2020中考数学 专题练习:不等式(组)的解法及应用(解析版)

合集下载

2020中考数学 专题练习:不等式(组)的解法及应用(解析版)

2020中考数学 专题练习:不等式(组)的解法及应用(解析版)

2020中考数学专题练习:不等式(组)的解法及应用(解析版)【例题1】关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.【例题2】关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.【例题3】为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【例题4】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.巩固练习一、选择题:1.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.2.一元一次不等式组的解是()A.x>﹣1 B.x≤2 C.﹣1<x≤2 D.x>﹣1或x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.2-1-c-n-j-y【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣2x+1<3,得:x>﹣1,∴不等式组的解集为﹣1<x≤1,故选:B.4.如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.>B.<C.<D.>【分析】根据在数轴上表示不等式解集的方法即可得出答案.【解答】解:∵﹣3处是空心圆点,且折线向右,2处是实心圆点,且折线向左,∴这个不等式组的解集是﹣3<x≤2.故选D.【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.二、填空题:6.不等式组的解集是x>﹣1,则a的取值范围是a≤﹣.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式a﹣x<0,得:x>3a,∵不等式组的解集为x>﹣1,则3a≤﹣1,∴a≤﹣,故答案为:a≤﹣.7.不等式组的解集是4<x≤5.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤5,解不等式②得:x>4,∴不等式组的解集为4<x≤5,故答案为:4<x≤5.8.若关于x的一元一次不等式组无解,则a的取值范围是a≥2.【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由1﹣x>x﹣1得,x<2,∵此不等式组的解集是空集,∴a≥2.故答案为:a≥2.9.运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.【分析】根据运算程序,列出算式:3x﹣6,由于运行了一次就停止,所以列出不等式3x﹣6<18,通过解该不等式得到x的取值范围.21·世纪*教育网【解答】解:依题意得:3x﹣6<18,解得x<8.故答案是:x<8.10.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是<x≤6.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.三、解答题:1.解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.2.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≤1,解不等式②,得:x<4,则不等式组的解集为x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【分析】(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据“两类节目的总数为20个、唱歌类节目数比舞蹈类节目数的2倍少4个”列方程组求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时<150”列不等式求解可得.【解答】解:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据题意,得:,解得:,答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15<150,解得:a<,由于a为整数,∴a=3,答:参与的小品类节目最多能有3个.4.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.5.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;【来源:21·世纪·教育·网】(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.。

专题04 不等式(组)及其应用-2020年中考数学真题分专题训练(江苏专版)(教师版含解析)

专题04 不等式(组)及其应用-2020年中考数学真题分专题训练(江苏专版)(教师版含解析)

专题04 不等式(组)及其应用一.选择题(共3小题)1.(2020•苏州)不等式213x-的解集在数轴上表示正确的是() A.B.C.D.【解答】移项得,231x+,合并同类项得,24x,x的系数化为1得,2x.在数轴上表示为:.故选:C.2.(2020•连云港)不等式组213,12xx-⎧⎨+>⎩的解集在数轴上表示为()A.B.C.D.【解答】解不等式213x -,得:2x ,解不等式12x +>,得:1x >,∴不等式组的解集为12x <,表示在数轴上如下:故选:C . 3.(2020•常州)如果x y <,那么下列不等式正确的是( )A .22x y <B .22x y -<-C .11x y ->-D .11x y +>+【解答】A 、x y <, 22x y ∴<,故本选项符合题意;B 、x y <,22x y ∴->-,故本选项不符合题意;C 、x y <,11x y ∴-<-,故本选项不符合题意;D 、x y <,11x y ∴+<+,故本选项不符合题意;故选:A .二.解答题(共11小题)4.(2020•无锡)解不等式组: 20415x x -⎧⎨+<⎩. 【解答】20415x x -⎧⎨+<⎩①②, 解①得0x ,解②得1x <,所以不等式组的解集为01x <.5.(2020•苏州)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ,求b 的取值范围.【解答】(1)依题意,得:20250b +=,解得:15b =.(2)1826a ,502a b =-,∴5021850226b b -⎧⎨-⎩, 解得:1216b .答:b 的取值范围为1216b .6.(2020•南京)已知反比例函数k y x=的图象经过点(2,1)--. (1)求k 的值.(2)完成下面的解答. 解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解不等式①,得 1x < . 根据函数k y x=的图象,得不等式②的解集 . 把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .【解答】(1)反比例函数k y x=的图象经过点(2,1)--, (2)(1)2k ∴=-⨯-=;(2)解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解不等式①,得1x <. 根据函数k y x=的图象,得不等式②的解集02x <<.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为01x <<,故答案为:1x <,02x <<,01x <<.7.(2020•泰州)(2)解不等式组:311,442x x x x -+⎧⎨+<-⎩【解答】(2)解不等式311x x -+,得:1x ,解不等式442x x +<-,得:2x >,则不等式组的解集为2x >.8.(2020•扬州)解不等式组50,3121,2x x x +⎧⎪⎨-+⎪⎩并写出它的最大负整数解. 【解答】解不等式50x +,得5x -, 解不等式31212x x -+,得:3x -, 则不等式组的解集为5x -,所以不等式组的最大负整数解为5-.9.(2020•徐州)(2)解不等式组:34521232x x x -<⎧⎪--⎨>⎪⎩. 【解答】(1)22530x x -+=,(23)(1)0x x --=,230x ∴-=或10x -=, 解得:132x =,21x =; (2)34521232x x x -<⎧⎪⎨-->⎪⎩①②解不等式①,得3x <.解不等式②,得4x >-.则原不等式的解集为:43x -<<.10.(2020•常州)解不等式组: 26036x x -<⎧⎨-⎩.【解答】26036x x -<⎧⎨-⎩①②, 解不等式①得:3x <,解不等式②得:2x -,∴不等式组的解集是:23x -<.11.(2020•盐城)解不等式组:32134532x x x -⎧⎪⎨⎪-<+⎩.【解答】解不等式3213x -,得:53x , 解不等式4532x x -<+,得:7x <,则不等式组的解集为573x <. 12.(2020•淮安)解不等式31212x x -->. 去分母,得2(21)31x x ->-.⋯(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 A (填“A ”或“B ” ). A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.【解答】(1)去分母,得:4231x x ->-,移项,得:4321x x ->-,合并同类项,得:1x >,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A .13.(2020•南通)已知抛物线2y ax bx c =++经过(2,0)A ,1(34,)B n y -,2(56,)C n y +三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根.(1)求抛物线的解析式;(2)若5n <-,试比较1y 与2y 的大小;(3)若B ,C 两点在直线1x =的两侧,且12y y >,求n 的取值范围.【解答】(1)抛物线2y ax bx c =++经过(2,0)A , 042a b c ∴=++①,对称轴是直线1x =,12b a∴-=②, 关于x 的方程2ax bx c x ++=有两个相等的实数根, ∴△2(1)40b ac =--=③,由①②③可得:1210a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为212y x x =-+; (2)5n <-,3419n ∴-<-,5619n +<-∴点B ,点C 在对称轴直线1x =的左侧, 抛物线212y x x =-+, 102∴-<,即y 随x 的增大而增大, (34)(56)2102(5)0n n n n --+=--=-+>, 3456n n ∴->+,12y y ∴>;(3)若点B 在对称轴直线1x =的左侧,点C 在对称轴直线1x =的右侧时,由题意可得3415611(34)561n n n n -<⎧⎪+>⎨⎪--<+-⎩,503n ∴<<, 若点C 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时,由题意可得:3415613411(56)n n n n ->⎧⎪+<⎨⎪--<-+⎩,∴不等式组无解, 综上所述:503n <<. 14.(2020•镇江)解不等式组:427,3(2)4x x x x +>-⎧⎨-<+⎩【解答】()427324x x x x +>-⎧⎪⎨-<+⎪⎩①②, ①427x x ->--, 39x >-,3x >-;②364x x -<+,346x x -<+,210x <,5x <,∴不等式组的解集是35x -<<.。

不等式组应用题及答案

不等式组应用题及答案

不等式组应用题及答案篇一:不等式(组)应用题类型及解答(包含各种题型)一元一次不等式(组)应用题类型及解答1. 分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

3、把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样???就学生数x 讨论哪家旅行社更优惠。

③就学生数x讨论哪家旅行社更优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

专题07不等式(组)(共50题)-2020年中考数学真题分项汇编【全国通用】

专题07不等式(组)(共50题)-2020年中考数学真题分项汇编【全国通用】

2020年中考数学真题分项汇编(全国通用)专题7不等式(组)(共50题)一.选择题(共14小题)1.(2020•贵阳)已知a <b ,下列式子不一定成立的是( )A .a ﹣1<b ﹣1B .﹣2a >﹣2bC .12a +1<12b +1 D .ma >mb 2.(2020•衢州)不等式组{3(x −2)≤x −43x >2x −1的解集在数轴上表示正确的是() A .B .C .D .3.(2020•嘉兴)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( )A .B .C .D .4.(2020•苏州)不等式2x ﹣1≤3的解集在数轴上表示正确的是( )A .B .C .D .5.(2020•连云港)不等式组{2x −1≤3,x +1>2的解集在数轴上表示为( )A .B .C .D .6.(2020•株洲)下列哪个数是不等式2(x ﹣1)+3<0的一个解?( )A .﹣3B .−12C .13D .2 7.(2020•衡阳)不等式组{x −1≤0,①x+23−x 2<1②的解集在数轴上表示正确的是( ) A .B .C .D . 8.(2020•株洲)在平面直角坐标系中,点A (a ,2)在第二象限内,则a 的取值可以是( )A .1B .−32C .43D .4或﹣49.(2020•广元)关于x 的不等式{x −m >07−2x >1的整数解只有4个,则m 的取值范围是( ) A .﹣2<m ≤﹣1 B .﹣2≤m ≤﹣1 C .﹣2≤m <﹣1 D .﹣3<m ≤﹣210.(2020•天水)若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣411.(2020•广东)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤112.(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A .5B .4C .3D .213.(2020•杭州)若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +114.(2020•新疆)不等式组{2(x −2)≤2−x ,x+22>x+33的解集是( )A .0<x ≤2B .0<x ≤6C .x >0D .x ≤2二.填空题(共13小题)15.(2020•鄂州)关于x 的不等式组{2x >4x −5≤0的解集是 . 16.(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门票反而合算. 17.(2020•岳阳)不等式组{x +3≥0,x −1<0的解集是 . 18.(2020•黑龙江)若关于x 的一元一次不等式组{x −1>02x −a <0有2个整数解,则a 的取值范围是 . 19.(2020•凉山州)若不等式组{2x <3(x −3)+13x+24>x +a 恰有四个整数解,则a 的取值范围是 .20.(2020•河南)已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .21.(2020•滨州)若关于x 的不等式组{12x −a >0,4−2x ≥0无解,则a 的取值范围为 . 22.(2020•黑龙江)若关于x 的一元一次不等式组{x −1>02x −a >0的解是x >1,则a 的取值范围是 . 23.(2020•哈尔滨)不等式组{x 3≤−1,3x +5<2的解集是 . 24.(2020•黔东南州)不等式组{5x −1>3(x +1)12x −1≤4−13x 的解集为 . 25.(2020•遂宁)若关于x 的不等式组{x−24<x−132x −m ≤2−x 有且只有三个整数解,则m 的取值范围是 .26.(2020•温州)不等式组{x −3<0,x+42≥1的解集为 . 27.(2020•黔西南州)不等式组{2x −6<3x ,x+25−x−14≥0的解集为 . 三.解答题(共23小题)28.(2020•福建)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②29.(2020•武威)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.30.(2020•河北)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值.31.(2020•咸宁)(1)计算:|1−√2|﹣2sin45°+(﹣2020)0;(2)解不等式组:{−(x −1)>3,2x +9>3.32.(2020•陕西)解不等式组:{3x >6,2(5−x)>4.33.(2020•上海)解不等式组:{10x >7x +6,x −1<x+73. 34.(2020•北京)解不等式组:{5x −3>2x ,2x−13<x 2.35.(2020•扬州)解不等式组{x +5≤0,3x−12≥2x +1,并写出它的最大负整数解. 36.(2020•江西)(1)计算:(1−√3)0﹣|﹣2|+(12)﹣2; (2)解不等式组:{3x −2≥1,5−x >2.37.(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.38.(2020•泰州)(1)计算:(﹣π)0+(12)﹣1−√3sin60°; (2)解不等式组:{3x −1≥x +1,x +4<4x −2.39.(2020•枣庄)解不等式组{4(x +1)≤7x +13,x −4<x−83,并求它的所有整数解的和. 40.(2020•安徽)解不等式:2x−12>1.41.(2020•甘孜州)(1)计算:√12−4sin60°+(2020﹣π)0.(2)解不等式组:{x+2>−1,2x−13≤3.42.(2020•黑龙江)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.43.(2020•哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?44.(2020•苏州)如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.45.(2020•辽阳)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?46.(2020•长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B 种型号货车才能一次性将这批生活物资运往目的地?47.(2020•黑龙江)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.48.(2020•菏泽)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元?(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.49.(2020•济宁)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?50.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是;②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.。

不等式组应用题及答案

不等式组应用题及答案

不等式组应用题及答案篇一:不等式(组)应用题类型及解答(包含各种题型)一元一次不等式(组)应用题类型及解答1. 分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

3、把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样???就学生数x 讨论哪家旅行社更优惠。

③就学生数x讨论哪家旅行社更优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

中考数学 第4节不等式(组)的解法及不等式的应用

中考数学     第4节不等式(组)的解法及不等式的应用

第4节 不等式(组)的解法及不等式的应用基础过关1. 己知实数a 、b 满足a +1>b +1,则下列选项可能错误的是( )A. a >bB. a +2>b +2C. -a <-bD. 2a >3b2. 不等式-2x >12的解集是( )A. x <-14B. x <-1C. x >-14D. x >-13. 不等式4-2x >0的解集在数轴上表示为( )4. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )第4题图A. ⎩⎨⎧x ≥2x >-3B. ⎩⎨⎧x ≤2x <-3C. ⎩⎨⎧x ≥2x <-3D. ⎩⎨⎧x ≤2x >-35. 一元一次不等式组⎩⎪⎨⎪⎧2x >x -112x ≤1的解是( ) A. x >-1 B. x ≤2 C. -1<x ≤2 D. x >-1或x ≤26. 将不等式组⎩⎨⎧2x -6≤0x +4>0的解集表示在数轴上,下面表示正确的是( )7. 不等式6-4x ≥3x -8的非负整数解有( )A. 2个B. 3个C. 4个D. 5个8.若关于x 的一元一次不等式组⎩⎨⎧2x -1>3(x -2)x <m的解是x <5,则m 的取值范围是( )A. m ≥5B. m >5C. m ≤5D. m <59. 关于x 的不等式组⎩⎨⎧x -a ≤02x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 2310.不等式组⎩⎨⎧2x >6x -2>0的解集是________. 11. 若关于x 的一元一次不等式组⎩⎨⎧x -a >01-x >x -1无解,则a 的取值范围是________. 12. 不等式组⎩⎪⎨⎪⎧2x +1>-12x -13≥x -1的整数解是________. 13. 某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.14. 运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,第14题图若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是________.15.若关于x 、y 的二元一次方程组⎩⎨⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是________.16. 解不等式:4x +5≤2(x +1).17. 解不等式组:⎩⎪⎨⎪⎧3x -5<-2x 3x +22≥1.18. 解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7x +103>2x .19. 解不等式组:⎩⎪⎨⎪⎧3x +6≥5(x -2)x -52-4x -33<1.20. 解不等式组⎩⎪⎨⎪⎧12(x -1)≤11-x <2,并写出该不等式组的最大整数解.21.解不等式组⎩⎨⎧2x ≥-9-x ,5x -1>3(x +1),并把它的解集在数轴上表示出来.第21题图22.已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.23. 为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a %,求a 的值至少是多少?24. 甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?满分冲关1. 如果关于x 的方程x 2-(2m -1)x +m 2-3m =0有实数根,且关于x 的不等式组⎩⎨⎧2x +3>9x -m <0无解,那么符合条件的所有整数m 的个数为( ).A. 2B. 3C. 4D. 52. 已知关于x 的不等式组⎩⎨⎧5x -a <7-2-x <0只有2个非负整数解,且关于x 的分式方程a -6x -1+a =2有整数解,则所有满足条件的整数a 的值的个数为( ) A. 5 B. 4 C. 3 D. 23. 从1,2,3,4,5,6这6个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎩⎨⎧x +1<a 3x +4≤4x无解,且使关于x 的分式方程2x -a x -2=12的解为非负数,那么这6个数中所有满足条件的a 的值之积是( )A. 6B. 24C. 30D. 1204. 2018年俄罗斯世界杯亚洲区12强赛A 组第8轮比赛于2017年6月13日进行,中国国家队将客场挑战叙利亚队,“爱我中华”球迷协会准备到现场为中国队加油助威,并计划购买A 、B 两种球票共600张.(1)若A 种票的数量不少于B 种票的4倍,求至少购买多少张A 种票;(2)“爱我中华”球迷协会从销售处得知,由于团体购票有一定优惠,本场比赛的球票以统一价格(m +80)元出售给该协会,由于路途遥远,部分球迷放弃现场看球的计划,协会最后购买的票数在原计划的基础上减少(m +5)%,购票总共用去45600元,求m 的值(m >0).5. 1月份,A 型汽油均价为5.7元/升,B 型汽油均价为6元/升,某汽车租赁公司购买这两种型号的汽油共支付40800元;2月份,这两种型号的汽油均价都上调了0.6元/升,该公司要购买与1月份A 型汽油和B 型汽油数量都相同的汽油就需多支付费用.(1)若多支付的费用不超过4200元,那么该公司1月或2月最多可购买A 型汽油多少升?(2)3月份,该公司A型汽油的购买量在(1)小题中2月份最多购买量的基础上减少了m%,但A型汽油的均价在2月份的基础上上调了m10元,因此3月份支付A种型号汽油的费用与(1)小题中2月份支付最多数量A型汽油的费用相同,求m 的值.6. 某文具店分别以每本5元和6元的价格一次性购进了A、B两种笔记本各若干本,共用去了1960元,A种笔记本按每本获利60%的价格销售,B种笔记本每本售价是A种笔记本每本售价的54倍,经过一段时间后,这两种笔记本都销售完毕,经统计,销售这两种笔记本共获利1240元.(1)该文具店此次购进的A、B两种笔记本各多少本?(2)调查市场需求后,该文具店又以上次相同的价格购进了相同数量的A、B两种笔记本.由于市场原因,该文具店调整了这两种笔记本的销售单价,A种笔记本每本售价下调了a%,B种笔记本售价上调了34a%,若要求销售完这些笔记本后的利润不低于1200元,求a的最大值.7. 手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行…,最近的网红非“共享单车”莫属,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步,共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷,某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a %,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a %,三月底可使用的自行车达到7752辆,求a 的值.答案基础过关1. D2. A3. D4. D5. C 【解析】不等式组⎩⎪⎨⎪⎧2x>x -1 ①12x ≤1 ②,解不等式①得x >-1,解不等式②得x ≤2,所以不等式组的解集为-1<x ≤2.6. A 【解析】解不等式2x -6≤0,得x ≤3,解不等式x +4>0,得x >-4,∴不等式组的解集为-4<x ≤3,解集在数轴上表示为选项A .7. B 【解析】解不等式得x ≤2,则非负整数解有0,1,2,共3个.8. A 【解析】解不等式2x -1>3(x -2),得x <5,根据不等式组的解集为x <5,利用同小取小可知m ≥5.9. B 【解析】∵不等式组的解集为-3a 2<x ≤a ,该解集中至少有5个整数解,所以a 比-3a 2至少大5,即 a ≥-3a 2+5,解得a ≥2,所以a 的最小值是2. 10. x >311. a ≥1 【解析】由x -a >0得x >a ,由1-x >x -1得x <1,∴要使不等式组无解,则a ≥1.12. 0,1,2 【解析】⎩⎨⎧2x +1>-1 ①2x -13≥x -1②解不等式①得,x >-1,解不等式②得,x ≤2,∴不等式组的解集为-1<x ≤2,∴不等式组的整数解为0,1,2.13. 8 【解析】设至多可以打x 折,由题意得,100(1+50%)x -100≥100×20%,化简得,150x ≥120,x ≥80%.则至多可以打8折.14. x <8 【解析】根据程序,可得不等式3x -6<18,解得x <8.15. m >-2 【解析】将两方程等号两边分别相加,得2x +2y =2m +4,∴x +y =m +2,∵x +y >0,∴m +2>0,∴m >-2.16. 解:去括号得4x +5≤2x +2,移项,合并同类项,得2x ≤-3,解得x ≤-32.17. 解:解不等式3x -5<-2x ,移项得3x +2x <5,合并同类项得5x <5,解得x <1,解不等式3x +22≥1,不等式两边同乘以2得3x +2≥2,合并同类项得3x ≥0,解得x ≥0,∴原不等式组的解集为0≤x <1.18. 解:解不等式2(x +1)>5x -7,去括号得2x +2>5x -7,移项、合并同类项得-3x >-9,解得x <3.解不等式x +103>2x ,去分母得x +10>6x .移项、合并同类项得10>5x ,解得x <2.∴不等式组的解集为x <2.19. 解:令⎩⎪⎨⎪⎧3x +6≥5(x -2) ①x -52-4x -33<1 ②,由①得x≤8,由②得x>-3,∴不等式组的解集为-3<x≤8.20. 解:解不等式12(x-1)≤1.得x≤3,解不等式1-x<2,得x>-1,则不等式组的解集是-1<x≤3,∴该不等式组的最大整数解为x=3.21. 解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,∴不等式组的解集为x>2.其解集在数轴上表示如解图:第21题解图22. 解:(1)当m=1时,原不等式可变形为2-x2>x2-1,去分母得2-x>x-2,移项、合并同类项得2x<4,∴x<2.(2)解不等式2m-mx2>12x-1,移项、合并同类项2m-mx>x-2,(m+1)x<2(m+1)当m≠-1时,原不等式有解;当m>-1时,原不等式的解集为x<2;当m<-1时,原不等式的解集为x>2.23. 解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x. 根据题意得,7500(1+x)2=10800,解得x=0.2=20%或x=-2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%. (2)2016年的人均借阅量为:10800÷1350=8(本).根据题意得,8(1+a%)×1440-1080010800≥20%, 解得a ≥12.5.答:a 的值至少是12.5.24. 解:(1)设乙工程队每天修路x 千米,则甲工程队每天修路(x +0.5)千米,根据题意列方程15x =1.5×15x +0.5,解得x =1, 答:甲工程队每天修路1.5 千米,乙工程队每天修路1千米.(2)设甲工程队修m 天,余下的工程由乙工程队修,由两个工程队修路总费用不超过5.2万元,可列不等式为0.5m +15-1.5m 1×0.4≤5.2,化简得0.5m +6-0.6m ≤5.2,解得m ≥8, 答:甲工程队至少修8天,这样总费用不超过5.2万元.25. 解:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元, 则⎩⎨⎧200x +200y =8000y -x =20,解得⎩⎨⎧x =10y =30. ∴大樱桃进价为30元/千克,小樱桃进价为10元/千克,200×[(40-30)+(16-10)]=3200(元),答:大樱桃和小樱桃的进价分别是每千克30元和每千克10元,销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,由题意可得,(1-20%)×200×16+200a -8000≥3200×90%,解得a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.满分冲关1. C 【解析】∵关于x 的方程x 2-(2m -1)x +m 2-3m =0有实数根,∴[-(2m-1)]2-4(m 2-3m )=8m +1≥0,∴m ≥-18;解不等式组⎩⎨⎧2x +3>9x -m <0得x <m 且x >3,又∵关于x 的不等式组无解,∴m ≤3.则m 的取值范围是-18≤m ≤3,满足条件的整数有0,1,2,3共4个.2. C 【解析】解不等式组⎩⎨⎧5x -a <7-2-x <0得-2<x <a +75,∵该不等式组只有2个非负整数解,∴1<a +75≤2,即-2<a ≤3,解分式方程a -6x -1+a =2,得x =4a -2,∵分式方程的解为整数,∴a 可取0,1,3,共3个数.3. C 【解析】解不等式组⎩⎨⎧x +1<a 3x +4≤4x 得,4≤x <a -1,要使其无解,则a -1≤4,即a ≤5;解分式方程2x -a x -2=12,得x =2a -23,∵x 为非负数,∴2a -2≥0,解得a ≥1,又∵x ≠2,解得a ≠4,综上1≤a ≤5且a ≠4,∴这6个数中,满足条件的a 值有1,2,3,5,它们之积为1×2×3×5=30.4. 解:(1)设购买x 张A 种票,则购买B 种票(600-x )张,由题意得,x ≥4(600-x ),解得x ≥480,∴至少购买480张A 种票.(2)由题意得(m +80)×[1-(m +5)%]×600=45600,解得m 1=15,m 2=0(舍去),∴m 的值为15.答:m 的值为15.5. 解:(1)设1月份可购买A 型汽油x 升,则1月份购买B 型汽油的升数为:40800-5.7x 6=(6800-0.95x )升, 由题意得,0.6x +0.6(6800-0.95x )≤4200,解得,x ≤4000,答:该公司1月或2月最多可购买A 型汽油4000升.(2)由题意可列方程,4000(1-m %)×(5.7+0.6+m 10)=4000×(5.7+0.6),即4000(1-m %)×(6.3+m 10)=4000×6.3,解得m 1=37,m 2=0(舍去),∴m 的值为37.答:m 的值为37.6. 解:(1)设购买A 种笔记本x 本,B 种笔记本y 本,由题意得,⎩⎪⎨⎪⎧5x +6y =1960,5×60%x +[5×(1+60%)× 54-6]y =1240. 解得⎩⎨⎧x =200y =160. 答:购买A 种笔记本200本,B 种笔记本160本.(2)A 原售价为5(1+60%)=8(元),B 原售价为8×54=10(元),由题意得,200×8(1-a %)+160×10(1+34a %)-1960≥1200.解得a ≤10.答:a 的最大值为10.7. 解:(1)设一月份该公司投入市场的自行车有x 辆,则7500-1200x≤1-10%, 解得x ≥7000,答:一月份该公司投入市场的自行车至少有7000辆.(2)由题意得[7500(1-20%)+1200×(1+4a %)]⎝ ⎛⎭⎪⎫1-14a%=7752, 设a %=x ,原方程可化为50x 2-125x +23=0,解得x 1=2.3(舍去),x 2=0.2,由a %=0.2,得a =20.答:a 的值为20.。

(完整word版)中考数学专题练习-不等式的解及解集(含解析)

(完整word版)中考数学专题练习-不等式的解及解集(含解析)

中考数学专题练习-不等式的解及解集(含解析)一、单选题1。

某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是() A。

t>26 B。

t≥12C. 12<t<26 D。

12≤t≤262.下列说法正确的是( )A. x=1是不等式-2x<1的解集B。

x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D。

不等式-x<1的解集是x<-13.不等式组的解集是x>a,则a的取值范围是( )A。

a<﹣2 B. a=﹣2 C。

a>﹣2 D. a≥﹣24.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A。

x>﹣1 B。

x>2 C. x<﹣1 D. x<25.若关于x的一元一次不等式组无解,则a的取值范围是( )A. a≥1B。

a>1 C。

a≤﹣1 D。

a<﹣16。

下列式子中,是不等式的有( )①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A. 5个B。

4个 C. 3个D。

1个7.若不等式组有解,则a的取值范围是()A。

a≤3B。

a<3 C. a<2 D. a≤28.某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是( )A. 蛋白质的含量是20%B 。

蛋白质的含量不能是20%C. 蛋白质的含量高于20%D。

蛋白质的含量不低于20%9.对于不等式x﹣3<0,下列说法中不正确的是( )A.x=2是它的一个解B.x=2不是它的解C。

有无数个解D.x<3是它的解集10.若不等式组无解,则a的取值范围是()A. a≥﹣3 B。

a>﹣3 C. a≤﹣3 D. a<﹣311。

某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是( )A. t>33 B. t≤24C。

24<t<33 D。

24≤t≤3312。

已知不等式组的解集是x>2,则a的取值范围是()A。

a≤2B。

中考数学专卷2020届中考数学总复习(12)不等式与不等式组-精练精析(1)及答案解析

中考数学专卷2020届中考数学总复习(12)不等式与不等式组-精练精析(1)及答案解析

方程与不等式——不等式与不等式组1 一.选择题(共9小题)1.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>2.不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.不等式组的解集在数轴上可表示为()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.9.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥3二.填空题(共7小题)10.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x _________ y(用“>”或“<”填空).11.写出一个解为x≥1的一元一次不等式_________ .12.不等式x+3<﹣1的解集是_________ .13.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是_________ .14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为_________ cm.15.不等式组的解集是_________ .16.不等式组的解集是_________ .三.解答题(共9小题)17.解不等式2x﹣3<,并把解集在数轴上表示出来.18.解不等式≥,并把它的解集在数轴上表示出来.19.解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.20.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售额将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?21.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B 种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?22.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A 品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?25.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?方程与不等式——不等式与不等式组1参考答案与试题解析一.选择题(共9小题)1.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>考点:不等式的性质.分析:根据不等式的性质1,可判断A,根据不等式的性质3、1可判断B,根据不等式的性质2,可判断C、D.解答:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.点评:本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.2.不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解考点:不等式的解集.分析:根据不等式组解集的四种情况,进行选择即可.解答:解:根据同大取较大的原则,不等式组的解集为x>2,故选:A.点评:本题考查了不等式的解集,是基础题比较简单.解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:解不等式组得到解集为﹣2<x≤3,将﹣2<x≤3表示成数轴形式即可.解答:解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选:D.点评:考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.不等式组的解集在数轴上可表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,解得,故选:D.点评:本题考查了在数轴表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,解得,故选:B.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:数形结合.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,x≥1,故此不等式组的解集为:x≥1.在数轴上表示为:.故选:A.点评:本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得﹣3<x≤4,故选:D.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.点评:本题考查的是在数轴上表示不等式的解集,熟知““小于向左,大于向右”是解答此题的关键.9.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3考点:在数轴上表示不等式的解集.分析:根据不等式组的解集是大于大的,可得答案.解答:解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C.点评:本题考查了不等式组的解集,不等式组的解集是大于大的.二.填空题(共7小题)10.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x <y(用“>”或“<”填空).考点:不等式的定义.分析:由图知1号同学比2号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.11.写出一个解为x≥1的一元一次不等式x+1≥2.考点:不等式的解集.专题:开放型.分析:根据不等式的解集,可得不等式.解答:解:解为x≥1的一元一次不等式有:x+1≥2,x﹣1≥0等.故答案为:x+1≥2.点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可.12.不等式x+3<﹣1的解集是x<﹣4 .考点:解一元一次不等式.分析:移项、合并同类项即可求解.解答:解:移项,得:x<﹣1﹣3,合并同类项,得:x<﹣4.故答案是:x<﹣4.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是1≤k<3 .考点:解一元一次不等式.专题:计算题.分析:先把2x﹣3y=4变形得到y=(2x﹣4),由y<2得到(2x﹣4)<2,解得x <5,所以x的取值范围为﹣1≤x<5,再用x变形k得到k=x+,然后利用一次函数的性质确定k的范围.解答:解:∵2x﹣3y=4,∴y=(2x﹣4),∵y<2,∴(2x﹣4)<2,解得x<5,又∵x≥﹣1,∴﹣1≤x<5,∵k=x﹣(2x﹣4)=x+,当x=﹣1时,k=×(﹣1)+=1;当x=5时,k=×5+=3,∴1≤k<3.故答案为:1≤k<3.点评:本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.也考查了代数式的变形和一次函数的性质.14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为78 cm.考点:一元一次不等式的应用.专题:应用题.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解答:解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.15.不等式组的解集是1<x<2 .考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解不等式①得,x>1,解不等式②得,x<2,所以,不等式组的解集是1<x<2.故答案为:1<x<2.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.不等式组的解集是x>.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三.解答题(共9小题)17.解不等式2x﹣3<,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:先去分母,得3(2x﹣3)<x+1去括号,得6x﹣9<x+1移项,得5x<10系数化为1,得x<2∴原不等式的解集为:x<2,在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.18.解不等式≥,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母和去括号得到6﹣3x≥4﹣4x,然后移项后合并得到x≥﹣2,再利用数轴表示解集.解答:解:去分母得3(2﹣x)≥4(1﹣x),去括号得6﹣3x≥4﹣4x,移项得4x﹣3x≥4﹣6,合并得x≥﹣2,在数轴上表示为:.点评:本题考查了解一元一次不等式:解一元一次不等式的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.也考查了在数轴上表示不等式的解集.19.解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去括号,移项,合并同类项,系数化成1即可.解答:解:2(x﹣1)+5<3x,2x﹣2+5﹣3x<0,﹣x<﹣3,x>3,在数轴上表示为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.20.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售额将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?考点:一元一次不等式的应用;一元一次方程的应用.专题:几何图形问题.分析:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,根据等量关系:总销售额为16000元列出方程求解即可;(2)题目中的不等关系是:6月份该青椒的总销售额不低于18360元列出不等式求解即可.解答:解:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,则6x+4(3000﹣x)=16000,解得x=2000,3000﹣x=1000.故今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(2)依题意有6(1﹣a%)×2000(1+30%)+4(1﹣a%)×1000(1+20%)≥18360,20400(1﹣a%)≥18360,1﹣a%≥0.9,a≤10.故a的最大值是10.点评:考查了一元一次方程的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.21.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B 种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.解答:解:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30﹣z)≤30,解得:z≥15,答:至少购买A种设备15台.点评:此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.22.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)利用一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典,得出等式求出即可;(2)利用总费用不超过900元的钱数,进而得出不等关系求出即可.解答:解:(1)设每个书包和每本词典的价格各是x元,y元,根据题意得出:,解得:.答:每个书包的价格是28元,每本词典的价格是20元;(2)设购买z个书包,则购买词典(40﹣z)本,根据题意得出:28z+20(40﹣z)≤900,解得:z≤12.5.故最多可以购买12个书包.点评:此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?考点:一元一次不等式的应用.专题:优选方案问题.分析:(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.解答:解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.点评:本题考查了一元一次不等式的知识,注意将实际问题转化为数学模型,利用不等式的知识求解.24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A 品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?考点:一元一次不等式的应用;一元一次方程的应用.专题:销售问题.分析:(1)设A品牌文具盒的进价为x元/个,根据晨光文具店用进货款1620元,可得出方程,解出即可;(2)设B品牌文具盒的销售单价为y元,根据全部售完后利润不低于500元,可得出不等式,解出即可.解答:解:(1)设A品牌文具盒的进价为x元/个,依题意得:40x+60(x﹣3)=1620,解得:x=18,x﹣3=15.答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个.(2)设B品牌文具盒的销售单价为y元,依题意得:(23﹣18)×40+60(y﹣15)≥500,解得:y≥20.答:B品牌文具盒的销售单价最少为20元.点评:本题考查了一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.25.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.解答:解:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,由题意,得200x+300(400﹣x)=90000,解得:x=300,∴购买乙种树苗400﹣300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,由题意,得200a≥300(400﹣a),解得:a≥240.答:至少应购买甲种树苗240棵.点评:本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学专题练习:不等式(组)的解法及应用(解析版)【例题1】关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.【例题2】关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.【例题3】为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得:=,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【例题4】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.巩固练习一、选择题:1.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.2.一元一次不等式组的解是()A.x>﹣1 B.x≤2 C.﹣1<x≤2 D.x>﹣1或x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.2-1-c-n-j-y【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣2x+1<3,得:x>﹣1,∴不等式组的解集为﹣1<x≤1,故选:B.4.如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.>B.<C.<D.>【分析】根据在数轴上表示不等式解集的方法即可得出答案.【解答】解:∵﹣3处是空心圆点,且折线向右,2处是实心圆点,且折线向左,∴这个不等式组的解集是﹣3<x≤2.故选D.【点评】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.二、填空题:6.不等式组的解集是x>﹣1,则a的取值范围是a≤﹣.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式a﹣x<0,得:x>3a,∵不等式组的解集为x>﹣1,则3a≤﹣1,∴a≤﹣,故答案为:a≤﹣.7.不等式组的解集是4<x≤5.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤5,解不等式②得:x>4,∴不等式组的解集为4<x≤5,故答案为:4<x≤5.8.若关于x的一元一次不等式组无解,则a的取值范围是a≥2.【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由1﹣x>x﹣1得,x<2,∵此不等式组的解集是空集,∴a≥2.故答案为:a≥2.9.运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.【分析】根据运算程序,列出算式:3x﹣6,由于运行了一次就停止,所以列出不等式3x﹣6<18,通过解该不等式得到x的取值范围.21·世纪*教育网【解答】解:依题意得:3x﹣6<18,解得x<8.故答案是:x<8.10.已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是<x≤6.【分析】根据题意列出不等式组,再求解集即可得到x的取值范围.【解答】解:依题意有,解得<x≤6.故x的取值范围是<x≤6.故答案为:<x≤6.三、解答题:1.解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.2.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≤1,解不等式②,得:x<4,则不等式组的解集为x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【分析】(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据“两类节目的总数为20个、唱歌类节目数比舞蹈类节目数的2倍少4个”列方程组求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时<150”列不等式求解可得.【解答】解:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据题意,得:,解得:,答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15<150,解得:a<,由于a为整数,∴a=3,答:参与的小品类节目最多能有3个.4.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.5.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;【来源:21·世纪·教育·网】(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.。

相关文档
最新文档