基于小波变换的图像去噪方法讲解

合集下载

图像处理中的图像去噪算法综述

图像处理中的图像去噪算法综述

图像处理中的图像去噪算法综述随着现代科技的发展,图像处理在各个领域得到了广泛应用。

然而,由于图像采集过程中受到的噪声干扰,导致图像质量下降,降低了后续处理和分析的准确性和可靠性。

因此,图像去噪算法的研究和应用成为图像处理的重要方向之一。

图像去噪算法的目标是从包含噪声的图像中恢复原始图像,以降低噪声对图像质量的影响。

在实际应用中,图像噪声的类型和分布往往是复杂多样的,因此需要选择适合不同场景的去噪算法。

以下将对几种常见的图像去噪算法进行综述。

1. 统计学方法统计学方法通过建立噪声的统计模型来进行图像去噪。

常用的统计学方法包括高斯滤波、中值滤波和均值滤波。

高斯滤波是一种线性滤波器,通过对图像进行平滑处理来减少噪声。

中值滤波则是通过取窗口内像素的中值来代替当前像素值,从而降低噪声的影响。

均值滤波是将像素周围邻域内像素的平均值作为当前像素的新值。

2. 基于小波变换的方法小波变换是一种将信号分解成多个频带的方法,可以对图像进行多尺度分析。

基于小波变换的图像去噪方法通过去除高频小波系数中的噪声信息来恢复原始图像。

常用的小波去噪算法有基于硬阈值法和软阈值法。

硬阈值法通过对小波系数进行阈值处理,将小于阈值的系数设为0,大于阈值的系数保留。

而软阈值法在硬阈值法的基础上引入了一个平滑因子,将小于阈值的系数降低到一个较小的值。

3. 基于局部统计的方法基于局部统计的方法利用图像局部区域的统计特性来去除噪声。

其中,非局部均值算法(NL-means)是一种广泛应用的图像去噪算法。

NL-means 算法通过从图像中寻找与当前像素相似的局部区域,然后根据这些相似区域的信息对当前像素进行去噪。

该算法的优点是对各种类型的噪声都有较好的去除效果,并且能够保持图像的细节信息。

4. 基于深度学习的方法近年来,深度学习在各个领域得到了广泛应用,包括图像去噪领域。

基于深度学习的图像去噪方法通过训练一个适应性的神经网络来学习图像噪声和图像的复杂关系,从而实现去噪效果。

基于小波变换的图像压缩与去噪技术研究

基于小波变换的图像压缩与去噪技术研究

基于小波变换的图像压缩与去噪技术研究1. 引言图像是一种以人眼可接受的方式来存储和传输大量视觉信息的媒体。

然而,图像文件通常具有较大的数据量,需要占用较大的存储空间和传输带宽。

因此,图像压缩成为一项重要的技术,对图像进行压缩可以减小文件大小和传输时间,提高存储利用率和传输效率。

此外,图像往往受到噪声的影响,噪声会导致图像质量的下降,降低图像的可视性和识别性。

因此,图像去噪也是一个重要的研究方向,可以提升图像的质量和信息内容。

基于小波变换的图像压缩和去噪技术因其较好的性能而备受关注。

本文将探讨小波变换在图像压缩和去噪中的应用。

2. 小波变换基础小波变换是一种数学变换方法,将函数分解为多个尺度的基函数(小波),并用各个尺度上的系数来表示原函数。

小波变换可以提取图像的频域信息和时域信息,具有较好的局部化特性。

3. 图像压缩技术图像压缩技术可以分为有损压缩和无损压缩两种方法。

有损压缩减少了图像中的冗余信息,牺牲一定的图像质量,而无损压缩可以完全恢复原始图像,但压缩比较低。

基于小波变换的图像压缩利用小波变换的多尺度分解和系数量化来实现。

首先,将原始图像进行小波分解得到低频分量和高频分量。

然后,对高频分量进行系数量化,利用人眼对于高频信息的较低敏感性,减少高频分量的数据量。

最后,将量化后的系数进行编码和存储。

4. 图像去噪技术图像去噪的目标是恢复出原始图像中的有效信息并去除噪声,提升图像的质量和可视性。

小波变换的局部化特性使其在图像去噪中有较好的效果。

基于小波变换的图像去噪方法通常采用阈值去噪的思想。

将图像进行小波分解,得到各个尺度上的小波系数。

然后,对小波系数应用适当的阈值,在不影响原始图像主要特征的情况下去除噪声。

5. 小波变换在图像压缩与去噪中的应用小波变换在图像压缩与去噪中已经得到广泛应用。

通过灵活选择不同的小波基函数和改进的算法,可以进一步提高图像压缩和去噪的性能。

在图像压缩方面,小波变换可以通过调整系数量化策略来平衡图像质量和压缩比。

利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。

而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。

本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。

一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。

Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。

1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。

在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。

最后通过逆小波变换将去噪后的图像重构出来。

这种方法能够有效抑制高频噪声,保留图像的细节信息。

2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。

在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。

二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。

Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。

1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。

在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。

该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。

2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。

在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。

如何使用小波变换进行图像去噪处理

如何使用小波变换进行图像去噪处理

如何使用小波变换进行图像去噪处理图像去噪是数字图像处理中的重要任务之一,而小波变换作为一种常用的信号处理方法,被广泛应用于图像去噪。

本文将介绍如何使用小波变换进行图像去噪处理。

1. 理解小波变换的基本原理小波变换是一种多尺度分析方法,它将信号分解成不同频率的子信号,并且能够同时提供时域和频域的信息。

小波变换使用一组基函数(小波函数)对信号进行分解,其中包括低频部分和高频部分。

低频部分表示信号的整体趋势,而高频部分表示信号的细节信息。

2. 小波去噪的基本思想小波去噪的基本思想是将信号分解成多个尺度的小波系数,然后通过对小波系数进行阈值处理来去除噪声。

具体步骤如下:(1)对待处理的图像进行小波分解,得到各个尺度的小波系数。

(2)对每个尺度的小波系数进行阈值处理,将小于阈值的系数置为0。

(3)对去噪后的小波系数进行小波逆变换,得到去噪后的图像。

3. 选择合适的小波函数和阈值选择合适的小波函数和阈值对小波去噪的效果有重要影响。

常用的小波函数包括Haar小波、Daubechies小波和Symlet小波等。

不同的小波函数适用于不同类型的信号,可以根据实际情况选择合适的小波函数。

阈值的选择也是一个关键问题,常用的阈值处理方法有固定阈值和自适应阈值两种。

固定阈值适用于信噪比较高的图像,而自适应阈值适用于信噪比较低的图像。

4. 去噪实例演示为了更好地理解小波去噪的过程,下面以一张含有噪声的图像为例进行演示。

首先,对该图像进行小波分解,得到各个尺度的小波系数。

然后,对每个尺度的小波系数进行阈值处理,将小于阈值的系数置为0。

最后,对去噪后的小波系数进行小波逆变换,得到去噪后的图像。

通过对比原始图像和去噪后的图像,可以明显看出去噪效果的提升。

5. 小波去噪的优缺点小波去噪方法相比于其他去噪方法具有以下优点:(1)小波去噪能够同时提供时域和频域的信息,更全面地分析信号。

(2)小波去噪可以根据信号的特点选择合适的小波函数和阈值,具有较好的灵活性。

基于小波变换的图像去噪方法

基于小波变换的图像去噪方法

Abstract: Based on the advantage of wavelet denosing and ai m ing at the p roblem that the traditional wavelet denosing w ill destroy the im age edge and lose the details, some imp roved im age denosing methods based on wavelet transform were stud2 ied. These methods are the method based on the wavelet transform and median filter, the method by combination ofW iener filter and wavelet filter, the method by combination of wavelet transfor m denosing and higher order statistics, and so on. Sim ulation results show that the p roposed methods are efficient to reduce the noise while p reserving the detail information of the im age, and are useful in p ractical app lication. Key words: wavelet transfor m; W iener filter; wavelet filter; median filter; higher order statistics

完整版)小波变换图像去噪MATLAB实现

完整版)小波变换图像去噪MATLAB实现

完整版)小波变换图像去噪MATLAB实现本论文旨在研究数字图像的滤波去噪问题,以提高图像质量。

数字图像处理(Digital Image Processing。

DIP)是指用计算机辅助技术对图像信号进行处理的过程。

DIP技术在医疗、艺术、军事、航天等图像处理领域都有着十分广泛的应用。

然而,图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。

如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。

因此,通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。

小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。

小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数Ψ(x)来构造,Ψ(x)称为母小波,或者叫做基本小波。

一组小波基函数,{Ψa,b(x)},可以通过缩放和平移基本小波来生成。

当a=2j和b=ia的情况下,一维小波基函数序列定义为Ψi,j(x)=2-j2Ψ2-jx-1.函数f(x)以小波Ψ(x)为基的连续小波变换定义为函数f(x)和Ψa,b(x)的内积。

在频域上有Ψa,b(x)=ae-jωΨ(aω)。

因此,本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。

当绝对值|a|减小时,小波函数在时域的宽度会减小,但在频域的宽度会增大,同时窗口中心会向|ω|增大的方向移动。

这说明连续小波的局部变化是不同的,高频时分辨率高,低频时分辨率低,这是小波变换相对于___变换的优势之一。

总的来说,小波变换具有更好的时频窗口特性。

噪声是指妨碍人或相关传感器理解或分析图像信息的各种因素。

噪声通常是不可预测的随机信号。

由于噪声在图像输入、采集、处理和输出的各个环节中都会影响,特别是在输入和采集中,噪声会影响整个图像处理过程,因此抑制噪声已成为图像处理中非常重要的一步。

小波变换去噪

小波变换去噪

小波变换的图像去噪方法一、摘要本文介绍了几种去噪方法,比较这几种去噪方法的优缺点,突出表现了小波去噪法可以很好的保留图像的细节信息,性能优于其他方法。

关键词:图像;噪声;去噪;小波变换二、引言图像去噪是一种研究颇多的图像预处理技术。

一般来说, 现实中的图像都是带噪图像。

为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。

三、图像信号常用的去噪方法(1)邻域平均法设一幅图像f (x, y) 平滑后的图像为g(x, y),它的每个象素的灰度值由包含在(x, y)制定邻域的几个象素的灰度值的平均值决定。

将受到干扰的图像模型化为一个二维随机场,一般噪声属于加性、独立同分布的高斯白噪声。

可见,邻域平均所用的邻域半径越大,信噪比提高越大,而平滑后图像越模糊,细节信息分布不明显。

(2)时域频域低通滤波法对于一幅图像,它的边缘、跳跃部分以及噪声都为图像的高频分量,而大面积背景区和慢变部分则代表图像低频分量,可以设计合适的低通滤波器除去高频分量以去除噪声。

设f(x,y)为含噪图像,F(x,y)为其傅里叶变换,G(x,y)为平滑后图像的傅里叶变换,通过H,使F(u,v)的高频分量得到衰减。

理想的低通滤波器的传递函数满足下列条件:1 D(u,v)≤DH(u,v)=0 D(u,v)≤D式中D0非负D(u,v)是从点(u,v)到频率平面原点的距离,即,即D(u, v) = u2 + v2 (3)中值滤波低通滤波在消除噪声的同时会将图像中的一些细节模糊掉。

中值滤波器是一种非线性滤波器,它可以在消除噪声的同时保持图像的细节。

(4)自适应平滑滤波自适应平滑滤波能根据图像的局部方差调整滤波器的输出。

局部方差越大,滤波器的平滑作用越强。

它的最终目标是使恢复图像f*(x,y) 与原始图f(x,y) 的均方误差e2 = E ( f (x, y) − f *(x, y))2 最小。

自适应滤波器对于高斯白噪声的处理效果比较好.(5)小波变换图像信号去噪方法小波变换去噪法的基本思想在于小波变换将大部分有用信号的信息压缩而将噪声信息分散。

图像处理中的图像去噪算法使用方法

图像处理中的图像去噪算法使用方法

图像处理中的图像去噪算法使用方法图像去噪算法是图像处理领域的一个重要研究方向,它的主要目标是通过消除或减少图像中的噪声,提高图像的视觉质量和信息可读性。

图像噪声是由于图像信号的获取、传输和存储过程中引入的不可避免的干扰所致,例如传感器噪声、电磁干扰等,使图像中的细节模糊,影响图像的清晰度和准确性。

因此,图像去噪算法在许多应用领域中都具有重要的意义,如医学图像处理、计算机视觉、图像识别等。

现在,我们将介绍几种常见的图像去噪算法及其使用方法。

1. 中值滤波算法:中值滤波算法是一种简单而有效的图像去噪方法。

它的基本原理是对图像中的每个像素点周围的邻域进行排序,然后取中间值作为该像素点的输出值。

中值滤波算法适用于去除椒盐噪声和脉冲噪声,它能够保持图像的边缘和细节信息。

使用中值滤波算法时,需要设置一个邻域大小,根据该大小确定图像中每个像素点周围的邻域大小。

较小的邻域大小可以去除小型噪声,但可能会丢失一些细节信息,较大的邻域大小可以减少噪声,但可能会使图像模糊。

2. 均值滤波算法:均值滤波算法是一种基本的线性滤波技术,它的原理是计算图像中每个像素点周围邻域像素的平均值,并将平均值作为该像素点的输出值。

均值滤波算法简单易实现,适用于消除高斯噪声和一般的白噪声。

使用均值滤波算法时,同样需要设置邻域大小。

相较于中值滤波算法,均值滤波算法会对图像进行平滑处理,减弱图像的高频细节。

3. 降噪自编码器算法:降噪自编码器算法是一种基于深度学习的图像去噪算法。

它通过使用自编码器网络来学习图像的特征表示,并借助重建误差来去除图像中的噪声。

降噪自编码器算法具有较强的非线性建模能力,可以处理复杂的图像噪声。

使用降噪自编码器算法时,首先需要训练一个自编码器网络,然后将噪声图像输入网络,通过网络进行反向传播,优化网络参数,最终得到去噪后的图像。

4. 小波变换去噪算法:小波变换去噪算法是一种基于小波分析的图像去噪算法。

它将图像分解为不同尺度下的频域子带,通过对各个子带进行阈值处理来消除图像中的噪声。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
基于PCNN的小波域超声医学图像去噪方法 Company Logo
Copyright © by ARTCOM PT All rights reserved.
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
5、基于PCNN的小波域超声医学图像去噪方法 Company Logo
1、PCNN模型 作为实时显像系统,超声成像对计算量的要求比较 高,因此作者采用计算量相对较小的简化PCNN模 型,简化PCNN单个神经元模型,如图所示.其神经元 按(5)~(9)式进行迭代计算.
Company
Logo
维纳滤波和小波域滤波是2种比较有效的信号 去噪方法。维纳滤波是一个线性过程,小波域滤波是 非线性的。一般而言,这2种方法通常使边界模糊。 为了提高图像滤波后的质量,将这2种方法结合起来, 在小波系数上进行维纳滤波。小波系数可以作为边 缘检测器。图像中边界代表特征,每一特征与一组小 波系数相对应。该方法是假设在每一个子带中,小波 系数是具有变化缓慢协方差矩阵的高斯函数向量。
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
基于PCNN的小波域超声医学图像去噪方法 Company Logo
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
基于PCNN的小波域超声医学图像去噪方法 Company Logo 2 PCNN去噪模型
在用PCNN进行图像处理时,将一个二维PCNN网络 的M*N个神经元分别与二维输入图像的M*N个像素相 对应,在第一次迭代时,神经元的内部活动项就等于外部 刺激Sij,如Sij大于阈值,这时神经元输出为1,为自然激活, 此时其阈值Eij[n]将急剧增大,然后随时间指数衰减.在 此之后的各次迭代中,被激活的神经元通过与之相邻神 经元的连接作用激励邻接神经元,若邻接神经元与前一 个迭代激活的神经元所对应的像素具 有相似强度,则邻 接神经元容易被捕获激活,反之不能被捕获激活.因此,利 用某一神经元的自然激活会触发其周边相似神经元集 体激活,产生脉动输出序列Y[n],且它们形成了一个神经 元集群,从而可实现对噪声的识别,再对噪声进行处理。 PCNN通过修改灰度值去噪的模型如图所示.
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr

概论
Company
Logo
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
2、基于小波的中值滤波去噪
Company
Logo
中值滤波是一种常用的抑制噪声的非线性方法, 它可以克服线性滤波如最小均方滤波和均值滤波给 图像边缘带来的模糊,从而获得较为满意的复效果; 它能较好地保护边界,对于消除图像的椒盐噪声非常 有效,但有时会失掉图像中的细线和小块的目标区域。 其原理非常简单,就是将一个包含有奇数个像素的窗 口A在图像上依次移动,在每一个位置上对窗口内像 素的灰度值由小到大进行排列,然后将位于中间的灰 度值作为窗口中心像素的输出值,其数学式为
Company
Logo
基于小波变换的图像去噪方法
1208010113
李晓波
Copyright © by ARTCOM PT All rights reserved.
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
1、概论
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
4、基于高阶统计量的小波阈值去噪方法
Company
Logo
由于高阶统计量对高斯噪声不敏感,能够排除高 斯白噪声和有色噪声的影响,因而在平滑噪声的同 时能更准确地反映原图像的细节信息。利用高阶统 计量描述图像的纹理信息对图像进行平滑滤波,可 以更好地保留图像细节。小波阈值去噪虽效果较好, 但由于将幅值较大的小波系数萎缩会导致图像的边 缘模糊,因此结合小波变换和高阶统计量的特点,利 用小波函数和信号相关函数的三重相关系数代替小 波系数计算阈值,再通过小波阈值收缩方法对图像 进行去噪处理效果会更好一些。
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
基于小波的中值滤波去噪
Company
Logo
小波变换的一个最大的优点是函数系很丰富,可 以有多种选择,不同的小波系数生成的小波会有不同 的效果。噪声常常表现为图像上孤立像素的灰度突 变,具有高频特性和空间不相关性。图像经小波分解 后可得到低频部分和高频部分,低频部分体现了图像 的轮廓,高频部分体现为图像的细节和混入的噪声, 因此,对图像去噪,只需要对其高频系数进行量化处 理即可。
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
基于小波的中值滤波去噪
Company
Logo
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
3、维纳滤波与小波域滤波相结合的方法
Company
Logo
小波去噪实际上是特征提取与低通滤波的综合。 它的基本原理可用图1说明。将含噪信号进行多尺 度小波变换,从时域变换到小波域,在每一尺度下把 属于噪声的小波系数去掉,保留并增强属于信号的小 波系数,然后用小波逆变换恢复原信号。信号和噪声 在不同尺度的小波变换下呈现的特性截然相反,这是 新造分离的基本原理和依据。
相关文档
最新文档