高一数学教案[苏教版]三角函数的周期性2

合集下载

高中数学教案:三角函数的周期性

高中数学教案:三角函数的周期性

高中数学教案:三角函数的周期性教案名称:三角函数的周期性教案目标:1. 了解三角函数的定义和性质;2. 掌握正弦函数、余弦函数和正切函数的周期性;3. 能够应用周期性解决相关问题。

教学重点:1. 三角函数的周期性;2. 正弦函数、余弦函数和正切函数的周期性;3. 周期性的应用。

教学难点:1. 正弦函数、余弦函数和正切函数的周期性的理解;2. 周期性的应用和解题过程。

教学准备:1. 教师准备黑板、白板或投影仪等教学工具;2. 备好三角函数的定义和性质的PPT或教材;3. 准备相关练习题。

教学过程:Step 1:引入教师用一个实际例子,如画家在画河流的起伏曲线时,引出周期性的概念,以引发学生对周期性的思考。

Step 2:三角函数的定义和性质回顾教师通过PPT或教材的方式回顾正弦函数、余弦函数和正切函数的定义和性质,可以给出具体的函数图像以及函数值的变化规律。

Step 3:正弦函数、余弦函数和正切函数的周期性教师解释正弦函数、余弦函数和正切函数的周期性概念,并给出周期的定义。

然后,详细介绍正弦函数、余弦函数和正切函数的周期。

可以通过演示函数图像的变化来帮助学生理解。

Step 4:例题演练教师给出一些具体的例题,让学生通过观察函数图像或计算函数值等方法来判断函数的周期,并解答相应的问题。

教师可以给予提示和指导,引导学生理解和应用周期的概念。

Step 5:练习和讨论教师布置一些相关的练习题,让学生自主练习,并进行讨论和解答。

教师可以随机让学生上台解答问题,帮助学生巩固和深化对周期性的理解。

Step 6:小结和拓展教师对本节课的内容进行小结,并引导学生总结和归纳三角函数的周期性的特点和应用方法。

教师还可以拓展讲解正割函数、余割函数和余切函数的周期性。

Step 7:作业布置教师布置相关的练习题作为课后作业,巩固学生对周期性的理解和应用。

教学延伸:教师可以引导学生进行更多的实际问题应用,如舞蹈中的动作变化规律、物理中的周期性振动等,加深学生对周期性的认识和理解。

苏教版数学高一必修4学案三角函数的周期性

苏教版数学高一必修4学案三角函数的周期性

1.3.1三角函数的周期性学习目标 1.了解周期函数、周期、最小正周期的定义.2.理解函数y=sin x,y=cos x,y=tan x都是周期函数,都存在最小正周期.3.会求函数y=A sin(ωx+φ)及y=A cos(ωx+φ)的周期.知识点一周期函数思考单摆运动、时钟的圆周运动、四季变化等,都具有周期性变化的规律,对于正弦、余弦函数是否也具有周期性?请说明你的理由.梳理(1)周期函数的定义一般地,对于函数f(x),如果存在一个____________T,使得定义域内的每一个x值,都满足________,那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期对于一个周期函数f(x),如果在它所有的周期中存在一个____________,那么这个最小的正数就叫做f(x)的最小正周期.知识点二正弦函数、余弦函数、正切函数的周期思考6π是正弦函数y=sin x(x∈R)的一个周期吗?梳理(1)正弦函数、余弦函数的周期正弦函数和余弦函数都是周期函数,2kπ(k∈Z且k≠0)都是它们的周期,它们的最小正周期都是2π.(2)正切函数的周期正切函数是周期函数,最小正周期是π.(3)函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的周期一般地,函数y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ为常数,且A ≠0,ω>0)的周期T =2πω.类型一 求三角函数的周期例1 求下列函数的周期:(1)y =3sin(π2x +π6); (2)y =2cos(-x 2+π4); (3)y =|sin x |.反思与感悟 求三角函数的周期,通常有三种方法:(1)定义法.(2)公式法:对y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,且A ≠0,ω≠0),有T =2π|ω|. (3)观察法(图象法).跟踪训练1 (1)函数y =3cos(12x -π6)的最小正周期为________. (2)y =2cos(ωx +π6)的最小正周期为π,则ω=________. 类型二 利用周期求函数值例2 若f (x )是以π2为周期的奇函数,且f ⎝⎛⎭⎫π3=1,求f ⎝⎛⎭⎫-5π6的值.反思与感悟 (1)利用函数的周期性,可以把x +nT (n ∈Z )的函数值转化为x 的函数值.(2)利用函数性质,将所求转化为可求的x 的函数值,从而可解决求值问题.跟踪训练2 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,求f ⎝⎛⎭⎫5π3的值.类型三 函数周期性的综合应用例3 设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,求f (7)的值.引申探究将例3中的条件f (x +2)=-f (x )改为:f (x )的图象关于x =1对称,其余条件不变,求f (7)的值.反思与感悟 (1)解答此类题目的关键是利用化归思想,借助周期函数的定义把待求问题转化到已知区间上,代入求解便可.(2)如果一个函数是周期函数,倘若要研究该函数的有关性质,结合周期函数的定义可知,完全可以只研究该函数一个周期上的特征,再加以推广便可以得到函数在定义域内的有关性质. 跟踪训练3 设函数f (x )(x ∈R )是以2为周期的函数,且x ∈[0,2]时,f (x )=(x -1)2.(1)求f (3);(2)当x ∈[2,4]时,求f (x )的解析式.1.下列说法中,正确的是________.(填序号)①因为sin(π-x )=sin x ,所以π是函数y =sin x 的一个周期;②因为tan(2π+x )=tan x ,所以2π是函数y =tan x 的最小正周期;③因为当x =π4时,等式sin(π2+x )=sin x 成立,所以π2是函数y =sin x 的一个周期; ④因为cos(x +π3)≠cos x ,所以π3不是函数y =cos x 的一个周期. 2.函数f (x )=sin(ωx +π4)(ω>0)的周期为π4,则ω=________. 3.函数y =2cos ⎝⎛⎭⎫π4-2x 的最小正周期为________. 4.求下列函数的最小正周期.(1)f (x )=cos(-2x -π3); (2)y =4sin(ax +π6)(a ≠0).1.函数周期性的理解:(1)对于“f (x +T )=f (x )”是定义域内的恒等式,即对定义域内任意一个x ,x +T 仍在定义域内且等式成立.(2)周期函数的周期不是惟一的,如果T 是函数f (x )的周期,那么kT (k ∈Z ,k ≠0)也一定是函数的周期.(3)并不是所有周期函数都有最小正周期.如常数函数f (x )=C 没有最小正周期.2.求三角函数的周期,通常有三种方法:(1)定义法.(2)公式法:对y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,且A ≠0,ω≠0),T =2π|ω|. (3)观察法(图象法).三种方法各有所长,要根据函数式的结构特征,选择适当方法求解,为了避免出现错误,求周期之前要尽可能将函数化为同名同角的三角函数,且函数的次数为1.答案精析问题导学知识点一思考 由单位圆中的三角函数线可知,正弦、余弦函数值的变化呈现出周期现象.每当角增加(或减少)2π,所得角的终边与原来角的终边相同,故两角的正弦、余弦函数值也分别相同.即有sin(2π+x )=sin x ,cos(2π+x )=cos x .故正弦函数和余弦函数也具有周期性.梳理 (1)非零的常数 f (x +T )=f (x )(2)最小的正数知识点二思考 是的.由sin(6π+x )=sin x 恒成立,根据周期函数的定义,可知6π是正弦函数y =sin x (x ∈R )的一个周期.题型探究例1 解 (1)T =2πω=2ππ2=4. (2)y =2cos(-x 2+π4)=2cos(x 2-π4), ∴T =2π12=4π. (3)由y =sin x 的周期为2π,可猜想y =|sin x |的周期应为π.验证:∵|sin(x +π)|=|-sin x |=|sin x |,∴由周期函数的定义知y =|sin x |的周期是π.跟踪训练1 (1)4π (2)±2例2 解 ∵f (x )是以π2为周期的奇函数, ∴f ⎝⎛⎭⎫-5π6=-f ⎝⎛⎭⎫5π6=-f ⎝⎛⎭⎫π-π6=-f ⎝⎛⎭⎫-π6=f ⎝⎛⎭⎫π6=f (π2-π3)=-f (π3), 又∵f (π3)=1, ∴f (-5π6)=-f (π3)=-1. 跟踪训练2 32例3 解 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ),∴f(x)的周期为4.又f(x)是奇函数,∴f(7)=f(8-1)=f(-1)=-f(1).又当0≤x≤1时,f(x)=x,∴f(7)=-f(1)=-1.引申探究解函数f(x)为奇函数,则f(-x)=-f(x).又函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),∴f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),∴f(x)是以4为周期的周期函数,从而得f(7)=f(2×4-1)=f(-1)=-f(1)=-1.跟踪训练3(1)0(2)(x-3)2当堂训练1.④ 2.8 3.π 4.(1)π(2) 2π|a|。

高一数学教案:三角函数的周期性

高一数学教案:三角函数的周期性

高一数学教案:三角函数的周期性鉴于大家对十分关注,小编在此为大家搜集整理了此文高一数学教案:三角函数的周期性,供大家参考!本文题目:高一数学教案:三角函数的周期性一、学习目标与自我评估1 掌握利用单位圆的几何方法作函数的图象2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期3 会用代数方法求等函数的周期4 理解周期性的几何意义二、学习重点与难点周期函数的概念,周期的求解。

三、学法指导1、是周期函数是指对定义域中所有都有,即应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构五、重点与难点探究例1、若钟摆的高度与时间之间的函数关系如图所示(1)求该函数的周期;(2)求时钟摆的高度。

例2、求下列函数的周期。

(1) (2)总结:(1)函数 (其中均为常数,且的周期T= 。

(2)函数 (其中均为常数,且的周期T= 。

例3、求证:的周期为。

例4、(1)研究和函数的图象,分析其周期性。

(2)求证:的周期为 (其中均为常数,且总结:函数 (其中均为常数,且的周期T= 。

例5、(1)求的周期。

(2)已知满足,求证:是周期函数课后思考:能否利用单位圆作函数的图象。

六、作业:七、自主体验与运用1、函数的周期为 ( )A、 B、 C、 D、2、函数的最小正周期是 ( )A、 B、 C、 D、3、函数的最小正周期是 ( )A、 B、 C、 D、4、函数的周期是 ( )A、 B、 C、 D、5、设是定义域为R,最小正周期为的函数,若,则的值等于 ()A、1B、C、0D、6、函数的最小正周期是,则7、已知函数的最小正周期不大于2,则正整数的最小值是8、求函数的最小正周期为T,且,则正整数的最大值是9、已知函数是周期为6的奇函数,且则10、若函数,则11、用周期的定义分析的周期。

12、已知函数,如果使的周期在内,求正整数的值13、一机械振动中,某质子离开平衡位置的位移与时间之间的函数关系如图所示:(1) 求该函数的周期;(2) 求时,该质点离开平衡位置的位移。

三角函数的周期性+课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册

三角函数的周期性+课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册





1
1
π T
π
2sin2x+6+2 =2sin2x+6对任意的






T
2sinu+2 =2sin


1 π
u,其中 u= x+ .
2 6
T
∵y=2sin u 的周期为 2π,∴ =2π,
2
∴T=4π,
1
π
∴f(x)=2sin2x+6的周期为


4π.
x 均成立.
所以f(x)=-f(-x)=-f(2-x)=-sin(2-x)+x-2=sin(x-2)+x-2.
答案
sin(x-2)+x-2
课堂小结:
1.周期函数的概念
2.最小正周期的概念和求法:公式法和定义法
3.三角函数的最小正周期
π
3
=f673π+ =f =f- =f =sin =

3
3 3 3 3
3 2
所以
2
f

020π 2 021π
3
3
+f

3 3 2 + 2 = 3.
规律方法
当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内
的函数值的变化情况,再给予推广求值.

f 3 =(

【迁移1】
(变换条件)若将例3中的“偶函数”改为“奇函数”,其他条件不变,
结果如何?







π
π
π










高中高一数学教案:三角函数的周期性

高中高一数学教案:三角函数的周期性

高中高一数学教案:三角函数的周期性一、教学目标通过本节课的学习,学生将能够:1.了解三角函数的概念以及周期性的定义和判断方法;2.掌握正弦函数、余弦函数、正切函数等三角函数的周期性特征及其图像;3.实现对于具体函数的周期的计算。

二、教学内容本节课的教学内容主要包括:1.三角函数的概念;2.三角函数的周期性特征;3.三角函数的具体例子及其周期的计算。

三、教学重点和难点教学重点:1.正弦函数、余弦函数、正切函数等三角函数的周期性特征;2.对于具体函数的周期的计算方法。

教学难点:如何深入理解三角函数的周期性特征,如何应用三角函数的周期性进行具体函数的周期计算。

四、教学过程1. 引入新知识1.1 教师可以先设计一道有关周期性的问题,在引导学生认识周期性的基础上,向学生提出三角函数的周期性概念。

例如:某个人在上楼梯时,每走三层就会重复一次,这是什么现象?1.2 引导学生认识正弦函数和余弦函数的图像,并说明正弦函数和余弦函数的周期都为 $2\\pi$。

并可以通过以下图片简单地说明:正弦函数的图像:$$ y = f(x) = \\sin x $$余弦函数的图像:$$ y = f(x) = \\cos x $$2. 深入讲解2.1 正切函数的图像引导学生认识正切函数的图像,以及其周期性特征,由于正切函数没有周期性,因此需要通过讲解正切函数的图像和特性来说明:正切函数的图像:$$ y = f(x) = \\tan x $$2.2 三角函数的具体例子及其周期的计算引导学生通过给定的具体函数来求其周期,例如:$$ y = f(x) = 2\\sin \\frac{3}{4} x $$可以通过以下步骤计算:•当 $3x/4=\\pi$ 时,$y = 2 \\sin \\pi = 0$;•当 $3x/4=2\\pi$ 时,$y = 2 \\sin 2\\pi = 0$;•当 $3x/4=3\\pi$ 时,$y = 2 \\sin 3\\pi = 0$;•当 $3x/4=4\\pi$ 时,$y = 2 \\sin 4\\pi = 0$;•…从上面的计算结果可以看出,$\\sin(3x/4)$ 以 $2\\pi/3$ 为周期,因此可以通过以下公式得出周期:$$ T = \\frac{2\\pi}{3} $$五、教学评价本节课主要考察学生对于三角函数周期性的理解以及其应用能力。

第7章-7.3.1 三角函数的周期性-7.3.2-三角函数的图象与性质高中数学必修第一册苏教版

第7章-7.3.1 三角函数的周期性-7.3.2-三角函数的图象与性质高中数学必修第一册苏教版
12
2 12
12 12
π
π

2sin 2 − 的单调递增区间为[− + π, + π],
3
12
12
∈ .
子题1 函数 = −2sin 2
π

3


[− + , + ], ∈
的单调递减区间为_________________________.


【解析】求函数 =-(切勿忽略此处负号对单调性的影响)2sin 2 −
=
C.0
× −3

+ ]
4
=

4
D.−
=

sin
4
=
2
.
2
)
2
2

2
例1-3 [多选题](2024·河南省南阳市六校联考)在下列函数中,周期为π 的函数为
( CD
)
A. = tan
C. = cos
π
2 −
4
π
2 +
6
→=
→=
π
2

2
B. = cos + 1 → =
π
为[
2
+

2π,
2

(函数
2
π
3
+ 2π], ∈ ,函数 = − 2在上单调递减,结合复合函数单调性可
得该式), ∈ ,
得π

+
12
= 2sin 的单调递减区间
≤ ≤ π
11π
+
,
12

三角函数的周期性教学案

三角函数的周期性教学案

三角函数的周期性教学案引言:三角函数是高中数学中一个重要的内容,它们在数学和工程学科中都具有重要的应用。

其中,三角函数的周期性是一个基本的性质,对于学生理解和应用三角函数至关重要。

本教学案将围绕三角函数的周期性展开,通过一系列的教学活动和案例演示,帮助学生深入理解三角函数的周期性,提高他们的数学应用能力。

一、认识周期性周期性的概念:周期性是指某个事物在一定时间内重复出现的性质。

在数学中,三角函数是一个典型的周期性函数。

通过观察和分析三角函数的规律,我们可以发现它们都具有周期性。

教学活动1:观察正弦函数的周期性1. 展示正弦函数的图像,并引导学生观察其特点。

2. 引导学生思考:在什么条件下,正弦函数会重复出现相同的图像?3. 提示学生考虑图像的起点和终点,以及相邻两个峰值之间的差值。

教学活动2:探究余弦函数的周期性1. 展示余弦函数的图像,让学生发现其与正弦函数的联系与区别。

2. 引导学生思考:余弦函数是否也具有周期性?3. 引导学生观察图像,发现余弦函数的周期性与正弦函数相同。

二、周期性的性质周期长度:周期性函数的一个重要性质是其周期长度。

对于正弦函数和余弦函数,它们的周期长度是2π。

教学活动3:计算正弦函数的周期长度1. 提供正弦函数的公式,让学生根据公式计算周期长度。

2. 引导学生发现,正弦函数的周期长度是2π。

教学活动4:计算余弦函数的周期长度1. 提供余弦函数的公式,让学生根据公式计算周期长度。

2. 引导学生发现,余弦函数的周期长度也是2π。

三、周期性的应用周期性函数的应用非常广泛,涉及到物理、工程、音乐等多个领域。

在数学中,周期性函数的应用也非常重要。

教学活动5:探究三角函数在波动问题中的应用1. 提供一个实际问题,例如弦上产生的波动问题。

2. 引导学生运用三角函数的周期性,分析和解决波动问题。

教学活动6:了解调和运动及其三角函数表示1. 引导学生了解调和运动的概念和特点。

2. 让学生通过分析调和运动,推导出调和运动与三角函数的关系。

高中数学第一章三角函数1.3三角函数的图象和性质1.3.1三角函数的周期性教案苏教版

高中数学第一章三角函数1.3三角函数的图象和性质1.3.1三角函数的周期性教案苏教版

1.3.1 三角函数的周期性整体设计教学分析三角函数的周期性是在学习了三角函数的概念之后研究的,教材中,为学习三角函数的图象和性质提供了问题背景,因此,教学时要充分运用这些问题背景以突出本章“建立刻画周期性现象的数学模型”这一主题.周期函数的定义是教学中的一个难点.在教学中,可以从“周而复始的重复出现”出发,一步步地使语言精确化,通过“每隔一定时间出现”“自变量每增加或减少一个值,函数值就重复出现”等,逐步抽象出函数周期性的定义.教学中可以引导学生通过对三角函数实例的具体分析,帮助认识周期以及周期函数.因为在本节中,我们讨论的主题是三角函数的周期性,这一点更重要,在教学中不要对一般的周期函数作过多的讨论.三角函数的最小正周期是指三角函数所有周期中的最小正数.对于正弦函数、余弦函数的最小正周期是2π的结论,可以组织学生通过观察三角函数线的变化进行验证,进而通过本节“链接”中的内容了解其证明过程.不论是周期,还是最小正周期,都是对自变量x 而言的,是自变量x 的改变量.这一点正是解决例2的根据.教学时根据学生的实际,可以组织学生仿照例2推导出函数y =Asin(ωx +φ)的周期为2πω这一结论. 三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物,并通过本节的学习,使学生进一步了解从特殊到一般的认识世界的科学方法,提高认识世界的能力和思维层次,为今后认识世界和探索世界打下坚实的基础.重点难点教学重点:周期函数定义的理解,深化研究函数性质的思想方法.教学难点:周期函数概念的理解,最小正周期的意义及简单的应用.课时安排1课时教学过程导入新课思路1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生在理解周期性的基础上,进而理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究周期函数的定义由单位圆中的三角函数线可知,正弦、余弦函数值的变化呈现出周期现象.每当角增加(或减少)2π时,所得角的终边与原来角的终边相同,故两角的正弦、余弦函数值也分别相同.即有sin(2π+x)=sinx,cos(2π+x)=cosx.正弦函数和余弦函数所具有的这种性质称为周期性.若记f(x)=sinx,则对于任意x∈R,都有f(x+2π)=f(x).这又启发我们思考:如何用数学语言刻画函数的周期性?教师在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x),自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2k π,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x +T)=f(x),其中T 是非零常数,那么函数f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考查结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.定义:对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f(x +T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.正弦函数是周期函数,2k π(k∈Z 且k≠0)都是它的周期,最小正周期是2π.由诱导公式易知,2π是正弦函数的一个周期,下面用反证法证明2π是它的最小正周期.假设0<T<2π,且T 是正弦函数的周期,则对任意实数x ,都有sin(x +T)=sinx 成立.令x =0,得sinT =0,又0<T<2π,故T =π,从而对任意实数x ,都有sin(x +π)=sinx 成立,与sin(π2+π)≠sin π2矛盾,故正弦函数没有比2π小的正周期. 由此可知,2π是正弦函数的最小正周期.学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举一些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c 为常数,x∈R )是周期函数,所有非零实数T 都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x 取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f(x+T)=f(x),那么T 就不是f(x)的周期.例如,分别取x 1=2k π+π4(k∈Z ),x 2=π6,则由sin(2k π+π4+π2)=sin(2k π+π4),sin(π6+π2)≠sin π6,可知π2不是正弦函数的周期.又如sin(30°+120°)=sin30°,但不是对所有x 都有f(x +120°)=f(x),所以120°不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不惟一,例如2π,4π,6π,8π,…都是它的周期,有无穷多个,即2k π(k∈Z ,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T 是函数f(x)的周期,那么对于任意的k∈Z,k≠0,kT也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c为常数,x∈R),所有非零实数T都是它的周期,由于T可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T是f(x)的周期,那么2T、3T、…呢?怎样求?实际上,由于T是f(x)的周期,那么2T、3T、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.示例应用例1见课本本节例1.例2判断函数f(x)=2sin2x+|cosx|,x∈R的周期性.如果是周期函数,最小正周期是多少?活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f(x+T)=f(x)成立的T的值.学生可能会很容易找出4π、2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,充分让学生自己讨论解决.解:因为f(x+π)=2sin2(x+π)+|cos(x+π)|=2sin2x+|cosx|=f(x),所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f(x)中的x 以x +π代替后看看函数值变不变.为此需将π,π2等都代入试一试.实际上,f(x)=2sin 2x +|cosx|,x∈R 中,学生应看到平方与绝对值的作用是一样的,与负号没有关系.因而π肯定是原函数的一个周期.知能训练课本本节练习1~4.作业1.课本习题1.3 1.2.预习正弦函数、余弦函数的图象.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.如果学生一开始没有很好的理解,那么以后有些题不管怎么做都难受.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形(单位圆)到数、由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.备课资料一、关于周期函数与函数的周期周期性是函数的一条特殊而有趣的性质,在高中数学中仅三角函数与周期数列的通项公式中涉及到周期函数,对一般的周期函数未作重点讨论.下面对周期函数的定义、性质、周期函数和非周期函数的判定,进行一些简单的扩展说明,以吸引有兴趣的学生对周期函数作进一步的探讨.1.性质:(1)若T(T≠0)是函数f(x)的周期,则-T 也是f(x)的周期.〔因f[x +(T -T)]=f[x +(-T)]=f(x)〕因而周期函数必定有正周期.(2)若T(T≠0)是f(x)的周期,则nT(n 为任意非零整数)也是f(x)的周期.(3)若T 1与T 2都是f(x)的周期,则T 1±T 2也是f(x)的周期.〔因f[x +(T 1±T 2)]=f(x +T 1)=f(x)〕(4)如果f(x)有最小正周期T*,那么f(x)的任何正周期T 一定是T*的正整数倍.(5)周期函数f(x)的定义域M 必定是双方无界的集合,但M 并非必定是(-∞,+∞).2.周期函数的判定(1)若f(x)是在数集M 上以T*为最小正周期的周期函数,则kf(x)+c(k≠0)和1分别是数集M 和数集{x|f(x)≠0}上的以T*为最小正周期的周期函数.(2)设f(u)是定义在数集M 上的函数,u =g(x)是数集M 1上的周期函数,且当x∈M 1时,g(x)∈M,则复合函数f[g(x)]是M 1上的周期函数.(3)设f 1(x)、f 2(x)都是集合M 上的周期函数,T 1、T 2分别是它们的周期,若T 1T 2∈Q ,则它们的和、差与积也是M 上的周期函数,T 1与T 2的公倍数为它们的周期.例如:f(x)=sinx -2cos2x +sin4x 是以2π、π、π2的最小公倍数2π为周期的周期函数.3.非周期函数的判定(1)若f(x)的定义域有界,则f(x)不是周期函数.例如:f(x)=cosx(x≤10)不是周期函数.(2)一般用反证法证明.例如:可证f(x)=sinx 2是非周期函数;f(x)=ax +b(a≠0)是非周期函数.(3)根据定义讨论函数的周期性可知非零实数T 在关系式f(x +T)=f(x)中是与x 无关的,故讨论时可通过解关于T 的方程f(x +T)-f(x)=0,若能解出与x 无关的非零常数T ,便可断定函数f(x)是周期函数,若这样的T 不存在,则f(x)为非周期函数.4.求周期函数的周期关于求三角函数最小正周期的问题,是三角函数的重点和难点,教科书和各种教参中虽有讲解,但其涉及到的题目类型及解决方法并不多,学生遇到较为复杂一点的问题时,往往不知从何入手.本节涉及的求周期的方法可概括为定义法、公式法,其他还有转化法、最小公倍数法、图象法等.二、备用习题1.求下列函数的周期:①y=cos2x ;②y=sin 23x ;③y=12sin(14x -π3);④y=|sin 12x|. 2.已知函数y =2cos(π3-ωx)的周期是4π,求ω. 3.已知函数f(x)=3sin(kx 5+3)(k≠0)的最小正周期不大于1,则最小正整数k 的值为( )A .33B .32C .31D .304.下列函数中不是周期函数的是( )A .y =-8πB .y =|cosx|C .y =1|sinx|D .y =sin|x| 5.求证:y =cos2x +sin2x 的周期为π.6.求函数y =|sinx|+|cosx|的最小正周期.参考答案:1.①π;②3π;③8π;④2π.2.ω=±12. 3.B 4.D 5.证明:f(x +π)=cos2(x +π)+sin2(x +π)=cos(2π+2x)+sin(2π+2x)=cos2x +sin2x =f(x),∴y=cos2x +sin2x 的周期是π.(一般不要求证明是最小正周期)6.解:函数y =|sinx|+|cosx|的图象如图1所示,由图可知:函数的最小正周期为T =π2.图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1 三角函数的周期性
一、课题:三角函数的周期性
二、教学目标:1.理解周期函数、最小正周期的定义;
2.会求正、余弦函数的最小正周期。

三、教学重、难点:函数的周期性、最小正周期的定义。

四、教学过程: (一)引入: 1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……
(2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?
2.观察正(余)弦函数的图象总结规律:
自变量x 2π- 32π- π
-
2
π-

π
32
π 2π 函数值sin x
1 0 1- 0
1
1-
正弦函数()sin f x x =性质如下:
文字语言:正弦函数值按照一定的规律不断重复地取得;
符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==.
也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。

余弦函数也具有同样的性质,这种性质我们就称之为周期性。

(二)新课讲解: 1.周期函数的定义
对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值....时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。

说明:(1)T 必须是常数,且不为零;
(2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。

【思考】
(1)对于函数sin y x =,x R ∈有2sin(
)sin 636π
ππ+
=,能否说
23
π
是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠)
(3)若函数()f x 的周期为T ,则kT ,*
k Z ∈也是()f x 的周期吗?为什么? (是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+)
2.最小正周期的定义
对于一个周期函数()f x ,如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做()f x 的最小正周期。

说明:(1)我们现在谈到三角函数周期时,如果不加特别说明,一般都是指的最小正周期;
(2)从图象上可以看出sin y x =,x R ∈;cos y x =,x R ∈的最小正周期为2π; (3)【判断】:是不是所有的周期函数都有最小正周期? (()f x c =没有最小正周期) 3.例题分析:
– –
例1:求下列函数周期:
(1)3cos y x =,x R ∈;
(2)sin 2y x =,x R ∈;
(3)12sin()26
y x π
=-
,x R ∈.
解:(1)∵3cos(2)3cos x x π+=,
∴自变量x 只要并且至少要增加到2x π+,函数3cos y x =,x R ∈的值才能重复出现, 所以,函数3cos y x =,x R ∈的周期是2π. (2)∵sin(22)sin 2()sin 2x x x ππ+=+=,
∴自变量x 只要并且至少要增加到x π+,函数sin 2y x =,x R ∈的值才能重复出现, 所以,函数sin 2y x =,x R ∈的周期是π.
(3)∵1112sin(2)2sin[()]2sin()262626
x x x πππ
ππ-+=+-=-,
∴自变量x 只要并且至少要增加到x π+,函数sin 2y x =,x R ∈的值才能重复出现, 所以,函数sin 2y x =,x R ∈的周期是π. 说明:(1)一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且
0A ≠,0ω>)的周期2T πω
=
; (2)若0ω<,例如:①3cos()y x =-,x R ∈;②sin(2)y x =-,x R ∈;
③12sin()26
y x π
=-
-,x R ∈. 则这三个函数的周期又是什么?
一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈的周期2||
T π
ω=. 例2:求下列函数的周期:
(1)sin(
)32y x π
π
=-
; (2)33cos
cos sin sin 2222
x x x x y =+;
(3)sin cos y x x =+; (4)22cos sin 22
x x y =-; (5)2
cos y x =.
解:(1)24||2T π
π==-,∴周期为4;
(2)333cos cos sin sin cos()cos 222222
x x x x x x
y x =+=-=,∴周期为2π;
(3
)cos sin sin()4
y x x x π
=-=- ∴周期为2π;
(4)2
2sin cos cos 22
x x
y x =-=-,∴周期为2π; (5)2111
cos (1cos 2)cos 2222
y x x x ==-=-+,∴周期为π.
说明:求函数周期的一般方法是:先将函数转化为sin()y A x ωϕ=+的形式,再利用公式2T π
ω
=进行求解。

五、课堂练习:求下列函数的周期: (1)sin3y x =,x R ∈; (2)cos 3x y =,x R ∈; (3)3sin 4
x
y =,x R ∈; (4)sin()10
y x π
=+
,x R ∈;
(5)cos(2)3
y x π=+,x R ∈;
(6
)1sin()
24
y x π=-,x R ∈.
六、小结:1.周期函数、最小正周期的定义 2. sin()y A x ωϕ=+型函数的周期的求法。

相关文档
最新文档