小波变换图像去噪的算法研究自设阈值

小波变换图像去噪的算法研究自设阈值
小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪

一、小波变换简介

在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1

,a

b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为:

()()

1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:

()

dx a

b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞

∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3)

可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。

二、图像去噪描述

所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。

依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为:

g(x,y)= f(x,y)+ n(x,y), (4)

其中,n(x,y)和图像光强大小无关。

图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。

图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

三、小波阈值去噪法

3.1小波变换去噪的过程

小波去噪是小波变换较为成功的一类应用,其去噪的基本思路可用框图3-1来概括,即带噪信号经过预处理,然后利用小波变换把信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后再经过小波逆变换恢复检测信号。

图3-1小波去噪框图

因此,利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边缘信息。而传统的傅立叶变换去噪方法在去除噪声和边沿保持上存在着矛盾,原因是傅立叶变换方法在时域不能局部化,难以检测到局域突变信号,在去除噪声的同时,也损失了图像边沿信息。由此可见,与傅立叶变换去噪方法相比,小波变换去噪方法具有明显的优越性。

3.2小波阈值去噪的基本方法

3.2.1阈值去噪原理

Donoho提出的小波阈值去噪方法的基本思想是当w j,k小于某个临界阈值时,认为这时的小波系数主要是由噪声引起的,予以舍弃。当w j,k大于这个临界阈值时,认为这时的小波系数主要是由信号引起,那么就把这一部分的w j,k直接保留下来(硬阈值方法),或者按某一个固定量向零收缩(软阈值方法),然后用新的小波系数进行小波重构得到去噪后的信号。此方法可通过以下三个步骤实现:

(1)先对含噪声信号f(t)做小波变换,得到一组小波分解系数w j,k。

(2)通过对分解得到的小波系数w j,k进行阈值处理,得出估计小波系数k j w,使得w j,k- u j,k,尽可能的小。

(3)利用估计小波系数k j w,进行小波重构,得到估计信号了f,即为去噪之后的信号。

)(t

需要说明的是,在小波阈值去噪法中,最重要的是闭值函数和闲值的选取。

3.2.2阈值函数的选取

阈值函数关系着重构信号的连续性和精度,对小波去噪的效果有很大影响。目前,阈值的选择主要分硬阈值和软阈值两种处理方式。其中,软阈值处理是将信号的绝对值与阈值进行比较,当数据的绝对值小于或等于阈值时,令其为零;大于阈值的数据点则向零收缩,变为该点值与阈值之差。而硬阈值处理是将信号的绝对值阈值进行比较,小于或等于阈值的点变为零,大于阈值的点不变。但硬阈值函数的不连续性使消噪后的信号仍然含有明显的噪声;采用软阈值方法虽然连续性好,但估计小波系数与含噪信号的小波系数之间存在恒定的偏差,当噪声信号很不规则时显得过于光滑。

四、基于小波变换的图像分解与重构

二维离散小波主要解决二维多分辨率分析问题,如一幅二维离散图像{c(m,n)},二小波可以将它分解为各层各个分辨率上的近似分量cAj,水平方向细节分量cHj,垂直方向细节分量cVj,对角线方向细节分量cDj,其二层小波图像分解过程如图4-1 所示:

图4-1 小波图像分解过程

图4-2 小波图像分解过程

其二层小波图像重构过程正好与此相反如图4-2所示,基于小波变换的图像处理,是通过对图像分解过程中所产生的近似分量与细节分量系数的调整,使重构图像满足特定条件,而实现图像处理.

五、编程实现图像消噪

常用的图像去噪方法是小波阈值去噪法,它是一种实现简单而效果较好的去噪方法,阈值去噪方法的思想很简单,就是对小波分解后的各层稀疏模大于和小于某阈值的系数分别进行处理,然后利用处理后的小波系数重构出去噪后的图像。在阈值去噪中,阈值函数体现了对小波分解稀疏的不同处理策略以及不同的估计方法,常用的阈值函数有硬阈值和软阈值函数,硬阈值函数可以很好的保留图像边缘等局部特征,但图像会出现伪吉布斯效应,等视觉失真现象,而软阈值处理相对较平稳,但可能会出现边缘模糊等失真现象,为此人们又提出了半软阈值函数。小波阈值去噪方法处理阈值的选取,另一个关键因素是阈值的具体估计,如果阈值太小,去噪后的图像仍然存在噪声,相反如果阈值太大,重要图像特征又将被滤掉,引起偏差。从直观上讲,对给定的小波系数,噪声越大,阈值就越大。

图像信号的小波去噪步骤与一维信号的去噪步骤完全相同,只使用二维小波分析工具代替了一维小波分析工具,如果用固定阈值形式,则选择的阈值用m2代替了一维信号中的n。

这三步是:1)二维信号的小波分解。选择一个小波和小波分解的层次N, 然后计算信号S到第N层的分解。2)对高频系数进行阈值量化,对于从一到N的每一层,选择一个阈值,并对这一层的高频系数进行软阈值化处理。3)二维小波的重构,根据小波分解的第N层的低频系数和经过修改的从第一层到第N层的高频系数,来计算二维信号的小波重构。下面就通过具体实例来说明利用小波分析进行图像去噪的问题。

对给定图像进行去噪的二维小波去噪程序:

clear; % 清理工作空间

load wbarb; % 装载原始图像

subplot(221); % 新建窗口

image(X); % 显示图像

colormap(map); % 设置色彩索引图

title('原始图像'); % 设置图像标题

axis square; % 设置显示比例, 生成含噪图像并图示

init=2055615866; % 初始值

randn('seed',init); % 随机值

XX=X+8*randn(size(X)); % 添加随机噪声

subplot(222); % 新建窗口

image(XX); % 显示图像

colormap(map); % 设置色彩索引图

title(' 含噪图像'); % 设置图像标题

axis square; %用小波函数coif2对图像XX进行2层

[c,l]=wavedec2(XX,2,'coif2'); % 分解

n=[1,2]; % 设置尺度向量

p=[10.28,24.08]; % 设置阈值向量, 对高频小波系数进行阈%nc=wthcoef2('h',c,l,n,p,'s');

%nc=wthcoef2('v',c,l,n,p,'s');

X1=waverec2(nc,l,'coif2'); % 图像的二维小波重构

subplot(223); % 新建窗口

image(X1); % 显示图像

colormap(map); % 设置色彩索引图

title(' 第一次消噪后的图像'); % 设置图像标题

axis square; %设置显示比例,再次对高频小波系数进行阈值处理

%mc=wthcoef2('h',nc,l,n,p,'s');mc=wthcoef2('v',nc,l,n,p,'s');

%mc=wthcoef2('d',nc,l,n,p,'s');

X2=waverec2(mc,l,'coif2'); % 图像的二维小波重构

subplot(224); % 新建窗口

image(X2); % 显示图像

colormap(map); % 设置色彩索引图

title(' 第二次消噪后的图像'); % 设置图像标题

axis square; % 设置显示比例

程序运行结果:

图5-1 去噪前后图像

比较上图中几幅图像,可见第一次去早滤除了大部分的高频噪,但与原图比较,依然有不少的高频噪声,第二次去噪在第一次的去噪基础上,再次滤除高频噪声,去噪效果较好,但图像的质量比原图稍差。

结论

小波分析理论因其具有良好的时频局域特性和多分辨率特性,使得它在数字图像

处理领域有着广泛的应用前景。本论文针对小波阈值在图像去噪方面的应用进行了研究。具体归纳如下:

本文首先总结了各种图像去噪方法,并对其进行了总结与对比,提出了各自的优缺点,引出了小波变换图像去噪方法,阐述了小波变换的基础理论,给出了小波变换的基本概念、基本思想、发展历程和小波阈值去噪的基本方法。

小波变换在图像去噪应用已取得了很好的成果,但还是存大着一些不足。本论文对小波变换在图像去噪中的应用进行研究,但工作还不够完善。针对本论文的研究内容和小波去噪的发展趋势提出一些改进的思路与想法,以供以后工作借鉴: (1)如何建立非高斯噪声的分布模型。根据获得的先验知识和已有先验知识进行准确的建模,对于对非高斯噪声的去除非常重要,寻找理想的小波系数模型已成为目前小波去噪研究的一个方向,如何使用高斯噪声分布的去噪方法对非高斯噪声进行延拓都是值得进一步探讨的课题。

(2)小波变换具有时频局域特性和多分辨率特性,但它缺乏人眼的方向特性。随着脊波和曲波的出现,提高了模型的准确性,改善了小波的去噪性能,脊波、曲波、边缘波也会成为当前研究的一大趋势。本文对小波变换做了介绍,并将其应用于图像去噪。但这些变换方法的研究都还处于开始阶段,理论和应用都有待进一步的探索。

洛阳理工学院毕业设计论文

9

谢辞

本论文的完成,得益于各位老师传授的知识,才使本人有了完成论文所要求的知

识积累,更得益于导师徐老师从开题报告到论文初稿与定稿中对字句的斟酌倾注的大量心血,在此对导师徐老师表示感谢!

徐老师在我大学的最后学习阶段—毕业设计阶段给自己的指导,从最初的定题,到资料收集,到写作、修改,到论文定稿,给了我耐心的指导和无私的帮助。为了指导我们的毕业论文,放弃了自己的休息时间,他的这种无私奉献的敬业精神令人钦佩,在此我向他表示我诚挚的谢意。同时,感谢所有任课老师和所有同学在这三年来给自己的指导和帮助,是他们教会了我专业知识,教会了我如何学习,教会了我如何做人。正是由于他们,我才能在各方面取得显著的进步,在此向他们表示我由衷的谢意,并祝师培养出越来越多的优秀人才,桃李满天下!

通过这一阶段的努力,我的毕业论文《基于小波变换的图像去噪算法研究》终于完成了,这意味着大学生活即将结束。在大学阶段,我在学习上和思想上都受益非浅,这除了自身的努力外,与各位老师、同学的关心、支持和鼓励是分不开的。谢谢大家。

洛阳理工学院毕业设计论文

10 参考文献

[1] 章毓晋.图像处理和分析[M].北京:清华大学出版社,1999.82-95.

[2] 罗军辉,冯平,哈力旦·A. MA TLAB7.0在图像处理中的应用[M]. 北京:机械工业出版社,2005.136-141.

[3] 李朝晖,张弘.数字图像处理及应用[M].北京:机械工业出版社,2004.70-79.

[4] 勒中鑫.数字图像信息处理[M].北京:国防工业出版社,2003.86-108

[5] 张兆礼,赵春晖,梅晓丹.现代图像处理技术及Matlab实现[M].北京:人民邮电出版社,2001.197-201.

[6] DLDonoho.Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation [J].Appl Comput Harmon Anal,1991,1(1):100-115.

[7] 王俊,陈逢时,张守宏.一种利用小波变换多尺度分辨特性的信号消噪技术[J] .信号处理,1996,12(2):104-109.

[8] 张军萍,蔡汉添.基于小波变换局部极大值的信号去噪新算法[J].电路与系统学报,1997,2(2):31-34.

[9] 张旭东,卢国栋,冯健.图像编码基础和小波压缩技术—原理、算法和标准[M].北京:清华大学出版社,2002.164-170.

[10] 彭玉华.小波变换与工程应用[M].北京:科学出版社,2003.13-27.

[11]成理智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.75-82.

[12]董长虹.Matlab图像处理与应用[M].北京:国防工业出版社,2004.99-103.

[13] Yang Rui kang. Optimal Weighted Median Filtering Under Structural Constrains. IEEE transactions on signal processing,1995,43(3):591-603.

[14] How-Lung Eng, Student Member, Noise Adaptive Soft-Switching Median Filter.IEEE Trans.Image Processing, 2001,10(2): 242-251.

[15] Bowman C,Sauer K.A generalized Gaussian image model of edge preserving map estimation [J]. IEEE Trans.Image Processing,1993,2 (3):296-310.

[16]薛年喜. MATLAB在数字信号处理中的应用[M]. 北京:清华大学出版社, 1998.289-336.

[17]飞思科技产品研发中心.MA TLAB7辅助信号处理技术与应用[M].北京:电子工业出版社,2005.347-358.

[18]飞思科技产品研发中心.小波分析理论与MA TLAB7实现[M].北京:电子工业出版社,2005.321-363.

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

小波阈值去噪

基于小波阈值的图像去噪方法研究 摘要:本文根据已有的阈值处理函数的优缺点,提出了一种新的阈值处理函数,用于图像的小 波阈值去噪.实验表明,该方法比传统的硬阈值函数与软阈值函数具有更好的去噪效果 关键字:小波阈值去噪,阈值函数 0 引言 图像在获取或传输过程中会因各种噪声的干扰使质量下降,这将对后续图像的处理产生 不利影响.所以必须对图像进行去噪处理,而去噪所要达到的目的就是在较好去除噪声的基 础上,良好的保持图像的边缘等重要细节.近年来,小波理论得到了迅速的发展和广泛的应用. 由于其具有低熵性,多分辨性,去相关性和选基灵活性等优点,在图像去噪领域得到广泛的应 用.本文提出一种新阈值函数,并将其应用于小波阈值去噪,该函数是现有软、硬阈值函数的 推广,通过调整参数,可以克服硬阈值函数不连续和软阈值函数有偏差的缺点。 1 小波阈值处理 小波阈值收缩法是Donoho 和Johnstone 提出的,其主要理论依据是,小波变换具有很强的 去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却 分布于整个小波域内.因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值.可 以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声. 于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零.小波阈值收缩法 去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈 值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的“收缩 (shrinkage)”处理.最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的图 像. 2 阈值函数的选取 阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中 关键的一步。 设w 表示小波系数,T 为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数: ? ??<≥=T w T w w w new ,0, (1) 软阈值函数: ? ??<≥-=T w T w T w w w new ,0),)(sgn( (2) 分析(1)(2)式可以得出:硬阈值函数在阈值点是不连续的,软阈值函数,原系数和分解得 到的小波系数总存在着恒定的偏差,这将影响重构的精度.同时这两种函数不能表达出分解 后系数的能量分布。因此,寻找一种新阈值函数,使它既能实现阈值函数的功能,又具有高阶 导数,同时可以体现出分解后系数的能量分布,将是我们的目标。我们提出一种新的阈值函 数为:

小波变换语音消噪(改进阈值)

改进阈值函数进行语音信号消噪,但是在程序运行过程中频频报错。本人经验不足调试不出,希望求得各位指导改进函数表达式附图 clear all; clc; close all; fs=8000; %语音信号采样频率为8000 xx=wavread('lw1.wav'); x1=xx(:,1);%取单声道 t=(0:length(x1)-1)/8000; y1=fft(x1,2048); %对信号做2048点FFT变换 f=fs*(0:1023)/2048; figure(1) plot(t,x1) %做原始语音信号的时域图形 y=awgn(x1',10,'measured'); %加10db的高斯白噪声 [snr,mse]=snrmse(x1,y')%求得信噪比均方误差 figure(2) plot(t,y) %做加噪语音信号的时域图形 [c,l]=wavedec(y,3,'db1');%多尺度一维分解 %用db1小波对信号进行3层分解并提取系数 a3=appcoef(c,l,'db1',3); %a2=appcoef(c,l,'db1',2); %a1=appcoef(c,l,'db1',1); d3=detcoef(c,l,3); d2=detcoef(c,l,2); d1=detcoef(c,l,1); thr1=thselect(d1,'rigrsure');%阈值获取,使用Stein的无偏风险估计原理 thr2=thselect(d2,'rigrsure'); thr3=thselect(d3,'rigrsure'); %利用改进阈值函数进行去噪处理 gd1=Garrote_gg(d1,thr1); gd2=Garrote_gg(d2,thr2); gd3=Garrote_gg(d3,thr3); c1=[a3 gd3 gd2 gd1]; y1=waverec(c2,l,'db1');%多尺度重构 [snr,mse]=snrmse(x1,y1')%求得信噪比均方误差 figure(3); plot(t,y1); function gd=Garrote_gg(a,b)%a为信号分解后的小波系数,b为获得的阈值 m=0.2*((a*a)-(b*b)); if (abs(a)>=b) gd=sign(a)*(abs(a)-b/exp(m)); else (abs(a)

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

小波变换函数(自己总结)

2.1小波分析中的通用函数 1 biorfilt双正交小波滤波器组 2 centfrg计算小波中心频率 3 dyaddown二元取样 4 dyadup二元插值 5 wavefun小波函数和尺度函数 6 wavefun2二维小波函数和尺度函数 7 intwave积分小波函数fai 8 orthfilt正交小波滤波器组 9 qmf镜像二次滤波器(QMF) 10 scal2frg频率尺度函数 11 wfilters小波滤波器 12 wavemngr小波管理 13 waveinfo显示小波函数的信息 14 wmaxlev计算小波分解的最大尺度 15 deblankl把字符串变成无空格的小写字符串 16 errargn检查函数参数目录 17 errargt检查函数的参数类型 18 num2mstr最大精度地把数字转化成为字符串 19 wcodemat对矩阵进行量化编码 20 wcommon寻找公共元素 21 wkeep提取向量或矩阵中的一部分 22 wrev向量逆序 23 wextend向量或矩阵的延拓 24 wtbxmngr小波工具箱管理器 25 nstdfft非标准一维快速傅里叶变换(FFT) 26 instdfft非标准一维快速逆傅里叶变换 27 std计算标准差 2.2小波函数 1 biorwavf双正交样条小波滤波器 2 cgauwavf复Gaussian小波 3 cmorwavf复Morlet小波 4 coifwavf Coiflet小波滤波器 5 dbaux Daubechies小波滤波器 6 dbwavf Daubechies小波滤波器 7 fbspwavf频率分布B-Spline小波 8 gauswavf Gaussian小波 9 mexihat墨西哥小帽函数 10 meyer meyer小波11 meyeraux meyer小波辅助函数 12 morlet Morlet小波 13 rbiowavf反双正交样条小波滤波器 14 shanwavf 复shannon小波 15 symaux计算Symlet小波滤波器 16 symwavf Symlets小波滤波器 2.3一维连续小波变换 1 cwt一维连续小波变换 2 pat2cwav从一个原始图样中构建一个小波函数 2.4一维离散小波变换 1 dwt但尺度一维离散小波变换 2 dwtmode离散小波变换拓展模式 3 idwt单尺度一位离散小波逆变换 4 wavedec多尺度一维小波分解(一维多分辨率分析函数) 5 appcoef提取一维小波变换低频系数 6 detcoef提取一维小波变换高频系数 7 waverec多尺度一维小波重构 8 upwlex单尺度一维小波分解的重构 9 wrcoef对一维小波系数进行单支重构 10 upcoef一维系数的直接小波重构 11 wenergy显示小波或小波包分解的能量 2.5二维离散小波变换 1 dwt2单尺度二维离散小波变换 2 idwt2单尺度逆二维离散小波变换 3 wavedec2多尺度二维小波分解(二维分辨率分析函数) 4 waverec2多尺度二维小波重构 5 appcoef2提取二维小波分解低频系数 6 detcoef2提取二维小波分解高频系数 7 upwlev2二维小波分解的单尺度重构 8 wrcoef2对二维小波系数进行单支重构 9 upcoef二维小波分解的直接重构 2.6离散平稳小波变换 1 swt一维离散平稳小波变换 2 iswt一维离散平稳小波逆变换 3 swt2二维离散平稳小波变换 4 iswt2二维离散平稳小波逆变换

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

小波分析中matlab阈值获取函数及其应用附程序代码

1、小波分析中MATLAB阈值获取函数 MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。 一、ddencmp的调用格式有以下三种: (1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X) (2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X) (3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X) 函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。输入参数X 为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。 例题1: clear all clc load noisbump; x=noisbump; [c,l]=wavedec(x,5,'sym6'); %对小波进行5层分解 [thr,sorh,keepapp]=ddencmp('den','wv',x) xd=wdencmp('gbl',c,l,'sym6',5,thr,sorh,keepapp);%显示降噪信号 subplot(211),plot(x),title('x','fontsize',10); subplot(212),plot(xd),title('xd','fontsize',10);

图像椒盐噪声与高斯噪声去噪方法研究

德州学院毕业论文开题报告书 2011年3月16日院(系)物理系专业电子信息工程 姓名田程程学号200700802041 论文题目图像椒盐噪声与高斯噪声去噪方法研究 一、选题目的和意义 图像去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二、本选题在国内外的研究现状和发展趋势 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。

三、课题设计方案 本设计为图像椒盐噪声与高斯噪声去噪方法研究 一、研究高斯噪声和椒盐噪声特性 二、研究去噪算法,提出适合去除高斯噪声和椒盐噪声的算法 三、计算机仿真 四、计划进度安排 第一周至第二周:根据寒假期间针对论文题目收集的有关资料,认真分析和整理资料,形成撰写论文的大体框架。对论文的撰写形成明确地认识,认真书写开题报告,完成开题报告并上交。 第三周至第五周:学习和研究图像椒盐噪声与高斯噪声去噪方法。 第六周至第十一周:对前期的关于图像椒盐噪声与高斯噪声去噪方法的研究进行总结。 第十二周:根据论文指导意见和建议对论文进行修改和完善后形成论文终稿。

小波阈值图像去噪算法及MATLAB仿真实验

龙源期刊网 https://www.360docs.net/doc/4a17180446.html, 小波阈值图像去噪算法及MATLAB仿真实验 作者:刘钰马艳丽刘艳霞 来源:《数字技术与应用》2010年第06期 摘要:本文研究了小波阈值图像的去噪方法,并与其它图像去噪方法进行了比较。对lena图像进行MATLAB仿真实验,得到了主观效果图和客观效果的PSNR。研究发现,小波阈值图像去噪无论主观效果还是客观效果都优于其他图像去噪方法。 关键词:小波阈值去噪 Wavelet Thresholding Algorithm of Image Denoising and MATLAB Simulation Experiments Liu Yu11,2Ma Yanli11Liu Yanxia11 (1. College of Information Science and Project ,Hebei North University,Zhangjiakou075000;2. College of Electron Information Project,Tianjin University,Tianjin300072) Abstract:In this paper,research on wavelet thresholding algorithm of image denoising and compare with orther algorithms of image denoising.Then Lena on MATLAB simulation experiment images, receive the image of subjective effect and the PSNR of objective effect. Research found that waveletthresholding for image denoising effect regardless of the subjective or objective effect are superior to other algorithms of image denoising. Key words:wavelet;threshold;denoising 1 引言 近年来,小波图像去噪方法已成为去噪的一个重要分支和主要研究方向,具有“数字显微镜”之称的小波变换在时频域具有多分辨率的特性,可同时进行时频域的局部分析和灵活地对信号 局部奇异特征进行提取以及时变滤波[1]。利用小波对含噪信号进行处理时,可有效地达到滤除噪声和保留信号高频信息,得到对原信号的最佳恢复。 在图像去噪领域中,应用小波理论进行图像去噪受到许多专家学者的重视,并取得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波具有如下特点[2-6]:

基于小波变换与阀值收缩法的图像增强去噪(精)

第 19卷第 2期四川理工学院学报 (自然科学版 V ol . 19 No. 2 JOURNAL OF SICHUAN UNIVERSITY OF 2006年 4月 SCIENCE & ENGINEERING (NATURAL SCIENCE EDITION Apr . 2006 文章编号:1673-1549(2006 02-0008-04 基于小波变换与阀值收缩法的图像增强去噪 高飞,杨平先,孙兴波 (四川理工学院电子与信息工程系,四川自贡 643000 摘要:提出了一种基于小波变换与阀值收缩法的图像增强去噪方法。图像经过小波分解后可以得到一系列不同尺度上的子带图像, 在不同尺度的子带图像上进行基于阈值收缩滤波的细节系数增强, 再进行小波重构,即可得到增强后的图像。该方法可以有效地去除噪声,增强图像的平均梯度,改善图像的视觉效果。 关键词:图像增强;小波变换;去噪;阀值收缩 中图分类号:TP391 文献标识码:A 前言 小波变换是传统傅里叶变换的继承和发展, 由于小波的多分辨率分析具有良好的空间域和频率域局部化特性, 对高频采用逐渐精细的时域或空域步长, 可以聚焦 到分析对象的任意细节, 因此特别适合于图像信号这一类非平稳信源的处理,已成为一种信号/ 图像处理的新手段。目前,小波分析已被成功地应用于信号处理、图象 处理、语音与图像编码、语音识别与合成、多尺度边缘提取和重建、分形及数字电视等科学领域 [1]。

图像增强是图像处理中一个非常重要的研究领域,已经有许多非常成熟和有效的方法如直方图均衡、高通滤波、反掩模锐化法等,但是这些传统的图像增强方法都存在着不足,如噪声放大、有时可能引入新的噪声结构等。目前已经有许多关于小波变换在图像处理方面的应用研究, 取得了非常不错的效 果。针对传统图像增强中存在的一些问题,如增强噪声、丢失细节等,本文提出了一种基于阈值收缩法 [2]的小波图像增强方法, 实验结果表明该方法能较好地解决图像增强中的噪声放大的问题, 并能非线性地增强图像的细节信息,保持图像的边缘特征,改善图像的视觉效果,是一种很有效的方法。 1 小波变换 小波变换的基本思想是用一族函数去表示或逼近一信号, 这一族函数称为小波函数系。它是通过一 小波母函数的伸缩和平移产生其“子波”来构成的,用其变换系数描述原来的信号 [3]。设相应的尺度函 数为 (x ?,小波函数为(x ψ,二维尺度函数 , (y x ?,是可分离的,即: ( ( , (y x y x ???=,即可以构造 3个二维基本小波函数: ( ( , (1y x y x ψ?ψ=, ( ( , (2y x y x ?ψψ=, ( ( , (3y x y x ψψψ= 那么,二维小波基可以通过以下伸缩平移实现: 2, 2(2 , (, , n y m x y x j j i j i n m j ??=???ψψ 3, 2, 1, , , =∈i Z n m j 这样,一个二维图像信号 , (y x f 在尺度 j 2下的平滑成分(低频分量可用二维序列 , (n m D j 表示为: , ( , ( , (, , y x y x f n m D n m j j ?=

小波阈值去噪的基本原理_小波去噪阈值如何选取

小波阈值去噪的基本原理_小波去噪阈值如何选取 小波阈值去噪的基本原理小波阈值去噪的基本思想是先设置一个临界阈值,若小波系数小于,认为该系数主要由噪声引起,去除这部分系数;若小波系数大于,则认为此系数主要是由信号引起,保留这部分系数,然后对处理后的小波系数进行小波逆变换得到去噪后的信号。具体步骤如下: (1)对带噪信号f(t)进行小波变换,得到一组小波分解系数Wj,k; (2)通过对小波分解系数Wj,k进行阈值处理,得到估计小波系数Wj,k,使Wj,k-uj,k尽可能的小; (3)利用估计的小波系数Wj,k进行小波重构,得到估计信号f(t),即为去噪后的信号。提出了一种非常简洁的方法对小波系数Wkj,进行估计。对f(k)连续做几次小波分解后,有空间分布不均匀信号s(k)各尺度上小波系数Wkj,在某些特定位置有较大的值,这些点对应于原始信号s(k)的奇变位置和重要信息,而其他大部分位置的Wkj,较小;对于白噪声n(k),它对应的小波系数Wkj,在每个尺度上的分布都是均匀的,并随尺度的增加Wkj 把低于的小波函数Wkj,(主要由信号n(k Wkj,(主要由信号s(k)引起),则予以保留或进行收缩,从而得到估计小波系数Wkj,它可理解为基本由信号s(k)引起,然后对Wkj进行重构,就可以重构原始信号。 本文提出的小波阈值去噪方法可以分为5步描述:(1)对带噪图像g(i,j)进行s层正交冗余小波变换,得到一组小波分解系数Wg(i,j)(s,j),其中j=1,2,s,s表示小波分解的层数。 小波阈值去噪法有着很好的数学理论支持,实现简单而又非常有效,因此取得了非常大的成功,并吸引了众多学者对其作进一步的研究与改进。这些研究集中在两个方面:对阈值选取的研究以及对阈值函数的研究。 阈值的确定在去噪过程中至关重要,目前使用的阈值可以分为全局阈值和局部适应阈值两类。其中,全局阈值是对各层所有的小波系数或同一层内不同方向的小波系数都选用同一

基于小波变换的图像阔值降噪算法研究开题报告

中国计量大学 毕业设计(论文)开题报告 学生姓名:马日斯江·库尔班学号:1200101237专业:测控技术与仪器 班级: 12测控1班 设计(论文)题目: 基于小波变换的图像阈值降噪算法研究 指导教师:侯德鑫 系:计量测试工程学院 2016年3 月25 日

基于小波变换的图像阈值降噪算法研究 开题报告 一、课题的背景及意义: 图像降噪是图像预处理的主要任务之一,其作用是为了提高图像的信噪比,突出图像的期望特征。不同性质的噪声应采用不同的方法进行消噪。最简单的也比较通用的消噪算法,是用傅立叶变换直接进行低通滤波或带通滤波。这种方法虽然简单、易于实现,但它对滤去有用信号频带中的噪声无能为力,并且带宽的选择和高分辨率是有矛盾的。带宽选的过宽,达不到去噪的目的;选的过窄,噪声虽然滤去的多,但同时信号的高频部分也损失了,不但带宽内的信噪比得不到改善,某些突变点的信息也可能被模糊掉了。将小波变换应用于信号处理中,是因为它的主要优点是在时间域和频率域中同时具有良好的局部化特性,从而非常适合时变信号的分析和处理。特别在图像去噪领域中,小波理论受到了许多学者的重视,他们应用小波进行去噪,并获得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波变换具有以下特点: (1)低熵性由于小波系数的稀疏分布,使得图像变换后的熵降低了; (2)多分辨率由于小波采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等; (3)去相关性因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪; (4)选基灵活性由于小波变换可以灵活选择变换基,所以对不同应用场合,对不同的研究对象,可以选用不同的小波母函数,以获得最佳的去噪效果。 因此,就信号消噪问题而言,它比传统的傅立叶频率域滤波和匹配滤波器更具有灵活性。以小波变换为基础的时变信号消噪算法是把含噪信号放在二维平面上,利用信号和噪声表现出的截然不同的特性进行分时分频处理,此方法理论上不但能够获得较高的信噪比,而且能够保持良好的时间分辨率。采用小波消噪算

小波阈值去噪算法的设计及其应用

北方民族大学学士学位论文论文题目:小波阈值去噪算法的设计及其应用 院(部)名称:数学与信息科学学院 学生姓名:黄慧东 专业:信息与计算科学学号:20100433指导教师姓名:黄永东 论文提交时间:2013年5月14日 论文答辩时间: 学位授予时间: 北方民族大学教务处制

小波阈值去噪算法的设计及其应用 摘要 本文主要阐述了小波阈值去噪算法的设计及其应用. 第一章对小波进行了初步的介绍,“小波分析”是分析未经过任何处理的信号所含有的不同的性质,进而用于图像处理、小波滤波、数据隐藏等.比如声音信号频率的高低,发声时间的长短、振幅、旋律等各个方面.从平稳的波形之中发现突变的尖峰.小波分析是依照各种小波基函数对分解原始信号的一种分析方法. 第二章介绍了小波滤波并列举了几种常用的小波滤波算法.时至今日,小波滤波成为了一种新的滤波思路,其功能除了去噪、降噪以外,还兼有平滑、锐化和保留信号特征的功能. 第三章则较为详细介绍了小波阈值去噪算法并进行了算法设计,最后还给出了小波阈值去噪算法的应用实例.小波阈值去噪就是将经过小波分解后的信号通过选取适当的阈值过滤掉带噪信号,再用小波逆变换进行小波重构. 关键字:小波分析,小波变换,小波滤波,小波阈值去噪.

design of wavelet threshold denoising algorithm and its application abstract this article focuses on the wavelet thresholding algorithm design and its application. the first chapter introduces the wavelet conducted preliminary, " wavelet analysis " is an analysis of various changes in the characteristics of the original signal , and further used in data compression, noise removal , feature selection. for example singing signal: the treble or bass, sound duration , undulating melody and so on. wavelet analysis is the use of a variety of " wavelet function " on "raw signal" decomposition. the second chapter introduces the wavelet filtering and lists several commonly used wavelet filtering algorithms. today, wavelet filtering has become a new filter ideas, in addition to its function noising , noise reduction , it also combines smooth, sharpen and retain the function of the signal characteristics . the third chapter is a more detailed description of the wavelet thresholding algorithm and algorithm design , and finally gives the wavelet thresholding algorithm examples . wavelet thresholding is based on the effective signal and noise have different properties at different decomposition scale , constructed using mathematical tools appropriate threshold , and the target signal wavelet coefficients thresholding keywords: wavelet analysis, wavelet transform, wavelet filtering, wavelet thresholding .

基于Matlab的图像去噪算法的研究

基于Matlab的图像去噪算法的研究 摘要 在信息化的社会里,图像在信息传播中所起的作用越来越大。在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以,消除在图像采集和传输过程中而产生的噪声,保证图像受污染度最小,成了数字图像处理领域里的重要部分。 本文首先分析了图像增强技术相关知识,重点讨论了空间域滤波方法,然后本文主要研究分析邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的图像去噪算法,并进行相应的仿真。首先介绍图像处理应用时的常用函数及其用法;其次详细阐述了四种去噪算法原理及特点;最后运用Matlab软件对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,通过分析仿真结果得出:均值滤波是典型的线性滤波,对高斯噪声抑制是比较好的;中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效;维纳滤波对高斯噪声有明显的抑制作用;对小波系数进行阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。 关键词:图像增强技术;空间域滤波;邻域平均法;中值滤波;维纳滤波;小波变换

Abstract In the information society, the image in the information transmission is used more and more widely. In many cases image’s information can be affected by various noises, seriously affect the useful information of a image,Therefore, ensuring the minimum of the noise and pollution in the process of image collection and transmission became an important part of the field. This paper first had an analysis of some related knowledge about image enhancement technology with emphasis on discussing the spatial domain methods. Then this paper mainly analysis and discuss the neighborhood average method, median filtering method, wiener filtering method and the fuzzy wavelet transform method of image denoising algorithm.,and the corresponding simulation.Firstly introduce the common image processing functions and its applications. Secondly elaborate the principles and characteristics of the four denoising algorithm. Finally using Matlab software to a noise images (including gaussian noise or salt & pepper noise), and getting some conclusions from the simulation denoising analysis: average filtering is typical of linear filter, which is better used for gaussian noise. The median filter is a common nonlinear filtering method, especially effective to salt & pepper noise. Through wiener filtering, the gaussian noise is inhibited obviously. Wavelet coefficients threshold processing in wavelet domain can remove noise and the the signal which is not expect. Key words:image enhancement technology ;spatial domain;Average neighborhood;Median filter;Wiener filtering;Wavelet transform

小波变换去噪基础知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。

相关文档
最新文档