小学数学逆推问题应用题及参考答案
五年级-逆推问题专项练习(含答案)

1.⼩⻢⻁在计算加上⼀个⼀位⼩数时,由于错误地把数的末尾对⻬,结果得到。
正确的得数应是( )A.B.C.2.⼀个数扩⼤倍后⼜缩⼩倍得,这个数是( )A.B.C.D.3.⼩⻢⻁在计算加上⼀个⼀位⼩数时,由于错误地把数的末尾对⻬,结果得到,正确的得数应是( )。
A.B.C.4.是甲⼄丙丁四个数的和,如果甲减少,⼄增加,丙除以,丁乘后,则四个数都相等,那么甲是,⼄是,丙是,丁是。
5.计算某数除以时,把除号看成了乘号,结果是,这道题的正确答案是。
6.将⼀个⾃然数减去,然后乘以,再除以,所得的商是,且有余数,原来的⾃然数是。
7.⼩明看⼀本书,第⼀天看了⼀半⼜⻚,第⼆天看了剩下的⼀半⼜⻚,第三天看了剩下的⼀半⼜⻚,还剩下⻚,这本书⻚。
8.⼩⻢⻁在计算加⼀个⼀位⼩数时,由于错误地把数的末尾对⻬,结果得到,则正确结果应该是。
1.39 1.845.894.50.4551616050512248001.39 1.845.894.50.4527922223.75225334731101010103.56 4.239.⼩玲在计算除法时,把除数看成了,结果得到商为,还余,帮她算⼀算,正确的商是。
10.⼀个数加上,乘以,除以,结果等于,这个数是。
11.原有若⼲本书,借⾛了⼀半多本,剩下的书借⾛了差本就正好是⼀半,再剩下的书借⾛了⼀半多本,最后剩下本书,原来有书本。
12.、、、各代表不同的数字。
要使下⾯的竖式成⽴,则,,,。
13.除的商正好是的倍。
14.原有若⼲本书,借⾛了⼀半多本,剩下的书借⾛了差本就正好是⼀半,再剩下的书借⾛了⼀半多本,最后剩下本书,原来有书本。
15.下图的乘法竖式中已经给出六个数字,请在其余⽅框中填⼊适当的数字,使得竖式成⽴,那么最终的乘积是。
16.,中应填的数是。
655613527777A B 1C 2D34A A B C D A =B=C =D =A B C D A B C A B+A 19279910A B 1C 2D34A □×2.5−2.3=4.7□17.⼀个数先减去,再将差扩⼤倍,然后加上,再将结果缩⼩倍,得,这个数是。
逆推法

逆推法解题(A卷)一、填空题1.将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.那么这个数是 .2.李白提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原有斗酒.3.甲、乙两个车站共停135辆汽车,如果从甲站开36辆到乙站,从乙站开45辆到甲站,这时乙站车是甲站的1.5倍.乙原来停辆车.4.农业站有一批化肥,第一天卖出一半又多15吨,第二次卖出余下的一半多8吨,第三次卖出180吨,正好卖完,这批化肥原来有吨.5.四个袋子共有168粒棋子,小红过来一看,把棋子作如下的调整,把丁袋调3粒到丙袋,丙调6粒到乙袋,乙又调6粒到甲袋,甲袋调2粒到丁袋,这时,四个袋子的棋子一样多,乙袋原来有粒棋子.6.一筐桔子,把它四等分后多一个,取走3份又一个,剩下的四等分后又剩一个,再取走3份又一个,剩下的四等分又剩一个,那么原来至少有个桔子.7.袋子里有若干个球,小华每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球,那么,袋中原来共有个球.8.3÷7的小数点后面第1999位上的数是 .9.已知A,B,C,D四数之和为45,且A+2=B-2=C×2=D÷2,那么,这四个数依次是 .10.两个小于1000的质数之积是一个偶数,这个偶数最大可能是 .二、解答题11.池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池塘的 ?12.一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米?13.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多10元,最后剩下125元,求他原来有多少元?14.王大爷把他所有西瓜的一半又半个卖给第一个顾客,把余下的一半又半个卖给第二个顾客,……这样一直到他卖给第六个人以后,他一个西瓜也没有,求他原来有西瓜多少个?逆推法解题(A卷)答案一、填空题1. (100×4+20-112)÷4=772. 斗第三次见花前应有一斗;第三次遇店前应有 (斗);第二次见花前应有 (斗);第二次遇店前应有 (斗);第一次见花前应有 (斗);第一次遇店前应有 (斗).3. 甲:45辆;乙:90辆.把后来甲站所停汽车的辆数看为"1"的倍数,那么乙站所停的是1.5倍,那么"135"辆就是2.5倍,这样甲站后来有:135÷2.5=54(辆)乙站后来有:54×1.5=81(辆)甲原有:54+36-45=45(辆)乙原有:81+45-36=90(辆)4. 782吨.[(180+8)×2+15]×2=782(吨)5. 甲38粒;乙42粒,丙45粒,丁43粒. 现各有168÷4=42(粒).甲:42-6+2=38乙:42-6+6=42丙:42-3+6=45丁:42-2+3=436. 85个.1×4+1=5(个)5×4+1=21(个)21×4+1=85(个)7. 34个.(3-1)×2=4(个)(4-1)×2=6(个)(6-1)×2=10(个)(10-1)×2=18(个) (18-1)×2=34(个)8. 43÷7=0.42857142……6位1999÷6=333 (1)所以是4.9. 设C数为M,则A=2M-2B=2M+2C=MD=4M9M=45,M=5∴A=8;B=12;C=5;D=20.10. 1994由于质数除2以外便都是奇数,奇数×奇数=奇数.所以其中一个质数定是2,1000以最大的质数是:997. 997×2=1994二、解答题11. 第14天占 ;第13天占 .12. 39天长:40÷2=20(厘米);38天长:20÷2=10(厘米);37天长:10÷2=5(厘米);36天长:5÷2=2.5(厘米).13. [(125+10)×2+5]×2=550(元)14. 第七个人:0个;第六个人:(0.5+0)×2=1(个);第五个人:(1+0.5)×2=3(个);第四个人:(3+0.5)×2=7(个);第三个人:(7+0.5)×2=15(个);第二个人:(15+0.5)×2=31(个);第一个人:(31+0.5)×2=63(个);一共有:(63+0.5)×2=127(个).。
六年级奥数专项精品讲义及常考易错题汇编-典型应用题-逆推问题 通用版(含答案)

六年级奥数专项精品讲义及常考易错题汇编-典型应用题-逆推问题【知识点归纳】1.逆推问题内容:逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,由后向前逆推计算.2.解题方法:(1)要根据题意的顺序,从最后一组数量关系逆推至第一组数量关系,这就是逆推法中去处顺序的逆推含义.(2)原题相加,逆推用减;原题相减,逆推用加;原题相乘,逆推用除;原题相除,逆推用乘,这就是逆推法中计算方法的逆运算含义.【常考题型】一根绳子,第一次剪去一半,第二次剪去4米,最后剩下2米.原来绳长12米.分析:根据题干分析可得,这根绳子的一半就是4+2=6米,据此再乘2就是绳子的长度.解:(4+2)×2=12(米);答:这根绳子原来长12米.故答案为:12.点评:解决此类问题的关键是抓住最后得到的数量,从后先前进行推理,根据加减乘除的逆运算思维进行解答.【解题思路】①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.一.选择题1.池塘里某种水草生长极快,当天的水草数量是它前一天的2倍,又知10天长满池塘,则()天长了14池塘.A.4B.6C.8D.92.(□4)864-⨯=,在□里应填()A.12B.8C.63.将一根长x米的绳子一半再一半的剪去,剪了两次后剩下的正好是0.3米,这根绳子原来是( )米.A.0.6B.1.2C.2.4D.4.84.抽屉里有若干个玻璃球,小军每次拿出其中的一半再放回一个,这样一共拿了2012次,抽屉里还有2个玻璃球.原来抽屉里有()个玻璃球.A.2B.12C.22D.32 E.425.一辆拖拉机耕一块地,第一天耕了这块地的13还多2亩,第二天耕了剩下的12少1亩,这时还剩38亩没耕,这块地共有()亩.A.114B.40C.36D.766.4张扑克牌排成一排,先将第1张和第2张交换位置,再将最后一张移到最前面,翻开后是4、7、8、2.原来的4张牌按顺序是()A.2、4、7、8B.4、2、7、8C.8、7、2、4D.7、2、8、47.一个数乘8,再除以6得90,列式为()A.9068÷⨯B.9068⨯÷C.9068÷÷8.将一根x米的绳子剪去一半再剪去一半,还剩3米,这根绳子原长()米.A.6B.12C.249.一个数先减去2再加上3,再乘以2,最后再除以3是6,这个数是多少?() A.18B.10C.810.一个池塘中种下一种草,每过一天草就变为前一天草的2倍,到第10天刚好草长满池塘,第( )天池塘中草为池塘的一半.A.5B.9C.6二.填空题11.一个数加上8得到一个和,用和乘8得到一个积,用积减去8得到一个差,最后用这个差除以8,结果还是8,那么这个数是.12.一位同学使用计算器算题,最后一步应加上11,但他却除以11了,因此得到的错误结果是10,正确的答案应该是.13.在横线上填上适当的数.40.1[56.32(⨯- 2.25-)]2005=.14.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋个.15.有一篮鸡蛋,第一次取出全部的一半还多1个;第二次取出余下的一半少3个,这时篮子里还剩下20个鸡蛋.篮子里原有鸡蛋个.16.一个九位数,个位上的数字是7,百位上的数字是2,任意相邻的三个数字的和都是18.这个九位数是.17.小强看一本卡通书,第一天看了这本书的一半又5页,第二天看了余下的一半又12页,还有8页没看,问这本卡通书共有页.18.小刚在计算某数除以1.2时错把除号看成乘号,算得结果是5.04,正确是商应该是19.小明看一本书,第一天看了全书的一半多10页,第二天正好看了剩下页数的一半,这时还剩45页,这本书有页.20.有一个数除以4,乘5,减去35,加上10,结果等于100,这个数是.三.应用题21.王奶奶上街卖一篮鸡蛋,第一天卖了一半还多1个,第二天卖了剩下的一半还多1个,第三天卖了剩下的一半还多1个,篮子里剩下5个鸡蛋,王奶奶的篮子里原来有多少个鸡蛋?22.有一袋大米,第一次取出全部的一半多1.5kg,第二次取出余下大米的一半少2kg,最后袋中的大米还剩20kg,这袋大米原来重多少千克?23.明明看一本漫画书,第一天看了全书的一半,第二天看了剩下页数的一半还多10页,第三天看了10页,这时还剩5页.明明看的这本漫画书一共有多少页?24.小明看一本课外书,每天都比前一天多看5页.第四天看了50页.小明第一天看了多少页?25.一群蚂蚁搬家,原存一堆食物,第一次运出总量的一半少110克,第二次运出剩下的一半多90克,第三次运出490克,这时正好把窝内的食物运完.问窝内原有多少克食物?26.有甲、乙两堆煤,甲堆重量比乙堆的34少24吨,若乙堆调走48吨到甲堆,则甲堆的重量正好是乙堆的910,甲、乙两堆煤原来各有多少吨?27.甲、乙、丙、丁四人共做零件260个.如果甲多做10个,乙少做10个,丙的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?28.有三只猴子,一起在山上摘回来一些桃子,可它们回家后怎么分也分不均.于是大家同意先去睡觉,第二天再接着分,夜里有一只猴子偷偷爬了起来,它把一个桃子扔到山下后,剩下的桃子正好平均分成三份,它就把自己的一份藏起来,又睡觉去了.过了一会儿,第二只猴子爬起来也扔了一个桃子,剩下的平均分三份,也把自己那一份藏起来.第三只猴子也是这样扔了一个后平均分成三份,藏起自己的那一份.最后剩下6个桃子,同学们你知道原来一共有多少个桃子吗?29.一个修路队修一条公路,第一周修了全长的一半,第二周修了剩下的一半,还剩下500米没有修完.这条公路全长多少千米?30.食堂运来一批大米,第一天吃了这批大米的59,第二天吃了余下的15,第三第四天都吃了第二天余下的14,第五天吃了余下的12,这时还剩40千克,这批大米共多少千克?四.解答题31.一只猴子去果园采桃子,第一天采了110,以后八天分别采了当天现有桃子的19,18,1173⋯,12,采了9天,树上只剩下10只桃子.树上原有桃子多少只?32.先画树状算图,再用逆推法求方框里的数(1)45.06-□ 4.0345.4+=(2)□14.123.531.43--=(3)85.06(-□10.37)69.31+=.33.喜欢电脑的小松设计了一个猜年龄的程序:小松的年龄输入后,最后输出的结果是77,小松今年岁.34.文具柜上的某种笔盒每次卖出一半时,就从仓库中调来15个补充.到第八次卖出一半后,恰好余下15个.文具柜原有这种笔盒的个数是.35.根据树状算图,用综合算式算出“?”表示的数.算式:.36.猜数游戏.37.李秀才进京赶考.第一天走了全部路程的一半,第二天走了剩下路程的一半,第三天走了20里,正好到达京城.请问:李秀才一共走了多少里?38.甲、乙、丙三人各有若干元钱,甲拿出一半平分给乙、丙,乙又拿出现有的一半平分给甲和丙,最后丙又拿出现有的一半平分给甲和乙,这时他们各有240元,问甲、乙、丙原来各有多少元?39.根据图1示填出图2的树状算图并列式计算.40.把下面算图用综合算式表示并计算.六年级奥数专项精品讲义及常考易错题汇编-典型应用题-逆推问题参考答案一.选择题(共10小题)1.解:因为当天的水草数量是它前一天的2倍,且10天长满池塘,那么9天长到池塘的12,则8天长到池塘的14,答案:C.2.解:6484÷+84=+12=□里面应填12.答案:A.3.解:0.322⨯⨯0.62=⨯1.2=(米)答:这根绳子原来是1.2米.答案:B.4.解:第2012次拿之前的小球数:2(21)2⨯-=(个),第2011次拿之前的小球数:2(21)2⨯-=(个),第2010次拿之前的小球数:2(21)2⨯-=(个),⋯,据此可得第1次拿之前的小球数:2(21)2⨯-=(个);答:抽屉中原来有2个球.答案:A.5.解:11 [(381)(1)2](1)23 -÷-+÷-12 [372]23 =÷+÷3 [742]2=+⨯3762=⨯114=(亩)答:这块地共有114亩.答案:A.6.解:因为,最后一张移到最前面,翻开后第一张是4,7,8,2,所以,移动前为:7,8,2,4;则先将第1张和第2张交换位置前为:8,7,2,4.答案:C.7.解:这个数是:9068⨯÷5408=÷67.5=;答:这个数是67.5.答案:B.8.解:11 322÷÷322=⨯⨯12=(米)答:这根绳子原来长12米.答案:B.9.解:36232⨯÷-+18232=÷-+932=-+62=+8=答:这个数是8.答案:C.10.解:1019-=(天),答:第9天池塘中草为池塘的一半.答案:B.二.填空题(共10小题)11.解:(888)88⨯+÷-7288=÷-1=答:这个数是1.答案:1.12.解:101111⨯+11011=+121=答:正确答案为:121.答案:121.13.解:200540.150÷=,56.3250 6.32-=,6.32 2.258.57+=,答案:8.57.14.解:第三次卖蛋后余下的鸡蛋的个数是:12(0)12⨯+=(个),第二次卖蛋后余下的鸡蛋的个数是:132(1)2322⨯+=⨯=(个),第一次卖蛋后余下的鸡蛋的个数是:172(3)2722⨯+=⨯=(个),原有鸡蛋的个数是:1152(7)21522⨯+=⨯=(个),答:篮中原有鸡蛋15个,答案:15.15.解:[(203)21]2-⨯+⨯[1721]2=⨯+⨯352=⨯70=(个)答:篮子里原有鸡蛋70个.答案:70.16.解:十位的数字是:18729--=;千位的数字是:18297--=;万位的数字是:18279--=;同理可得十万位的数字是2,百万位的数字是7,千万位的数字是9,亿位是2;这个数就是:297297297.答案:297297297.17.解:[(812)25]2+⨯+⨯[2025]2=⨯+⨯=+⨯[405]2=⨯452=(页)90答:这本卡通书共有90页.答案:90.18.解:原来的被除数是:5.04 1.2 4.2÷=原来的商为:4.2 1.2 3.5÷=答案:3.5.19.解:45290⨯=(页),(9010)2+⨯=⨯,1002=(页);200答:这本书共有200页.答案:200.20.解:(1001035)54-+÷⨯12554=÷⨯=.100答:这个数是100.答案:100.三.应用题(共10小题)21.解:{[(51)21]21}2+⨯+⨯+⨯=⨯+⨯+⨯{[621]21}2=⨯+⨯(1321)2=⨯272=(个)54答:王奶奶的篮子里原来有54个鸡蛋.22.解:[(202)2 1.5]2-⨯+⨯=⨯+⨯[182 1.5]2=+⨯[36 1.5]2=⨯37.5375=(千克)答:这袋大米原来重75千克.23.解:(51010)22++⨯⨯2522=⨯⨯100=(页)答:明明看的这本漫画书一共有100页.24.解:5055535---=(页)答:小明第一天看了35页.25.解:(49090)2+⨯5802=⨯1160=(克)(1160110)2-⨯10502=⨯2100=(克)答:窝内原有2100克食物.26.解:设乙堆原有x 吨煤.93(48)24104x x -=+ 9343.224104x x -=+ 0.1567.2x =448x =3448243124⨯-=(吨) 答:甲堆原有312吨,乙堆原有448吨煤.27.解:设相等的量为x ,则甲为(10)x -个,乙为(10)x +个,丙为2x 个,丁为2x 个. (10)(10)22602x x x x -++++= 92602x =126029x = 则丙做的个数为2609; 答:丙实际做了2609个.28.解:6231÷⨯+331=⨯+91=+10=(个)10231÷⨯+151=+16=(个)16231÷⨯+241=+25=(个)答:原来一共有25个桃子.29.解:11 500(1)(1)22÷-÷-11000(1)2=÷-2000=(米)2=(千米)答:这条公路全长2千米.30.解:51 (1)95 -⨯4195=⨯445=5416194545--=161445445⨯=16448 45454545--=88140()45452÷-⨯8440()4545=÷-44045=÷450=(千克)答:这批大米共450千克.四.解答题(共10小题)31.解:11111111110(1)(1)(1)(1)(1)(1)(1)(1)(1) 2345678910÷-÷-÷-÷-÷-÷-÷-÷-÷-,34567891010223456789=⨯⨯⨯⨯⨯⨯⨯⨯⨯,100=(只)答:树上原有桃子100只.32.解:(1)45.06-□ 4.0345.4+=;49.09-□45.4=,□49.0945.4=-,□ 3.69=,(2)□14.123.531.43--=;□37.631.43-=,□31.4337.6=+,□69.03=,(3)85.06(-□10.37)69.31+=.85.06-□10.3769.31-=,74.69-□69.31=,□74.6969.31=-,□ 5.38=.答案:3.69;69.03;5.38.33.解:根据分析可得,[(779)25]3-÷+÷,[6825]3=÷+÷,393=÷,13=(岁);答:小松今年13岁.答案:13.34.解:15230⨯=(个),答:文具柜原有这种笔盒的个数是30个,答案:30.35.解:91713÷=13211-=÷=11111综合算式是:(9172)11÷-÷=-÷(132)11=÷11111=?处表示的数是1.答案:(9172)11÷-÷.36.解:18493⨯÷+=÷+7293=+83=11答:小胖心里想的是11.37.解:3022120⨯⨯=(里)答:李秀才一共走了120里.38.解:①丙分之前,丙有:2402480⨯=(元),甲和乙都有:2402402120-÷=(元);②乙分之前,乙有:1202240⨯=(元),甲有:120120260-÷=(元),丙有:4801202420-÷=(元);③甲分之前,甲有:602120⨯=(元),乙有:240602210-÷=(元),丙有:420602390-÷=(元);答:原来甲有120元,乙有210元,丙有390元.39.解:7289B=÷=,A=-=,981?188=⨯=,树状算图如下:40.解:(165652)1477+÷-=÷-17081477=-12277=45即:。
逆推练习题四年级

逆推练习题四年级四年级的学生正处于学习数学的关键时期,逆推练习题是培养他们逻辑思维和问题解决能力的一种有效方法。
本文将为四年级学生提供一些逆推练习题,并给出解答和详细解析。
1. 题目:小明有一本书,他从第5页开始数,数了6页之后,又数了11页,最后在第几页停下来?解答:小明从第5页开始数,数了6页之后,所以他停在第5+6=11页。
然后他又数了11页,所以他停在第11+11=22页。
2. 题目:如果一个多边形有8条边,那么这个多边形的内角和等于多少度?解答:一个多边形的内角和等于(边数-2)×180度。
所以这个多边形的内角和等于(8-2)×180=1200度。
3. 题目:某数加上10等于30,这个数是多少?解答:设这个数为x,根据题目可得方程x+10=30。
通过逆推,我们可以将方程转化为x=30-10,解得x=20。
所以这个数是20。
4. 题目:小明说他爷爷今年的年龄比他爸爸去世时的年龄还要大15岁,小明爷爷去世时的年龄是小明爸爸现在的3倍,小明爸爸现在多大年龄?解答:设小明爸爸现在的年龄为x,根据题目可得方程x-15=3x。
通过逆推,我们可以将方程转化为15=2x,解得x=15/2。
所以小明爸爸现在的年龄是15/2岁。
5. 题目:一个长方形的周长是36cm,如果它的宽是4cm,那么它的长是多少?解答:设长方形的长为x,根据题目可得方程2*(x+4)=36。
通过逆推,我们可以将方程转化为2x+8=36,解得2x=28,所以x=14。
所以长方形的长是14cm。
通过以上逆推练习题,我们可以锻炼四年级学生的逻辑思维和问题解决能力。
逆推练习题不仅能提高学生的数学能力,还能培养他们的分析问题和解决问题的能力。
希望同学们能够认真思考并掌握逆推的方法,提高数学解题的能力。
以上是关于逆推练习题的四年级数学文章,希望对您有所帮助。
祝您能够在学习数学的道路上取得更好的成绩!。
四年级奥数逆推解题应用题及答案

四年级奥数逆推解题应用题及答案
1.有一个财迷总想使自己的钱成倍增长,一天他在一座桥上碰见一个老人,老人对他说:“你只要走过这座桥再回来,你身上的钱就会增加一倍,但作为报酬,你每走一个来回要给我32个铜板.”财迷算了算挺合算,就同意了.他走过桥去又走回来,身上的钱果然增加了一倍,他很高兴地给了老人32个铜板.这样走完第五个来回,身上的最后32个铜板都给了老人,一个铜板也没剩下.问:财迷身上原有多少个铜板?
分析:此题采用逆推法解决.
第5次以后,财迷只剩下32个铜板,相当于第5次过桥前手里有16个;
第4次过桥后给了老人32个,所以第四次结束以后手中有48个,相当于第4次过桥前手中有24个;
第3次过桥后给了老人32个,所以第3次结束以后手中有56个,相当于第3次过桥前手中有28个;
第2次过桥后给了老人32个,所以第2次结束以后手中有60个,相当于第2次过桥前手中有30个;
第1次过桥后给了老人32个,所以第1次结束以后手中有62个,相当于第1次过桥前手中有31个.
解答:解:第五次后有:32÷2=16(个);
第四次后有:(32+16)÷2=24 (个);
第三次后有:(32+24)÷2=28 (个);
第二次后有:(32+28)÷2=30 (个); 第一次原有:(32+30)÷2=31 (个); 答:财迷身上原有31个铜板.。
四年级奥数逆推解应用题及答案

四年级奥数逆推解应用题及答案
1.有一个财迷总想使自己的钱成倍增长,一天他在一座桥上碰见一个
老人,老人对他说:“你只要走过这座桥再回来,你身上的钱就会增
加一倍,但作为报酬,你每走一个来回要给我32个铜板.”财迷算了
算挺合算,就同意了.他走过桥去又走回来,身上的钱果然增加了一倍,他很高兴地给了老人32个铜板.这样走完第五个来回,身上的最后32
个铜板都给了老人,一个铜板也没剩下.问:财迷身上原有多少个铜板?
分析:此题采用逆推法解决.
第5次以后,财迷只剩下32个铜板,相当于第5次过桥前手里有16个;
第4次过桥后给了老人32个,所以第四次结束以后手中有48个,相
当于第4次过桥前手中有24个;
第3次过桥后给了老人32个,所以第3次结束以后手中有56个,相
当于第3次过桥前手中有28个;
第2次过桥后给了老人32个,所以第2次结束以后手中有60个,相
当于第2次过桥前手中有30个;
第1次过桥后给了老人32个,所以第1次结束以后手中有62个,相
当于第1次过桥前手中有31个.
解答:解:第五次后有:32÷2=16(个);
第四次后有:(32+16)÷2=24 (个);
第三次后有:(32+24)÷2=28 (个);
第二次后有:(32+28)÷2=30 (个);
第一次原有:(32+30)÷2=31 (个);
答:财迷身上原有31个铜板.。
小学奥数逆推法练习题及答案

小学奥数逆推法解题及答案(上)一、填空题1.某数加7,乘以5,再减去9,得51.这个数是 .2.篮中有许多李子,如果将其中的一半又1个给第一个人,将余下的一半又2个给第二个人,然后将剩下的一半又3个给第三个人,篮中刚好一个也不剩,篮中原来有个李.3.一个箱子里放着一些茶杯,几个小朋友从箱里往外拿茶杯,规则是每次总要拿出箱里的一半,然后又放回一个.按这样规则他拿了597次后,箱里剩2个杯,他原有个杯.4.蜗牛沿着10米高的柱子往上爬,每天从清晨到傍晚向上共爬5米,夜间下滑4米,像这样,从某天清晨开始,它天才能爬上柱的顶端.5.小明在一次数学考试时,把一个数除以3.75计算成乘以3.75,结果得337.5.则,这题的正确结果是 .6.一个数扩大3倍,再增加70,然后减少50,得80.这个数是 .7.学生问陈老师今年几岁,他笑着说:“把我的年龄减去4后,被7除,加上6后乘以5,刚好是半百,”则陈老师今年岁.8.冰柜里的鸡蛋,第一天拿走了一半多两个,第二天拿走了余下的一半多4个,这时刚好拿完,求原来有个.9.在做一道加法题时,小马虎把个位上的5看作3,把十位上的6看成了9,得出结果是210,正确的结果是 .10.一捆电线,第一次用去全长一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原来总长米.二、解答题11.池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池1塘的412.一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米13.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多10元,最后剩下125元,求他原来有多少元14.王大爷把他所有西瓜的一半又半个卖给第一个顾客,把余下的一半又半个卖给第二个顾客,……这样一直到他卖给第六个人以后,他一个西瓜也没有,求他原来有西瓜多少个———————————————答案——————————————————————一、填空题1. (51+9)÷5-7=52. 最后剩下的一半:0+3=3(个);第二次余下的:3×2=6(个);第一次余下的一半:6+2=8(个);第一次余下的:8×2=16(个);篮中数的一半:16+1=17(个);篮中原有:17×2=34(个).3. 2个.(不管怎样拿多少次)4. 6天.只要前5米爬到即可,最后一天爬上5米.(10-5)÷(5-4)=5(天)5+1=6(天)5. 24.337.5÷3.73÷3.75=24.6. 20.[(80+50)-70]÷3=207. (50÷5-6)×7+4=32(岁)8. (2+4×2)×2=20(个)9. 182.210-30+2=18210. 54米.15+8-10=12(米)12×2=24(米)全半:24+3=27(米)全长:27×2=54(米)二、解答题11. 第14天占21;第13天占41. 12. 39天长:40÷2=20(厘米);38天长:20÷2=10(厘米);37天长:10÷2=5(厘米);36天长:5÷2=2.5(厘米).13. [(125+10)×2+5]×2=550(元)14. 第七个人:0个;第六个人:(0.5+0)×2=1(个);第五个人:(1+0.5)×2=3(个);第四个人:(3+0.5)×2=7(个);第三个人:(7+0.5)×2=15(个);第二个人:(15+0.5)×2=31(个);第一个人:(31+0.5)×2=63(个);一共有:(63+0.5)×2=127(个).递推法解题(下)一、填空题1.将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.则这个数是 .2.李白提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原有斗酒.3.甲、乙两个车站共停135辆汽车,如果从甲站开36辆到乙站,从乙站开45辆到甲站,这时乙站车是甲站的1.5倍.乙原来停辆车.4.农业站有一批化肥,第一天卖出一半又多15吨,第二次卖出余下的一半多8吨,第三次卖出180吨,正好卖完,这批化肥原来有吨.5.四个袋子共有168粒棋子,小红过来一看,把棋子作如下的调整,把丁袋调3粒到丙袋,丙调6粒到乙袋,乙又调6粒到甲袋,甲袋调2粒到丁袋,这时,四个袋子的棋子一样多,乙袋原来有粒棋子.6.一筐桔子,把它四等分后多一个,取走3份又一个,剩下的四等分后又剩一个,再取走3份又一个,剩下的四等分又剩一个,则原来至少有个桔子.7.袋子里有若干个球,小华每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球,则,袋中原来共有个球.8.3÷7的小数点后面第1999位上的数是 .9.已知A,B,C,D四数之和为45,且A+2=B-2=C×2=D÷2,则,这四个数依次是 .10.两个小于1000的质数之积是一个偶数,这个偶数最大可能是 .二、解答题11.有26块砖,兄弟俩拿去挑,弟弟抢在前,刚摆好姿势,哥哥赶到了.哥哥看到弟弟挑得太多,从弟弟那里抢过了一半,弟弟不服,又从哥哥那里抢回一半,哥哥不肯,弟弟只好给哥哥5块,此时哥哥比弟弟多挑2块,问最初弟弟准备挑多少块12.批发站有若干筐苹果,第一天卖出一半,第二天运进450筐,第三天又卖出现有苹果的一半又50筐,还剩600筐,这个批发站原有多少筐.13.三人共有糖72粒,若甲给乙、丙各一些,使他们增加1倍.接着乙又给甲、丙各一些,使它们翻倍.最后丙也给甲、乙各一些,使他们翻倍.这时三人糖数相等,求三人原来各几粒14.袋子里有若干个球,小明每次拿出其中的一半,再放回一个,一共做了5次,袋中还有3个球,问原来袋中有几个球———————————————答 案——————————————————————一、填空题1. (100×4+20-112)÷4=772. 87斗第三次见花前应有一斗; 第三次遇店前应有2121=÷(斗); 第二次见花前应有211121=+(斗); 第二次遇店前应有432211=÷(斗); 第一次见花前应有431141=+(斗); 第一次遇店前应有872431=÷(斗). 3. 甲:45辆;乙:90辆.把后来甲站所停汽车的辆数看为“1”的倍数,则乙站所停的是1.5倍,则“135”辆就是2.5倍,这样甲站后来有:135÷2.5=54(辆)乙站后来有:54×1.5=81(辆)甲原有:54+36-45=45(辆)乙原有:81+45-36=90(辆)4. 782吨.[(180+8)×2+15]×2=782(吨)5. 甲38粒;乙42粒,丙45粒,丁43粒.现各有168÷4=42(粒).甲:42-6+2=38乙:42-6+6=42丙:42-3+6=45丁:42-2+3=436. 85个.1×4+1=5(个)5×4+1=21(个)21×4+1=85(个)7. 34个.(3-1)×2=4(个)(4-1)×2=6(个)(6-1)×2=10(个)(10-1)×2=18(个)(18-1)×2=34(个)8. 43÷7=0.42857142……6位1999÷6=333 (1)所以是4.9. 设C数为M,则A=2M-2B=2M+2C=MD=4M9M=45,M=5∴A=8;B=12;C=5;D=20.10. 1994由于质数除2以外便都是奇数,奇数×奇数=奇数.所以其中一个质数定是2,1000以最大的质数是:997. 997×2=1994二、解答题11. 16块12+5=17(块)(26-17)×2=18(块)(26-18)×2=16(块)12. 1700筐[(600+50)×2-450]×2=1700(筐)13. 甲:39;乙:21;丙:12.14. 34个.。
小学四年级奥数逆推解题应用题及答案

小学四年级奥数逆推解题应用题及答案
1.有一个财迷总想使自己的钱成倍增长,一天他在一座桥上碰见一个老人,老人对他说:“你只要走过这座桥再回来,你身上的钱就会增加一倍,但作为报酬,你每走一个来回要给我32个铜板.”财迷算了算挺合算,就同意了.他走过桥去又走回来,身上的钱果然增加了一倍,他很高兴地给了老人32个铜板.这样走完第五个来回,身上的最后32个铜板都给了老人,一个铜板也没剩下.问:财迷身上原有多少个铜板?
分析:此题采用逆推法解决.
第5次以后,财迷只剩下32个铜板,相当于第5次过桥前手里有16个;
第4次过桥后给了老人32个,所以第四次结束以后手中有48个,相当于第4次过桥前手中有24个;
第3次过桥后给了老人32个,所以第3次结束以后手中有56个,相当于第3次过桥前手中有28个;
第2次过桥后给了老人32个,所以第2次结束以后手中有60个,相当于第2次过桥前手中有30个;
第1次过桥后给了老人32个,所以第1次结束以后手中有62个,相当于第1次过桥前手中有31个.
解答:解:第五次后有:32÷2=16(个);
第四次后有:(32+16)÷2=24 (个);
第三次后有:(32+24)÷2=28 (个);
第二次后有:(32+28)÷2=30 (个); 第一次原有:(32+30)÷2=31 (个); 答:财迷身上原有31个铜板.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学逆推问题应用题及参考答案
1、王老太上集市上卖鸡蛋,第一个人买走了篮子里鸡蛋的一半又一个,第二个人买走了剩下鸡蛋的一半又一个,这时篮子里还剩10个鸡蛋,请问王老太篮子里一共有多少个鸡蛋?
2、篮子里有一些梨,笑笑取走总数的一半多一个,小明取走了笑笑取走后剩下的一半多一个,这时篮子里还剩3个梨,一共有多少个梨?
3、小马在计算600-□÷5时不小心先算了减法再算除法,算出的结果是60,实际的正确结果应该是多少?
4、小胖说:“拿我去年的年龄乘8,再减去11,就是王爷爷今年的年龄,王爷爷今年61岁.”问:小胖今年几岁?
5、一个数缩小10倍后再增加80,然后扩大3倍,再减去85得200.求这个数.
6、将一个数缩小到原来的十分之一,再扩大到它的100倍,得到的数是4.158,原数是多少?
7、甲、乙、丙三组共有图书90本,乙组向甲组借了3本后,又送给丙组5本,结果每个组拥有相等数量的图书.问:甲、乙、丙三个组原来各有多少本图书?
8、有两个书架,甲书架有书110本,乙书架有书80本,每次从甲书架拿出3本到乙书架,拿几次后两个书架的书相等
9、小娟用自己存的钱的一半买了一本小说,后来妈妈又给她5元,她又用其中的一半多0.4元买了字典,结果还剩7.2元,那么小娟原来存了多少元钱.
10、有甲、乙、丙三个数,从甲数中取出25加给乙数,再从乙数中取出16加给丙数,又从丙数中取出20加给甲数,此时甲、乙、丙三个数都是150,请问:甲、乙、丙三个数原来是多少?
11、有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝.这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,这天他一共遇到3家酒店,在最后一家酒店喝完酒后,葫芦里的酒刚好喝完.问:原来酒葫芦里有多少两酒?
12、将一根长为x米的绳子一半再一半地剪去,剪了4次后,剩下的正好是2米,这根绳子原来长多少米.
13、一个学生做两位乘两位乘法时,把其中一个乘数的个位数4误看成1,得积525;另一个学生却把这个乘数的4误看成8,得积700.问正确的乘积是多少?
14、丁丁是个小马虎,他在计算除法时,把除数65写成了56,结果得到的商是18余32,正确的商是多少?
15、一罐糖果,第一天吃了总数的一半,第二天又吃了剩下的一半,第三天吃了15粒后还剩下18粒糖.原来这罐糖果共多少粒?
参考答案:
1、解:第二个人买完后鸡蛋有:
(10+1)×2 =11×2 =22(个)
篮子里原来有鸡蛋:
(22+1)×2 =23×2 =46(个)
答:王老太篮子里一共有46个鸡蛋.
【分析】运用逆推的方法,用(10+1)可求得第二个人买完后剩下鸡蛋的一半,再乘2就是第二个人买完后剩下鸡蛋的个数,用它加上1就是篮子里鸡蛋的一半,再乘2就是篮子里原来一共有鸡蛋的个数;据此解答.
2、解:小明取时有:
(3+1)×2 =4×2 =8(个)
一共有:(8+1)×2 =9×2 =18(个)
答:一共有18个梨.
【分析】从后向前推,小明取走了笑笑取走后剩下的一半多一个,这时篮子里还剩3个梨,那就是说小明在取之前篮子里有8个梨.笑笑取走总数的一半多一个,那就是说8+1=9,就是笑笑取时一半的数量了,所以总共有9×2=18个梨,据此解答
3、解:□里面的数值应是:
600-60×5
=600-300
=300
正确的结果是:
600-300÷5
=600-60
=540
答:实际的正确结果应该是540.
4、(61+11)÷8
=72÷8
=9(岁)
9+1=10(岁)
答:小胖今年10岁.
5、解:[(200+85)÷3-80]×10
=[95-80]×10
=15×10
=150
答:这个数是150.
6、解:4.158÷100=0.04158,
0.04158×10=0.4158
答:原数是0.4158.
7、解:最后都有:90÷3=30(本);
丙原有:30-5=25(本);
乙原有:30-3+5=32(本);
甲原有:30+3=33(本);
答:甲组原来有图书33本,乙组原来有图书32本,丙组原来有图书25本.
【分析】结果三个组图书一样多,都是90÷3=30(本),最后是乙送给丙5本,这时丙是30本,那么丙原有30-5=25(本);乙借了3本,送出5本,也就是少了2本,此时乙有30本,则乙原有30+2=32(本);因为甲借出3本后剩下30本,因此甲原有30+3=30(本),据此解答即可.
8、解:(110-80)÷2÷3
=30÷2÷3
=5(次)
答:拿5次后两个书架的书相等.
故答案为:5.
【分析】由题意可知甲书架比乙书架多110-80=30本,再把多的平均分成2份,每人各得15本后,两个书架的本数正好相等,再想15里面有几个3,用除法即可解决
9、解:[(7.2+0.4)×2-5]×2
=[15.2-5)]×2
=10.2×2
=20.4(元)
答:小娟原来存了20.4元.
【分析】首先根据题意,用7.2加上0.4,求出小娟用自己存的钱的加上妈妈给的5元,买了一本小说后剩下钱是多少;然后再乘以2,求出一共剩下了多少钱;最后用剩下的钱减去5,求出小娟的钱买完小说后剩下多少,再乘以2,求出小娟原来存了多少钱即可.
10、解:丙:150+20-16=154,
甲:150+25-20=155,
乙:150+16-25=141,
答:甲、乙、丙三个数原来各是155,141,154.
【分析】根据“再从乙数中取出16加给丙数,又从丙数中取出20加给甲数,此时甲、乙、丙三个数都是150”这个条件,就可以求出丙原有的数,即150+20-16,根据“从甲数取25加到乙数,最后从丙数取20加到甲数,”甲数原有多少,我们就可以求出来了,即150+25-20,最后根据“从甲数取25加到乙数,再从乙数取16加到丙数,”即可求出乙原有多少.
11、解:最后喝了8两,酒喝完了,所以最后剩余8两酒,
8÷2=4(两),
(4+8)÷2=6(两),
(6+8)÷2=7(两),
答:原来酒葫芦里有7两酒.
【分析】由题意,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,遇到3家酒
店,最后喝了8两,酒喝完了,所以最后剩余8两酒;则遇到第三家酒店时是8÷2=4两酒,遇到第二家酒店时是(4+8)÷2=6两酒,遇到第一家酒店时,原来酒葫芦里有酒(6+8)÷2=7两;据此解答.
12、解:2×2×2×2×2
=4×2×2×2
=8×2×2
=16×2
=32(米)
答:这根绳子原来长32米.
【分析】剪3次剩下绳子的长度是2×2米,剪2次剩下绳子的长度是2×2×2米,剪1次剩下绳子的长度是2×2×2×2米,不剪时绳子的长度应是2×2×2×2×2米,据此解答.
13、解:700﹣525=175
175÷(8﹣1)=25
700÷25=28
把这个乘数的个位数字误看成8,这个因数是24
24×25=600
答:正确的乘积是600.
【分析】700﹣525=175,乘积相差175,是因为一个因数不变,另一个因数多看了8﹣1=7,即:7乘未变的因数=175,求出未变的因数,再根据看错的积求出另一个正确的因数,进而可求出正确的积.
14、【分析】这里要运用逆向思维,将错就错,首先是把除数就当作是56,反过来推出被除数是多少,然后算出正确的商.
解:18×56+32=1040,
1040÷65=16.
答:正确的商是16.
15、解:(15+18)×2×2
=33×2×2
=132(粒);
答:原来这罐糖果共132粒.
【分析】第二天又吃了剩下的一半,第三天吃了15粒后还剩下18粒糖,说明(15+18)粒是第一天吃后剩下的一半,那么第一天吃后剩下(15+18)×2=66(粒);第一天吃了总数的一半,剩下66粒,那么原来这罐糖果共有66×2=132(粒);据此解答.。