形的性质及切线长定理对几个命题进行判断即可.【解答】解:①等腰三角形的顶角平分线平分对边,故错误,是假命题;②对角线垂直且相等的平行四边形是正方形,故错误,是假命题;③正六边形的半径等于它的边长,故错误,是假命题;④过圆外一点作圆的两条切线,其切线长相等,正确,是真命题,真命题有1个,【点评】本题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、正方形的定义、正六边形的性质及切线长定理,难度不大.9.下列说法正确的是()①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大;③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件.A.①②B.②③C.②④D.③④【考点】可能性的大小;全面调查与抽样调查;方差;随机事件.【分析】根据随机事件、方差的意义、调查方式和概率解答即可..【解答】解:①了解某市学生的视力情况需要采用抽查的方式,错误;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大,正确;③50个人中可能有两个人生日相同,可能性较大,错误;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件,正确;故选C.【点评】本题考查了全面调查与抽样调查,正确区分全面调查与抽样调查是解题关键,注意概率时事件发生可能性的大小,并不一定发生.10.已知二次函数y=ax2﹣bx+b﹣a与x轴交于A、B两点,则线段AB的最小值为()A.B.2 C.D.无法确定【考点】抛物线与x轴的交点.【分析】设A(x1,0),B(x2,0).根据根与系数的关系和两点间的距离公式进行解答.【解答】解:设A(x1,0),B(x2,0).依题意得x1+x2=,x1•x2==﹣1.则AB=|x1﹣x2|===≥.故线段AB的最小值为,故选C.【点评】本题考查了抛物线与x轴的交点.熟记完全平方公式和几个公式的变形是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.函数中,自变量x的取值范围是x≠1.【考点】函数自变量的取值范围;分式有意义的条件.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.不等式组的解集为﹣2<x≤3.【考点】解一元一次不等式组.【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【解答】解:,由①式得x>﹣2;由②式得x≤3,所以不等式组的解为﹣2<x≤3,故答案为﹣2<x≤3.【点评】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.因式分解:(x+1)(x+2)+=(x+)2.【考点】提公因式法与公式法的综合运用.【分析】原式整理后,利用完全平方公式分解即可.【解答】解:原式=x2+3x+=(x+)2,故答案为:(x+)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.由几个小正方体搭成的几何体,其主视图、左视图相同,均如图所示,则搭成这个几何体最少需要3个小正方体.【考点】由三视图判断几何体.【分析】根据所给出的图形可知这个几何体共有2层,2列,先看第一层正方体可能的最少个数,再看第二层正方体的可能的最少个数,相加即可.【解答】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为:3.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为 2.5﹣π(结果保留π).【考点】扇形面积的计算.【分析】根据等边三角形的性质以及勾股定理得出△COF,△COM,△ABC以及扇形FOM的面积,进而得出答案.【解答】解:过点O作OE⊥AC于点E,连接FO,MO,∵△ABC是边长为4的等边三角形,D为AB边的中点,以CD为直径画圆,∴CD⊥AB,∠ACD=∠BCD=30°,AC=BC=AB=4,∴∠FOD=∠DOM=60°,AD=BD=2,∴CD=2,则CO=DO=,∴EO=,EC=EF=,则FC=3,∴S△COF=S△COM=××3=,==π,S扇形OFMS△ABC=×CD×4=4,∴图中影阴部分的面积为:4﹣2×﹣π=2.5﹣π.故答案为:2.5﹣π.【点评】此题主要考查了扇形面积公式以及三角形面积公式和等边三角形的性质等知识,正确分割图形求出是解题关键.16.已知实数m、n满足m2=2﹣2m,n2=2﹣2n,则+=﹣4或2.【考点】根与系数的关系.【分析】分两种情况:①当m=n时,②由m≠n时,得到m,n是方程x2+2x﹣2=0的两个不等的根,根据根与系数的关系进行求解.【解答】解:①当m=n时, +=2;②当m≠n时,则m,n是方程x2+2x﹣2=0的两个不相等的根,∴m+n=﹣2,mn=﹣2,∴+====﹣4,∴+=﹣4或2,故答案为:﹣4或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.17.如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为3个.【考点】反比例函数图象上点的坐标特征.【分析】先利用待定系数法求得反比例函数的解析式为y=;直线AB的解析式为y=﹣x+7;然后分别把x=2、3、4、5代入两个解析式,分别求出对应的纵坐标,再易得到图中阴影部分(不包括边界)所含格点的坐标.【解答】解:把A(1,6)代入y=,得k=1×6=6,∴反比例函数的解析式为y=;设直线AB的解析式为y=ax+b,把A(1,6),B(6,1)代入得,ax+b=6,a+b=1,解得a=﹣1,b=7,∴直线AB的解析式为y=﹣x+7;当x=2,y==3;y=﹣x+7=5;当x=3,y==2;y=﹣x+7=4;当x=4,y==;y=﹣x+7=3;当x=5,y==;y=﹣x+7=2,∴图中阴影部分(不包括边界)所含格点的有:(2,4),(3,3),(4,2),故答案为3.【点评】本题考查了待定系数法求反比例函数和一次函数的解析式.也考查了横纵坐标都为整数的点的坐标的确定方法.18.如图,等腰△ABC中,AB=AC,tan∠B=,BC=30,D为BC中点,射线DE⊥AC.将△ABC绕点C顺时针旋转(点A的对应点为A′,点B的对应点为B′),射线A′B′分别交射线DA、DE于M、N.当DM=DN时,DM的长为6+5.【考点】旋转的性质.【分析】过D作DH⊥A′M于H交AC于Q,过Q作QP⊥AD于P,过C作CK⊥MA′于K,过K 作KL⊥CE于L,KJ⊥DN于J,根据等腰三角形的性质得到AD⊥BC,BD=CD=15,解直角三角形得到AC=,CE=12,根据线段的和差得到AE=AC﹣EC=﹣12=,AD=,解直角三角形即可得到结论.【解答】解:过D作DH⊥A′M于H交AC于Q,过Q作QP⊥AD于P,过C作CK⊥MA′于K,过K作KL⊥CE于L,KJ⊥DN于J,∵AB=AC,D为BC中点,∴AD⊥BC,BD=CD=15,∵tan∠B=,∴AC=,CE=12,∴AE=AC﹣EC=﹣12=,AD=,AQ=,PQ==3,DP=9,tan∠QDP=,∵∠DNH=∠KCL,∴∠CKL=∠HDN,tan∠CKL=,∴CL=,KL==EJ,∴EL=KJ=12﹣,NJ=4﹣,∴EN=﹣(4﹣)=6﹣4,∴DN=6﹣4+9=6+5.故答案为:6+5.【点评】本题考查了旋转的性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字说明、证明过程或演算步骤)19.计算:(﹣1)2016﹣cos45°﹣(﹣)﹣2+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】本题涉及乘方、特殊角的三角函数值、负整数指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣﹣9+=﹣8.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、特殊角的三角函数值、负整数指数幂、二次根式等考点的运算.20.大商超市为了吸引顾客,设立了一个抽奖活动.如图,活动规则:顾客单票(2016•大庆一模)如图,在▱ABCD中,E、F分别是边AB、CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.【考点】平行四边形的性质;全等三角形的判定;菱形的判定.【分析】(1)由平行四边形的性质得出AD=BC,AD∥BC,∠D=∠ABC,AB=CD,证出DF=BE,由SAS证明△ADF∽≌△CBE即可;(2)由矩形的性质得出∠ACB=90°,由直角三角形斜边上的中线性质得出CE=AB=AE,同理AF=FC,得出AF=FC=CE=EA,即可证出四边形AECF为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠D=∠ABC,AB=CD,又∵E、F分别是边AB、CD的中点,∴DF=BE,在△ADF和△CBE中,,∴△ADF∽≌△CBE(SAS);(2)解:四边形AECF为菱形;理由如下:∵四边形AGBC是矩形,∴∠ACB=90°,又∵E为AB中点,∴CE=AB=AE,同理AF=FC,∴AF=FC=CE=EA,∴四边形AECF为菱形.【点评】本题主要考查了平行四边形的性质、全等三角形的判定,菱形的判定,直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质得出AF=FC=CE=EA 是解决问题的关键.21.如图,在▱ABCD中,E、F分别是边AB、CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.【考点】平行四边形的性质;全等三角形的判定;菱形的判定.【分析】(1)由平行四边形的性质得出AD=BC,AD∥BC,∠D=∠ABC,AB=CD,证出DF=BE,由SAS证明△ADF∽≌△CBE即可;(2)由矩形的性质得出∠ACB=90°,由直角三角形斜边上的中线性质得出CE=AB=AE,同理AF=FC,得出AF=FC=CE=EA,即可证出四边形AECF为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠D=∠ABC,AB=CD,又∵E、F分别是边AB、CD的中点,∴DF=BE,在△ADF和△CBE中,,∴△ADF∽≌△CBE(SAS);(2)解:四边形AECF为菱形;理由如下:∵四边形AGBC是矩形,∴∠ACB=90°,又∵E为AB中点,∴CE=AB=AE,同理AF=FC,∴AF=FC=CE=EA,∴四边形AECF为菱形.【点评】本题主要考查了平行四边形的性质、全等三角形的判定,菱形的判定,直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质得出AF=FC=CE=EA 是解决问题的关键.22.图1为大庆龙凤湿地观光塔,游客可乘坐观光电梯进入观光层向四周瞭望,鸟瞰大庆城市风光.如图2,小英在距塔底D约200米的A处测得塔球底部平台B的仰角为45°,塔尖C的仰角为60°,求平台B到塔尖C的高度BC.(精确到个位,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,计算即可.【解答】解:在Rt△ADC中,∵AD=200,∠CAD=60°,∴DC=DA•tan60°=200,在Rt△ADB中,∠BAD=45°,∴BD=AD=200,∴BC=DC﹣DB=200﹣200≈146(米).答:平台B到塔尖C的高度BC约为146米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.人口老龄化是全世界热点问题.为了让学生感受到人口老龄化所带来的一系列社会问题,从而渗透尊老、敬老教育,大庆市萨尔图区某中学组织该校初一年级学生开展了一项综合实践活动.该校初一年级的全体学生分别深入府明社区的两个小区调查每户家庭老年人的数量(60岁以上的老人).根据调查结果,该校学生将数据整理后绘制成的统计图如图所示,其中A组为1位老人/户,B组为2位老人/户,C组为3位老人/户,D组为4位老人/户,E组为5位老人/户,F组为6位老人/户.请根据上述统计图完成下列问题:(1)这次共调查了500户家庭;(2)每户有六位老人所占的百分比为8%;(3)请把条形统计图补充完整;(4)本次调查的中位数落在C组内,众数落在D组;(5)若萨尔图区约有10万户家庭,请你估计其中每户4位老人的家庭有多少户?【考点】条形统计图;扇形统计图;中位数;众数.【分析】(1)根据C组有80户家庭,所占的百分比是20%,据此即可求得调查的总户数;(2)根据百分比的意义即可直接求解;(3)利用总数减去其它组的户数即可求得D组的户数,从而补全直方图;(4)利用总数10万乘以对应的比例即可求得.【解答】解:(1)调查的总户数是80÷20%=500,故答案是500;(2)每户有六位老人所占的百分比是:=8%;(3)D组的家庭数是500﹣60﹣120﹣80﹣20﹣40=160,;(4)次调查的中位数落在C组内,众数落在D组.故答案是:C,D;(5)估计其中每户4位老人的家庭有10×=3.2(万户).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.【考点】反比例函数综合题.【分析】(1)首先由反比例函数的解析式分别求得m、n的值,再进一步根据点A、B的坐标求得一次函数的解析式;(2)根据(1)中求得的解析式,令x=0,即可求得点C的坐标;(3)根据点A、C的坐标即可求得OC=1,OC边上的高是点A的横坐标,进一步求得三角形的面积.【解答】解:(1)由题意,把A(m,2),B(﹣2,n)代入中,得,∴A(1,2),B(﹣2,﹣1)将A、B代入y=kx+b中得:,∴,∴一次函数解析式为:y=x+1;(2)由(1)可知:当x=0时,y=1,∴C(0,1);(3)S△AOC=×1×1=.【点评】本题考查了反比例函数的综合应用,重点是由交点坐标求得函数的解析式,题目较难,同学们要重点掌握.25.东风商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3000件;若按每件6元的价格销售,每月能卖出2000件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【考点】二次函数的应用.【分析】(1)设y=kx+b,把(5,3000),(6,2000)代入可求得;(2)设每月的利润为W元,根据:“总利润=每件利润×销售量”列出函数关系式,配方可得其最值情况.【解答】解:(1)由题意,可设y=kx+b,把(5,3000),(6,2000)代入得:,解得:k=﹣1000,b=8000,∴y与x之间的关系式为:y=﹣1000x+8000;(2)设每月的利润为W元,则W=(x﹣4)(﹣1000x+8000)=﹣1000(x﹣4)(x﹣8)=﹣1000(x﹣6)2+4000∴当x=6时,W取得最大值,最大值为4000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为4000元.【点评】本题主要考查二次函数的实际应用能力,准确抓住相等关系列出函数关系式是解题的关键,熟练掌握二次函数的性质是根本.26.如图,A、B两个单位分别位于一条封闭式街道的两旁,A、B两个单位到街道的距离AC=48米、BD=24米,A、B两个单位的水平距离CE=96米,现准备修建一座与街道垂直的过街天桥.(1)天桥建在何处才能使由A到B的路线最短?(2)天桥建在何处才能使A、B到天桥的距离相等?分别在图1、图2中作图说明(不必说明理由)并通过计算确定天桥的具体位置.【考点】作图—应用与设计作图.【分析】(1)如图1,在直线BD上截取BB′=DE,连接AB′,交CE于F,则点F就是天桥所建位置,依据是两边之和大于第三边;(2)如图2,平移B点至B’使BB′=DE,连接AB′交CE于F,作线段AB′的中垂线交CE于P,在此处建桥可使A、B到天桥的距离相等;根据线段垂直平分线定理和平行四边形对边相等可得AP=BQ;证明△ACF∽△POF,得,设CP=x,代入计算可求出x的值,即CP=39米,得出结论.【解答】解:(1)如图1,平移B点至B′,使BB′=DE,连接AB′交CE于F,在此处建桥可使由A到B的路线最短;此时易知AB′∥BG,∴△ACF∽△BDG,∴,设CF=x,则GD=96﹣x,∴,解得x=64,即CF=64米,∴将天桥建在距离C点64米处,可使由A到B的路线最短;(2)如图2,平移B点至B’使BB′=DE,连接AB′交CE于F,作线段AB′的中垂线交CE于P,在此处建桥可使A、B到天桥的距离相等;此时易知AB′∥BG,另OP为AB′中垂线,∴△ACF∽△POF,∴,设CP=x,则PF=CF﹣x,由(1)得CF=64,∴PF=64﹣x;在Rt△ACF中,由勾股定理得AF=80,∵AC∥BE,∴==,∴FB′=40,又O为AB′中点,∴FO=20,∴,解得x=39,即CP=39米,∴将天桥建在距离C点39米处,可使由A到B的路线最短.【点评】本题是作图题,作最短路径和相等路径;根据是三角形两边之和大于第三边或两点之间线段最短来作图;本题的具体作法是:利用平移的方法将点A和B及天桥的始点移到同一直线上,运用了平行四边形的对边相等,也利用相似三角形对应边的比列式求出线段的长.27.如图,直径为10的半圆O,tan∠DBC=,∠BCD的平分线交⊙O于F,E为CF延长线上一点,且∠EBF=∠GBF.(1)求证:BE为⊙O切线;(2)求证:BG2=FG•CE;(3)求OG的值.【考点】相似三角形的判定与性质;切线的判定.【分析】(1)根据圆周角定理得到∠FBD=∠DCF,由角平分线的定义得到∠BCF=∠DCF,等量代换得到∠EBF=∠∠BCF,推出BE⊥BC,即可得到结论;(2)证明:由(1)知∠BFC=∠EBC=90°,∠EBF=∠ECB,通过相似三角形的性质得到BE2=EF•CE,得到∠BFE=∠BFG=90°,推出△BEF≌△BGF,根据全等三角形的性质得到BE=BG,EF=FG,等量代换得到结论;(3)如图,过G作GH⊥BC于H,根据角平分线的性质得到GH=GD,根据三角函数的定义得到=,求得GD=GH=3,BG=5,BH=4,根据勾股定理即可得到结论.【解答】(1)证明:由同弧所对的圆周角相等得∠FBD=∠DCF,又∵CF平分∠BCD,∴∠BCF=∠DCF,已知∠EBF=∠GBF,∴∠EBF=∠∠BCF,∵BC为⊙O直径,∴∠BFC=90°,∴∠FBC+∠FCB=90°,∴∠FBC+∠EBF=90°,∴BE⊥BC,∴BE为⊙O切线;(2)证明:由(1)知∠BFC=∠EBC=90°,∠EBF=∠ECB,∴△BEF∽△CEB,∴BE2=EF•CE,又∠EBF=∠GBF,BF⊥EG,∴∠BFE=∠BFG=90°,在△BEF与△BGF中,,∴△BEF≌△BGF,∴BE=BG,EF=FG,∴BG2=FG•CE;(3)如图,过G作GH⊥BC于H,∵CF平分∠BCD,∴GH=GD,∵tan∠DBC=,∴sin∠DBC=,∵BC=10,∴BD=8,BG=BD﹣GD=8﹣GD,∴=,∴GD=GH=3,BG=5,BH=4,∵BC=10,∴OH=OB﹣BH=1,在Rt△OGH中,由勾股定理得OG=.【点评】本题考查了相似三角形的判定和性质,圆周角定理,全等三角形的判定和性质,切线的判定,角平分线的性质,三角函数的定义,作GH⊥BC是解决(3)小题的关键.28.在平面直角坐标系中,有三点A(﹣1,0),B(0,),C(3,0).(1)求过点A、B、C的抛物线的解析式;(2)如图1,在线段AC上有一动点P,过P点作直线PD∥AB交BC于点D,求出△PBD面积的最大值;(3)如图2,在(2)的情况下,在抛物线上是否存在一点Q,使△QBD的面积与△PBD面积相等?如存在,直接写出Q点坐标;如不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设交点式y=a(x+1)(x﹣3),然后把B点坐标代入求出a即可;(2)先利用三角函数的定义计算出∠OAB=60°,∠OCB=30°,则∠ABC=90°,于是得到PD⊥BC,设P(m,0),则PC=3﹣m,接着表示出PD和BD,则根据三角形面积公式得到S△PBD=PD•BD=﹣(m﹣1)2+,然后根据二次函数的性质求解;(3)先利用待定系数法求出直线BC的解析式为y=﹣x+,由于△QBD的面积与△PBD面积相等,则点P到BD的距离等于P点到BD的距离:当PQ∥BD时,可得到此时直线解析式为y=﹣x+,于是通过解方程组可得Q点坐标;当点P和Q在BD两侧,利用直线平行得到Q点为直线y=﹣x+与抛物线的交点,再通过解方程组得Q点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把B(0,)代入得a•1•(﹣3)=,解得a=﹣,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+x+;(2)如图1,∵OA=1,OB=,OC=3,∴tan∠OAB=,tan∠OCB=,∴BC=2OB=2,∴∠OAB=60°,∠OCB=30°,∴∠ABC=90°,∵PD∥AB,∴PD⊥BC,设P(m,0),则PC=3﹣m,在Rt△PCD中,PD=PC=(3﹣m),CD=PD=(3﹣m),∴BD=BC﹣CD=2﹣(3﹣m),∴S△PBD=PD•BD=•(3﹣m)•[2﹣(3﹣m)]=﹣(m﹣1)2+,当m=1时,△PBD面积的最大值为;(3)如图2,设直线BC的解析式为y=kx+b,把B(0,),C(3,0)代入得,解得,∴直线BC的解析式为y=﹣x+,过P点作BC的平行线交抛物线于Q,则△QBD的面积与△PBD面积相等,此时直线解析式为y=﹣x+,解方程组,解得或,此时Q点坐标为(,)或(,),把直线y=﹣x+向上平移个单位得到直线y=﹣x+,则直线y=﹣x+交抛物线于Q,则△QBD的面积与△PBD面积相等,解方程组,解得或,此时Q点坐标为(1,)或(2,),综上所述,Q点的坐标为(,)或(,)或(1,)或(2,).【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数的平移变换;会利用待定系数法求函数解析式;记住含30度的直角三角形三边的关系;解决(3)小题的关键是把三角形面积相等的问题转化为到直线的距离相等.。
大 庆 市 初 四 中 考 数 学 试 卷

大庆 市 初四中考数学试卷一.选择题(共10小题)1.-61的倒数的相反数是( )A .61B .6C .-61D .-6 2.2016年3月25日,成都地铁再创单日线网客流历史新高,达到1738200乘次,用科学记数法表示1738200为(保留三个有效数字)( )A .1.74×106B .1.73×106C .17.4×105D .17.3×1053.若y x 1-x ++=0,则x 2015+y 2016的值( )A .0B .1C .-1D .2 4.把多项式x 3-xy 2分解因式,下列结果正确的是( )A .x (x+y )2B .x (x-y )2C .x (x-y )(x+y )D .x (x 2-y 2)5.若分式方程1+-x a x =a 无解,则a 的值( )A .1B .-1C .±1D .0 6.一次函数y=kx-k 2-1与反比例函数y =xk 在同一直角坐标系内的图象大致位置是( ) A .B .C .D .7.如图,在平面直角坐标系中,过点A 与x 轴平行的直线交抛物线y=1/3(x +1)2于点B 、C ,线段BC 的长度为6,抛物线y=-2x 2+b 与y 轴交于点A ,则b=( )A .1B .4.5C .3D .68.在平面直角坐标系xOy 中,函数y=x k 1(k 1>0,x >0)、函数y=xk 2(k 2<0,x <0)的图象分别经过▱OABC 的顶点A 、C ,点B 在y 轴正半轴上,AD ⊥x 轴于点D ,CE ⊥x 轴于点E ,若|k 1|:|k 2|=9:4,则AD :CE 的值为( )A .4:9B .2:3C .3:2D .9:49.如图,在平面直角坐标系中,⊙O 的半径为2,AC ,BD 是⊙O 的两条互相垂直的弦,垂足为M (1,2),则四边形ABCD 面积最大值为( )A .26B .5C .4D .610.如图,△ABD 内接于⊙O ,点C 在线段AD 上,AC=2CD ,点E 在弧BD 上,∠ECD=∠ABD ,EC=1,则AE 等于( )A.2B. 1.5C.3D .27题图8题图8题图10题图二.填空题(共8小题)11.如果3a x-2b 14和-7a y b 2y 是同类项,则x=_____,y=____.12.当x_______时,代数式29-x +1的值小于31+x −1的值.13.因式分解:6x 3y-12xy 2+3xy=__________________. 14.两个反比例函数y=k /x (k >1)和y=1/x 在第一象限内的图象如图所示,点P 在y=k /x 的图象上,PC ⊥x 轴于点C ,交y=1/x 的图象于点A ,PD ⊥y 轴于点D ,交y=1/x 的图象于点B ,BE ⊥x 轴于点E ,当点P 在y=k /x 图象上运动时,以下结论:①BA 与DC 始终平行;②PA 与PB 始终相等;③四边形PAOB 的面积不会发生变化;④△OBA 的面积等于四边形ACEB 的面积.其中一定正确的是_______(填序号)15.如图,在平面直角坐标系中,点C 是抛物线y=a (x-3)2+k 与y 轴的交点,点B 是这条抛物线上另一点,且BC ∥x 轴,以CB 为边向上作等边三角形ABC ,BC 边上的高AD 交抛物线于点E ,则阴影部分图形的面积为______________16.在Rt △ABC 中,∠C=90°,点G 是重心,如果sinA=1/3,BC=2,那么GC 的长等于_____17.在▱ABCD 中,BC=24,AB=18,∠ABC 和∠BCD 平分线交AD 于点EF,则EF=________.18.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E=__________.14题图15题图18题图三.解答题(共10小题)19.先化简,再求代数式)2(222ab ab a a b a --÷-)的值,其中a=1+2cos45°,b=2sin30°-2.20.嘉年华小区准备新建50个停车位.以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.7万元;新建3个地上停车位和2个地下停车位需1.6万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过15万元而不超过16万元,请提供两种建造方案.21.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A 脱贫攻坚.B .绿色发展.C .自主创新.D .简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了__________名同学;(2)条形统计图中,m=_____,n=______;(3)扇形统计图中,热词B所在扇形的圆心角的度数是_______________;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?22.如图,直线y=2x+2与y轴交于A点,与反比例函数y=k/x(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求k的值;(2)在y轴上是否存在点P,使以点P、A、H、M为顶点的四边形是平行四边形?如果存在,直接写出P点坐标;如果不存在,请说明理由.(3)点N(a,1)是反比例函数y=k/x(x>0)图象上的点,在x轴上有一点P,使得PM+PN 最小,请求出点P的坐标.23.数学临时布置了这样一个问題:如果α,β都为锐角.且tanα=1/3,tanβ=1/2.求α+β的度数.甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图1和图2.(1)请你分别利用图1,图2求出α+β的度数,并说明理由;(2)请参考以上思考问题的方法,选择一种方法解决下面问题:如果α,β都为锐角,当tanα=5,tanβ=2/3时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α-β.求出α-β的度数,并说明理由.24.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P 过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)请直接写出点B、D的坐标:B(____, _____),D(_____, 3);(2)求抛物线的解析式;(3)求证:ED是⊙P的切线;(4)若点M为抛物线的顶点,请直接写出平面上点N的坐标,使得以点B,D,M,N为顶点的四边形为平行四边形.25.某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?26.如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=0.5,求AC的长.27.如图1,△ABC的两条中线AD、BE相交于点O(1)求证:DO:AO=1:2;(2)连接CO并延长交AB于F,求证:CF也是△ABC的中线;(3)在(2)中,若∠A=90°,其它条件不变,连接DF交BE于K(如图2),连接ED,且△EDK∽△CAB,求AC:AB的值.28.已知一次函数y=-x+1与抛物线y=1/3x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.。
黑龙江省大庆市中考数学试卷及答案解析

2020年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.在﹣1,0,π,√3这四个数中,最大的数是()A.﹣1B.0C.πD.√32.天王星围绕太阳公转的轨道半径长约为2900000000km,数字2900000000用科学记数法表示为()A.2.9×108B.2.9×109C.29×108D.0.29×1010 3.若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5B.5C.1D.﹣14.函数y=√2x的自变量x的取值范围是()A.x≤0B.x≠0C.x≥0D.x≥1 25.已知正比例函数y=k1x和反比例函数y=k2x,在同一直角坐标系下的图象如图所示,其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④6.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.47.在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差8.底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为( )A .1:1B .1:3C .1:6D .1:99.已知两个直角三角形的三边长分别为3,4,m 和6,8,n ,且这两个直角三角形不相似,则m +n 的值为( )A .10+√7或5+2√7B .15C .10+√7D .15+3√710.如图,在边长为2的正方形EFGH 中,M ,N 分别为EF 与GH 的中点,一个三角形ABC沿竖直方向向上平移,在运动的过程中,点A 恒在直线MN 上,当点A 运动到线段MN 的中点时,点E ,F 恰与AB ,AC 两边的中点重合,设点A 到EF 的距离为x ,三角形ABC 与正方形EFGH 的公共部分的面积为y .则当y =52时,x 的值为( )A .74或2+√22B .√102或2−√22C .2±√22D .74或√102二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.点P (2,3)关于y 轴的对称点Q 的坐标为 .12.分解因式:a 3﹣4a = .13.一个周长为16cm 的三角形,由它的三条中位线构成的三角形的周长为 cm .14.将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD =108°,则∠COB= .15.两个人做游戏:每个人都从﹣1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为 .16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为 .17.已知关于x 的一元二次方程:x 2﹣2x ﹣a =0,有下列结论:①当a >﹣1时,方程有两个不相等的实根;②当a >0时,方程不可能有两个异号的实根;③当a >﹣1时,方程的两个实根不可能都小于1;④当a >3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为 .18.如图,等边△ABC 中,AB =3,点D ,点E 分别是边BC ,CA 上的动点,且BD =CE ,连接AD 、BE 交于点F ,当点D 从点B 运动到点C 时,则点F 的运动路径的长度为 .三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:|﹣5|﹣(1﹣π)0+(13)﹣1. 20.(4分)先化简,再求值:(x +5)(x ﹣1)+(x ﹣2)2,其中x =√3.21.(5分)解方程:2x x−1−1=4x−1. 22.(6分)如图,AB ,CD 为两个建筑物,两建筑物底部之间的水平地面上有一点M ,从建筑物AB 的顶点A 测得M 点的俯角为45°,从建筑物CD 的顶点C 测得M 点的俯角为75°,测得建筑物AB 的顶点A 的俯角为30°.若已知建筑物AB 的高度为20米,求两建筑物顶点A 、C 之间的距离(结果精确到1m ,参考数据:√2≈1.414,√3≈1.732).23.(7分)为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的a,b满足关系式2a=3b.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.(1)求问题中的总体和样本容量;(2)求a,b的值(请写出必要的计算过程);(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)24.(7分)如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.25.(7分)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.26.(8分)如图,反比例函数y=kx与一次函数y=﹣x﹣(k+1)的图象在第二象限的交点为A,在第四象限的交点为C,直线AO(O为坐标原点)与函数y=kx的图象交于另一点B.过点A作y轴的平行线,过点B作x轴的平行线,两直线相交于点E,△AEB的面积为6.(1)求反比例函数y=kx的表达式;(2)求点A,C的坐标和△AOC的面积.27.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.(1)求证:MN是⊙O的切线;(2)求证:DN2=BN•(BN+AC);(3)若BC=6,cos C=35,求DN的长.28.(9分)如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)。
【中考专题】黑龙江省大庆市中考数学历年真题汇总 卷(Ⅲ)(含答案详解)

黑龙江省大庆市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程变形不正确的是( )A .4332x x -=+变形得:4323x x -=+B .方程110.20.5x x --=变形得:1010212x x --=C .()()23231x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+ 2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 3、如图,等腰三角形ABC 的底边BC 长为4,面积是20,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( ) ·线○封○密○外A .8B .10C .12D .144、如图,已知点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,那么添加下列一个条件后,仍无法判定ABC DEF ≌△△的是( )A .BF CE =B .A D ∠=∠C .AC DF ∥D .AC DF =5、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°6、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .367、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=︒,DBP β∠=︒,则APB ∠的度数为( )°A .2αB .2βC .αβ+D .5()4αβ+ 8、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )A .16B .19C .24D .36 9、如图,在ABC 中,D 是BC 延长线上一点,50B ∠=︒,80A ∠=︒,则ACD ∠的度数为( ) A .140︒ B .130︒ C .120︒ D .110︒ 10、如图,在矩形ABCD 中,6AB =,8AD =,点O 在对角线BD 上,以OB 为半径作O 交BC 于点E ,连接DE ;若DE 是O 的切线,此时O 的半径为( )·线○封○密○外A .716B .2110C .2116D .3516第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy 中,P 为函数)(0m y x x=>图象上一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为M ,N .若矩形PMON 的面积为3,则m 的值为______.2、已知点P 是线段AB 的黄金分割点,AP >PB .若AB =2,则AP =_____.3、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.4、如图,将一个边长为3的正方形纸片进行分割,部分①的面积是边长为3的正方形纸片的一半,部分②的面积是部分①的一半,部分③的面积是部分②的一半,以此类推,n 部分的面积是______.(用含n 的式子表示)5、写出n 的一个有理化因式:_______. 三、解答题(5小题,每小题10分,共计50分) 1、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来. ﹣212,-(﹣4),0,+(﹣1),1,﹣|﹣312|2、将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P . ·线○封○密·○外(1)在旋转过程中,连接,AP CE,求证:AP所在的直线是线段CE的垂直平分线.(2)在旋转过程中,CPN是否能成为直角三角形?若能,直接写出旋转角 的度数;若不能,说明理由.3、已知:如图,锐角∠AOB.求作:射线OP,使OP平分∠AOB.作法:①在射线OB上任取一点M;②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;③分别以点C,D为圆心,大于12CD的长为半径画弧,在∠AOB内部两弧交于点H;④作射线MH,交⊙M于点P;⑤作射线OP.射线OP即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接CD .由作法可知MH 垂直平分弦CD . ∴CP DP =( )(填推理依据). ∴∠COP = . 即射线OP 平分∠AOB . 4、解方程: (1)()8436x x --=; (2)232126x x +--=. 5、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠. 解:∵AD BC ⊥于D ,EG BC ⊥(已知), ∴90ADC EGC ∠=∠=︒(____①_____), ∴EG AD ∥(同位角相等,两直线平行), ∴_____②___(两直线平行,同位角相等) ∠1=∠2(____③_____), 又∵1E ∠=∠(已知), ∴∠2=∠3(_____④______), ∴AD 平分BAC ∠(角平分线的定义). ·线○封○密·○外-参考答案-一、单选题1、D【解析】【分析】根据等式的性质解答.【详解】解:A . 4332x x -=+变形得:4323x x -=+,故该项不符合题意;B . 方程110.20.5x x --=变形得:1010212x x --=,故该项不符合题意; C . ()()23231x x -=+变形得:6433x x -=+,故该项不符合题意;D . 211332x x -=+变形得:46318x x -=+,故该项符合题意;故选:D .【点睛】此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.2、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D . 【点睛】 本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键. 3、C 【解析】 【分析】 连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论. 【详解】 解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC , ·线○封○密○外∴11•42022ABC S BC AD AD ==⨯⨯=,解得AD =10, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=CM +MD +CD =AD +110410222211BC =+⨯=+=.故选:C .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4、D【解析】【分析】结合选项中的条件,是否能够构成,,AAS ASA SAS 的形式,若不满足全等条件即为所求;【详解】解:由AB DE 可得B E ∠=∠,判定两三角形全等已有一边和一角;A 中由BF CE =可得BC EF =,进而可由SAS 证明三角形全等,不符合要求;B 中A D ∠=∠,可由ASA 证明三角形全等,不符合要求;C 中由AC DF 可得ACB DFC ∠=∠,进而可由AAS 证明三角形全等,不符合要求;D 中无法判定,符合要求;故选D .【点睛】本题考查了三角形全等.解题的关键在于找出能判定三角形全等的条件.5、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°, ∴∠A =∠DOE =45°, ∵∠DOE =∠C +∠E , 又∵30C ∠=︒, ∴∠E =∠DOE -∠C =15°. 故选:B 【点睛】 本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键. 6、C 【解析】 【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F , ·线○封○密○外∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等,又∵AB =3AC ,∴S △ACD =13S △ABD =196323⨯=.故选:C .【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.7、C【解析】【分析】根据平行线的性质可得,EPA PAC EPB PBD ∠=∠∠=∠,进而根据APB APE BPE ∠=∠+∠即可求解【详解】 解:,PF AC PF BD ∥∥ ∴,EPA PAC EPB PBD ∠=∠∠=∠∴APB APE BPE ∠=∠+∠αβ=+故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.8、C【解析】【分析】分别求出各视图的面积,故可求出表面积.【详解】 由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5 故表面积为2×(4+3+5)=24 故选C . 【点睛】 此题主要考查三视图的求解与表面积。
2016年大庆中考数学试题模拟试卷

2016年大庆中考数学试题模拟试卷一、选择题:(每小题3分,共30分)1. 下列运算中,正确的是()A.4m-m=3B.-(m-n)=m+nC.(m2)3=m6D.m2÷m2=m【解答】解:A、应为4m-m=3m,故本选项错误;B、应为-(m-n)=-m+n,故本选项错误;C、应为(m2)3=m2×3=m6,正确;D、m2÷m2=1,故本选项错误.故选C.2. 如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.5【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.3.如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°【解答】解:根据题意∠APB=0.5∠AOB,∵∠AOB=90°,∴∠APB=90°×0.5=45°.故选B.4. 如图所示四个图形中,不是轴对称图形的是()A.B.C.D.答案D5.已知O为圆锥顶点,OA、OB为圆锥的母线,C为OB中点,一只小蚂蚁从点C开始沿圆锥侧面爬行到点A,另一只小蚂蚁也从C点出发,绕着圆锥侧面爬行到点B,它们所爬行的最短路线的痕迹如右图所示.若沿OA剪开,则得到的圆锥侧面展开图为()A.B.C.D.【解答】解:∵在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2.∵将△ABC绕顶点A旋转180°,点C落在C′处,AC′=AC=2,∴CC′=4.故选B.若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()A.B.C.D.【解答】解:根据函数图象可知,张老师距离家先逐渐远去,有一段时间离家距二、填空题.(每小题3分,共24分)计算阴影部分的面积可以验证公式_________________.【解答】解:a2-b2=(a+b)(a-b).【解答】解:连接MN,则MN 是△ABC的中位线,因此MN=0.5BC=5cm;过点A作AF⊥BC于F,则AF=12cm.∵图中阴影部分的三个三角形的底长都是5cm,且高的和为12cm;因此S=0.5×5×12=30cm2.故答案为:30.阴影2们的顶点在一条直线上,这条直线的解析式是y=______________0.5x-1.【解答】解:由已知得抛物线顶点坐标为(2a ,a-1),设x=2a ①,y=a-1②,①-②×2,消去a 得,x-2y=2,即y=0.5x-1.一个即可).【解答】解:∵∠A 是△ADB 和△ABC 的公共角,∴如果再加一个角相等,即干?解:【解答】解:(1)∵OE ⊥CD 于点E ,CD=24,∴ED=0.5CD=12,在Rt △DOE 中,∵sin ∠DOE=OD ED =1312,∴OD=13(m );(2)OE=5,∴将水排干需:5÷0.5=10(小时).21.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.业成绩达80分以上为“优秀毕业生调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?【解答】解:(1)当△ABC 为等腰直角三角形时,过C 作CD ⊥AB于D ,则AB=2CD ;∵抛物线与x 轴有两个交点,∴△>0,∴|b 2-4ac|=b 2-4ac ,∵AB=||42a ac b -, 又∵CD=05.||42a ac b -,a≠0,ac b 42-∴=242ac b -,即∴b 2-4ac=4)4(22ac b -, ∵b 2-4ac≠0∴b 2-4ac=4.的两个实数根.(1)求⊙O的半径.(2)求CD的长.解:27.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.解:【解答】(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=0.5ME,∴在Rt△MNE中,PN=0.5ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,∠MBP=∠ECP, BP=CP, ∠BPM =∠CPE,∴△BPM≌△CPE,∴PM=PE,∴PM=0.5ME,则Rt△MNE中,PN=0.5ME,∴PM=PN.(3)解:如图4,四边形M′BCN′是矩形,根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP,得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”.28.如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE的位置.(1)求C1点的坐标;(2)求经过三点O、A、C1的抛物线的解析式;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式;(4)抛物线上是否存在一点M,使得S△AMF:S△OAB=16:3.若存在,请求出点M的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省大庆市2016年中考数学试卷及答案解析(word版)2016年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107B.0.361×109C.3.61×108D.3.61×1072.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>03.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形4.当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.6.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有()个.A.5 B.6 C.7 D.87.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.48.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.39.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<010.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定二、填空题(本大题共8小题,每小题3分,共24分)11.函数y=的自变量x的取值范围是.12.若a m=2,a n=8,则a m+n=.13.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是(填“甲”或“乙”).14.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.15.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.17.如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为.18.直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为.三、解答题(本大题共10小题,共66分)19.计算(+1)2﹣π0﹣|1﹣|20.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.21.关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.22.某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?23.为了了解某学校初四年纪学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.24.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.25.如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.26.由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.27.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.28.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n 为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB 绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.2016年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107B.0.361×109C.3.61×108D.3.61×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:361 000 000用科学记数法表示为3.61×108,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【考点】实数与数轴.【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.3.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【考点】矩形的性质;平行四边形的判定;菱形的判定.【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.4.当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<【考点】不等式的性质.【分析】先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选(A)【点评】本题主要考查了不等式,解决问题的根据是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>.5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有()个.A.5 B.6 C.7 D.8【考点】由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图可知,这个几何体的底层应该有2+1+1+1=5个小正方体,第二层应该有2个小正方体,因此搭成这个几何体所用小正方体的个数是5+2=7个.故选C【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第2个、第4个图形是中心对称图形,共2个.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.8.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3【考点】命题与定理.【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即⇒③;当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即⇒②;当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即⇒①,故正确的有3个.故选:D.【点评】此题主要考查了命题与定理,正确掌握平行线的判定与性质是解题关键.9.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数y=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.10.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定【考点】一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【点评】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.函数y=的自变量x的取值范围是x≥.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2x﹣1≥0,解得x≥.故答案为:x≥.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.若a m=2,a n=8,则a m+n=16.【考点】同底数幂的乘法.【专题】计算题;实数.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.13.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是甲(填“甲”或“乙”).【考点】方差.【分析】计算出乙的平均数和方差后,与甲的方差比较后,可以得出判断.【解答】解:乙组数据的平均数=(0+1+5+9+10)÷5=5,乙组数据的方差S2=[(0﹣5)2+(1﹣5)2+(9﹣5)2+(10﹣5)2]=16.4,∵S2甲<S2乙,∴成绩较为稳定的是甲.故答案为:甲.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=110°.【考点】三角形内角和定理.【分析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70,再利用三角形内角和定理即可求出∠BDC的度数.【解答】解:∵D点是∠ABC和∠ACB角平分线的交点,∴有∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180﹣40=140,∴∠OBC+∠OCB=70,∴∠BOC=180﹣70=110°,故答案为:110°.【点评】此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题,熟记三角形内角和定理是解决问题的关键.15.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3.【考点】三角形中位线定理;规律型:图形的变化类.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.【解答】解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.【考点】解直角三角形的应用-方向角问题.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x ,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点评】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.17.如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为75﹣.【考点】扇形面积的计算;矩形的性质;切线的性质.【分析】设圆的半径为x,根据勾股定理求出x,根据扇形的面积公式、阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)进行计算即可.【解答】解:设圆弧的圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x﹣5,由勾股定理得,OB2=OF2+BF2,即x2=(x﹣5)2+(5)2,解得,x=5,则∠BOF=60°,∠BOC=120°,则阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)=10×5﹣+×10×5=75﹣,故答案为:75﹣.【点评】本题考查的是扇形面积的计算,掌握矩形的性质、切线的性质和扇形的面积公式S=是解题的关键.18.直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).【考点】二次函数的性质;一次函数的性质.【专题】推理填空题.【分析】根据直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.【解答】解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴=,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【点评】本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k的乘积为﹣1.三、解答题(本大题共10小题,共66分)19.计算(+1)2﹣π0﹣|1﹣|【考点】实数的运算;零指数幂.【分析】直接利用完全平方公式以及零指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2+2+1﹣1﹣(﹣1)=2+2﹣+1=3+.【点评】此题主要考查了完全平方公式以及零指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.20.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解答】解:(1)由①得:x<,由②得:x<,由两个不等式的解集相同,得到=,解得:a=1;(2)由不等式①的解都是②的解,得到≤,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.22.某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?【考点】分式方程的应用.【分析】关键描述语为:“提前10天完成任务”;等量关系为:原计划天数=实际生产天数+10.【解答】解:设原计划每天能加工x个零件,可得:,解得:x=6,经检验x=6是原方程的解,答:原计划每天能加工6个零件.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.本题需注意应设较小的量为未知数.23.为了了解某学校初四年纪学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.【分析】(1)①根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m的值;②求得总人数后减去其他小组的人数即可求得第三小组的人数;(2)利用众数、中位数的定义及平均数的计算公式确定即可.【解答】解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为=,∵课外阅读时间为2小时的有15人,∴m=15÷=60;②第三小组的频数为:60﹣10﹣15﹣10﹣5=20,补全条形统计图为:(2)∵课外阅读时间为3小时的20人,最多,∴众数为3小时;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时,∴中位数为3小时;平均数为:≈2.92小时.【点评】本题考查了众数、中位数、平均数及扇形统计图和条形统计图的知识,解题的关键是能够结合两个统计图并找到进一步解题的有关信息,难度不大.24.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.【专题】证明题.【分析】根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∴∠F∠FCD,在△ADG与△CDG中,,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵△ADG≌△CDG,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AEG∽△FGA,∴,∴AG2=GE•GF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.25.如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.【考点】反比例函数与一次函数的交点问题;等腰直角三角形.【分析】(1)先根据点A1的坐标为(4,0),△P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;(2)先根据△P2A1A2为等腰直角三角形,将P2的坐标设为(4+a,a),并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围.【解答】解:(1)过点P1作P1B⊥x轴,垂足为B∵点A1的坐标为(4,0),△P1OA1为等腰直角三角形∴OB=2,P1B=OA1=2∴P1的坐标为(2,2)将P1的坐标代入反比例函数y=(k>0),得k=2×2=4∴反比例函数的解析式为(2)①过点P2作P2C⊥x轴,垂足为C∵△P2A1A2为等腰直角三角形∴P2C=A1C设P2C=A1C=a,则P2的坐标为(4+a,a)将P2的坐标代入反比例函数的解析式为,得a=,解得a1=,a2=(舍去)∴P 2的坐标为(,)②在第一象限内,当2<x<2+时,一次函数的函数值大于反比例函数的值.【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是根据等腰直角三角形的性质求得点P1和P2的坐标.等腰直角三角形是一种特殊的三角形,具备等腰三角形和直角三角形的所有性质.26.由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.【考点】一次函数的应用.【分析】(1)根据两点的坐标求y1(万m3)与时间x(天)的函数关系式,并把x=20代入计算;(2)分两种情况:①当0≤x≤20时,y=y1,②当20<x≤60时,y=y1+y2;并计算分段函数中y≤900时对应的x的取值.【解答】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入到y1=kx+b得:解得,∴y1=﹣20x+1200当x=20时,y1=﹣20×20+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入到y2=kx+b中得:解得,∴y2=25x﹣500,当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,y≤900,则5x+700≤900,x≤40,当y1=900时,900=﹣20x+1200,x=15,∴发生严重干旱时x的范围为:15≤x≤40.【点评】本题考查了一次函数的应用,熟练掌握利用待定系数法求一次函数的解析式:设直线解析式为y=kx+b,将直线上两点的坐标代入列二元一次方程组,求解;注意分段函数的实际意义,会观察图象.27.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边A B于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.【考点】圆的综合题.【分析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【解答】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点,∴OH是△ABC的中位线,∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB,又∵OB=OM,∴∠OMB=∠MBO,∴∠COH=∠MOH,在△COH与△MOH中,,∴△COH≌△MOH(SAS),∴∠HCO=∠HMO=90°,∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线,∴HC=MH=,∴AC=2HC=3,∵tan∠ABC=,∴=,∴BC=4,∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I,∵AC与AN都是⊙O的切线,∴AC=AN,AO平分∠CAD,∴AO⊥CN,∵AC=3,OC=2,∴由勾股定理可求得:AO=,∵AC•OC=AO•CI,∴CI=,∴由垂径定理可求得:CN=,设OE=x,由勾股定理可得:CN2﹣CE2=ON2﹣OE2,∴﹣(2+x)2=4﹣x2,∴x=,。