ansys有限元受力分析
ansys有限元分析案例

ansys有限元分析案例ANSYS有限元分析案例。
在工程设计和分析领域,有限元分析是一种常用的数值模拟方法,它可以有效地预测结构在受力作用下的变形和应力分布。
而ANSYS作为目前应用最为广泛的有限元分析软件之一,具有强大的建模和仿真功能,被广泛用于航空航天、汽车、船舶、建筑等领域。
本文将通过一个实际案例,介绍如何使用ANSYS进行有限元分析。
案例背景:某工程结构在实际使用过程中出现了裂纹现象,为了找出裂纹的成因并进行有效的修复措施,我们决定利用ANSYS进行有限元分析。
首先,我们需要建立结构的有限元模型,然后施加相应的载荷和边界条件,最终得出结构的应力分布和变形情况,从而找出裂纹的位置和原因。
建立有限元模型:首先,我们需要将结构进行几何建模,并进行网格划分,将结构划分为有限元单元。
在建立模型的过程中,需要考虑到结构的几何形状、材料属性以及实际工况下的载荷和边界条件。
在ANSYS中,可以通过几何建模模块进行结构建模,然后选择合适的单元类型和网格划分方法,对结构进行离散化处理。
施加载荷和边界条件:在建立完有限元模型之后,我们需要定义结构的加载情况,包括静载荷、动载荷、温度载荷等。
同时,还需要定义结构的边界条件,如约束条件、支撑条件等。
这些载荷和边界条件的设置需要符合实际工况,并且需要考虑到结构的非线性、材料的非均质性等因素。
进行仿真分析:一切准备就绪后,我们可以进行仿真分析,通过ANSYS求解器对结构进行有限元分析。
在仿真分析过程中,ANSYS会根据定义的载荷和边界条件,对结构进行求解,并得出结构的应力分布、位移和变形情况。
通过对仿真结果的分析,可以找出结构中的弱点和故障部位,为后续的修复工作提供参考依据。
结果分析与修复措施:最后,我们需要对仿真结果进行深入分析,找出裂纹的具体位置和成因。
根据分析结果,可以制定针对性的修复措施,如增加加强筋、更换材料、改变结构设计等。
通过对仿真结果的分析,可以有效地指导后续的结构修复工作,并提高结构的安全性和可靠性。
基于ANSYS的传动轴受力分析

基于ANSYS的传动轴受力分析引言:传动轴是一种将动力传输到机器的旋转轴。
在实际应用中,传动轴常常承受着很大的受力。
为了确保传动轴在运行过程中的可靠性和安全性,需要对传动轴的受力进行分析和优化。
本文将基于ANSYS软件对传动轴的受力进行分析。
一、建立传动轴的有限元模型在ANSYS中,首先需要建立传动轴的有限元模型。
有限元法是一种数值计算方法,通过将实际结构离散化为有限个单元,来近似模拟连续介质的力学行为。
建立传动轴的有限元模型有助于我们分析和优化传动轴的受力。
二、给定边界条件和加载条件在进行有限元分析前,需要给定传动轴的边界条件和加载条件。
边界条件是指模型的固定部分或约束,加载条件是指施加在传动轴上的力或力矩。
在传动轴的受力分析中,常见的加载条件有转矩加载和弯曲加载。
三、进行材料属性的定义在进行有限元分析前,需要对传动轴的材料属性进行定义。
材料属性包括弹性模量、泊松比和密度等。
这些属性可以通过实验获取,也可以通过材料手册查询获得。
四、进行有限元分析在以上准备工作完成后,可以开始进行有限元分析。
有限元分析通过对传动轴模型进行网格划分,求解传动轴在加载条件下的应力和变形情况。
在ANSYS中,可以选择合适的求解算法和网格划分方式。
通过有限元分析结果,可以直观地了解传动轴承受力的情况。
五、对结果进行评估和优化有限元分析得到的结果可以用于评估传动轴的受力情况。
通过对应力分布和变形情况的分析,可以判断传动轴是否满足强度和刚度要求。
如果不满足要求,可以进行优化设计。
例如,可以调整材料的种类和尺寸,或者增加支撑结构以提高传动轴的强度和刚度。
六、验证和验证最后,需要对有限元分析的结果进行验证和验证。
验证是指将模型的计算结果与理论计算或实验数据进行对比,验证模型的准确性和可靠性。
验证可以通过比较有限元分析结果和理论分析结果来实现。
验证是指通过改变模型的一些参数或加载条件,来验证分析结果的可重复性和一致性。
结论:本文基于ANSYS软件对传动轴的受力进行了分析。
ansys有限元分析报告02

姓名: 班级:10 机制二班 学号:1038
1、概述
图示为一个 130mm×200mm×15mm 的钢制平板,钢板上沿板的中 心线钻出三个孔(半径 12mm),钢板底部已施加约束,钢板顶 边受 300N/mm 均布拉力。忽略重力影响。材料属性:杨氏模量: 190GPa;泊松比:0.3 求:钢板的应力分布情况及变形情况(提 示可参看课本第三章实例,可采用 Plane82 单元模拟;也可三维 建模采用 Solid45 实体单元模拟,注意单位制! )
0.113e9 N。 最大应力在图中红色区域,最大应力为 最大应力在图中红色区域,最大应力为0.113e9 0.113e9N
单元类型。再修改单元类型选项(options)
� Main Menu>Preprocessor>Material Models 定义材料属性
� Main Menu>Preprocessor>Real Constants 定义的截面的厚度。
� Main Menu>Preprocessor>Mesh>MeshTool 直接用 meshtool 对模型进行自由 网格划分
0. 255 e8m 最大变形在图中红色区域,最大变形为 最大变形在图中红色区域,最大变形为0. 0.255 255ee-8 � 应力云图
Main Menu>General Posproc>Plot Results>Contour Plot>Nodal Solu 弹出对话框选择Stess>von Mises stress获取下图
� 将模型底边自由度完全约束;
Байду номын сангаас
� 顶部边加载 F = -300000 N/M
ansys有限元分析报告

ANSYS有限元分析报告1. 简介在工程设计领域,有限元分析是一种常用的数值分析方法,通过将复杂的结构划分为有限数量的单元,然后对每个单元进行力学和物理特性的计算,最终得出整个结构的响应。
ANSYS是一款流行的有限元分析软件,提供了丰富的工具和功能,可用于解决各种工程问题。
本文将介绍ANSYS有限元分析的基本步骤和流程,并以一个实际案例为例进行说明。
2. 步骤2.1 确定分析目标首先要确定分析的目标。
这可以是结构的强度分析、振动分析、热传导分析等。
根据目标的不同,还需确定所需的加载条件和边界条件。
2.2 几何建模在进行有限元分析之前,需要进行几何建模。
在ANSYS中,可以使用几何建模工具创建和编辑结构模型。
这包括定义几何形状、尺寸和位置等。
2.3 网格划分网格划分是有限元分析的关键步骤。
通过将结构划分为多个单元,可以将结构分解为有限数量的离散部分,从而进行数值计算。
在ANSYS中,可以使用网格划分工具进行自动或手动划分。
2.4 材料属性定义在进行有限元分析之前,需要定义材料的物理和力学属性。
这包括弹性模量、泊松比、密度等。
ANSYS提供了一个材料库,可以选择常见材料的预定义属性,也可以手动定义。
2.5 加载和边界条件定义在进行有限元分析之前,需要定义加载和边界条件。
加载条件可以是力、压力、温度等。
边界条件可以是支撑、固定或自由。
2.6 求解和结果分析完成前面的步骤后,可以开始求解分析模型。
ANSYS将应用数值方法来解决有限元方程组,并计算结构的响应。
一旦求解完成,可以进行结果分析,包括位移、应力、应变等。
2.7 结果验证和后处理在对结果进行分析之前,需要对结果进行验证。
可以使用已知的理论结果或实验数据进行比较,以确保分析结果的准确性。
完成验证后,可以进行后处理,生成报告或结果图表。
3. 案例分析在本案例中,将针对一个简单的悬臂梁进行有限元分析。
3.1 确定分析目标本次分析的目标是确定悬臂梁在给定加载条件下的应力分布和变形。
ansys有限元分析实用教程2篇

ansys有限元分析实用教程2篇第一篇:ansys有限元分析实用教程(上)有限元分析是一种广泛应用的数值分析方法,可用于模拟和分析各种结构和系统的受力、变形及其他物理行为。
在ansys软件平台下,有限元分析功能十分强大,能够对各种工程问题进行有效的分析和解决。
本文将介绍ansys有限元分析的基础操作和实用技巧。
一、建立模型在进行有限元分析前,首先需要建立准确的模型。
在ansys中,可以通过多种方式进行几何建模,包括手工绘制、导入CAD文件、复制现有模型等。
为了确保模型的准确性,需要注意以下几个方面:1.确定模型的几何形状,包括尺寸、几何特征等。
2.选择适当的单元类型,不同形状的单元适用于不同的工程问题。
3.注意建模过程中的单位一致性,确保模型的尺寸和材料参数等单位一致。
4.检查模型建立后的性质,包括质量、连接性和几何适应性等。
二、设置材料参数和加载条件建立模型后,需要设置材料的弹性参数和加载条件。
在ansys中,可以设置各种材料属性,包括弹性模量、泊松比、密度等。
此外,还需要设置加载条件,包括加速度、力、位移等。
在设置过程中,需要注意以下几个方面:1.根据实际情况选择材料参数和加载条件。
2.确保材料参数和加载条件设置正确。
3.考虑到不同工况下的加载条件,进行多组加载条件的设置。
三、网格划分网格划分是有限元分析中的关键步骤,它将模型分割成许多小单元进行计算。
在ansys中,可以通过手动划分、自动划分或导入外部网格等方式进行网格划分。
在进行网格划分时,需要注意以下几个方面:1.选择适当的单元类型和网格密度,确保模型计算结果的准确性。
2.考虑网格划分的效率和计算量,采用合理的网格划分策略。
3.对于复杂模型,可以采用自适应网格技术,提高计算效率和计算精度。
四、求解模型建立模型、设置材料参数和加载条件、网格划分之后,即可进行模型求解。
在ansys中,可以进行静态分析、动态分析、热分析、流体分析等多种分析类型。
ansys有限元受力分析(DOC)

起重机桁架结构的受力分析摘要:本文利用ansys14.5平台研究货物起重机的受力情况,通过对起重机架的建模和求解,进一步熟悉了ansys的分析过程,并求出了起重机架的变形,位移和应力等方面的力学量,为起重机架结构和材料的改进提供了依据。
1 引言如下图所示的货物起重机,由两个桁架结构组成,它们通过交叉支撑结合在一起。
每个桁架结构的两个主要构件是箱型钢架。
每个桁架结构通过内部支撑来加固,内部支承焊接在方框钢架上。
连接两个桁架的交叉支承销接在桁架结构上。
所有构件材料都是中强度钢,EX=200E9Pa,EY=300E9Pa,μ=0.25,G=80E9。
它在端部承受10KN沿Y轴负方向的载荷时,用有限元软件求出最大受力点及应力和位移情况。
内部支承及交叉支承梁截面桁架结构主要构件梁截面2 计算模型2.1 设置工作环境启动Mechanical APDL Product Launcher 14.5,弹出Mechanical APDL Pr oduct Launcher 14.5窗口。
设置参数、工作目录、工作名称,单击Run进入AN SYS 14.5 GUI界面。
在主菜单元中选择Preferences命令,选择分析类型为Stru ctural,单击OK按钮,完成分析环境设置,如图2.1所示。
图2.12.2 定义单元与材料属性在GUI界面中选择Main Menu>Preprocessor>Element Type> Add/Edit/ Delete命令,弹出图2.2所示的Element Type对话框,选择单元类型为LINK1 80,单击OK按钮。
图2.2在GUI界面中选择Main Menu>Preprocessor>Material Props>Material M odels命令,弹出图2.3所示的Define Material Model Behavior对话框,选择材料模型为结构、线性、弹性、各向异性,然后输入EX=2E11,EY=3E11,P RXY=0.25,GXY=8E10,输入密度7800,单击OK按钮完成。
基于ANSYS的轴的有限元分析

基于ANSYS的轴的有限元分析ANSYS是一种用于工程分析的有限元分析软件,可以用来解决各种结构和物理问题。
在这篇文章中,我将介绍如何使用ANSYS进行轴的有限元分析。
在轴的有限元分析中,我们需要首先创建轴的几何模型。
通过ANSYS的建模工具,我们可以创建轴的几何形状,包括直径、长度和端部的约束条件。
接下来,我们需要定义轴的材料特性。
可以通过ANSYS的材料库选择适当的材料,并输入其弹性模量和泊松比等参数。
在进行有限元分析之前,我们需要将轴的几何模型离散化为有限元素。
可以使用ANSYS的网格划分工具,将轴划分为多个有限元。
划分的精度和密度可以根据实际需求进行调整。
在进行有限元分析之前,我们需要定义加载条件。
轴可以受到各种不同类型的载荷,如压力、拉力或扭矩。
可以使用ANSYS的加载工具,将这些载荷应用于轴的相应位置。
完成了网格划分和加载条件定义后,我们就可以进行有限元分析了。
根据所选的分析类型,可以使用ANSYS的求解器来解决轴上的力、位移和应力等问题。
ANSYS提供了不同的求解器,如静力学求解器、热力学求解器和动力学求解器等。
在有限元分析完成后,我们可以检查分析结果并进行后处理。
可以使用ANSYS的后处理工具,查看轴上的位移、应力和应变分布。
还可以绘制图表和动画,以更好地理解分析结果。
最后,我们可以通过修改材料或几何参数,重新运行有限元分析,以评估不同设计方案的性能。
ANSYS的参数化设计功能可以帮助我们自动化这个过程,快速评估多个方案。
总之,基于ANSYS的轴的有限元分析是一种强大的工程分析方法,可以帮助我们了解轴的力学特性,并进行设计优化。
通过使用ANSYS的建模、求解和后处理工具,我们可以准确地预测轴的行为,并为轴的设计提供有力支持。
基于ANSYS软件的扳手结构有限元分析报告

基于ANSYS软件的扳手结构有限元分析报告一、概述本次大作业主要利用ANSYS软件对扳手的应力和应变进行分析,计算出扳手的最大应力和应变。
然后与实际情况进行比较,证明分析的正确性,从而为扳手的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。
二、问题分析如图1所示的扳手由2mm钢板折弯而成。
右端施加载荷P=200N。
材料的杨氏模量为2e11Pa,泊松比为0.3,密度7850kg/m3。
分析扳手在拧紧螺栓时候的受力情况图1 扳手三、有限元建模扳手由钢板折弯而成,所以在ansys中采用面体单元进行模拟,此处需要分析强度,在Windows“开始”菜单中执行ANSYS—Workbench命令。
创建项目A,进行静力学分析,双击左侧的static structure即可图 2 强度分析项目如图 3所示,采用材料默认的结构钢材料即可,材料的杨氏模量为2e11Pa,泊松比为0.3,密度7850kg/m3图 3 材料定义双击Geometry进入几何模型建立模块,进行几何建模。
首先按照尺寸尽力扳手草绘图,如下图所示:图4 草绘面1再以此草绘面拉伸成为实体,厚度为2mm,同时在右端切割出长度为50mm的印记面。
图5 扳手实体模型再建立螺栓的假体模型,螺栓省略螺纹部分。
通过拉伸功能建立圆柱体螺栓,如下所示:图6 螺栓与扳手模型进入Workbench进行材料设置,其中螺栓和扳手分别设置材料为结构钢。
进行网格划分,设置网格尺寸为2mm,采用多区网格划分方法,最终有限元网格模型如下图所示:图7 网格设置图8 网格模型模拟实际情况,螺栓固定,扳手右端施加200N载荷,如下图所示图9 载荷约束四、有限元计算结果(1)位移变化,如图12所示,结果最大变形为1.2mm,发生在右侧区域,刚好为载荷加载边缘处,也为结构刚度最为薄弱区域,与实际情况吻合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
起重机桁架结构的受力分析摘要:本文利用ansys14.5平台研究货物起重机的受力情况,通过对起重机架的建模和求解,进一步熟悉了ansys的分析过程,并求出了起重机架的变形,位移和应力等方面的力学量,为起重机架结构和材料的改进提供了依据。
1 引言如下图所示的货物起重机,由两个桁架结构组成,它们通过交叉支撑结合在一起。
每个桁架结构的两个主要构件是箱型钢架。
每个桁架结构通过内部支撑来加固,内部支承焊接在方框钢架上。
连接两个桁架的交叉支承销接在桁架结构上。
所有构件材料都是中强度钢,EX=200E9Pa,EY=300E9Pa,μ=0.25,G=80E9。
它在端部承受10KN沿Y轴负方向的载荷时,用有限元软件求出最大受力点及应力和位移情况。
内部支承及交叉支承梁截面桁架结构主要构件梁截面2 计算模型2.1 设置工作环境启动Mechanical APDL Product Launcher 14.5,弹出Mechanical APDL Pr oduct Launcher 14.5窗口。
设置参数、工作目录、工作名称,单击Run进入AN SYS 14.5 GUI界面。
在主菜单元中选择Preferences命令,选择分析类型为Stru ctural,单击OK按钮,完成分析环境设置,如图2.1所示。
图2.12.2 定义单元与材料属性在GUI界面中选择Main Menu>Preprocessor>Element Type> Add/Edit/ Delete命令,弹出图2.2所示的Element Type对话框,选择单元类型为LINK1 80,单击OK按钮。
图2.2在GUI界面中选择Main Menu>Preprocessor>Material Props>Material M odels命令,弹出图2.3所示的Define Material Model Behavior对话框,选择材料模型为结构、线性、弹性、各向异性,然后输入EX=2E11,EY=3E11,P RXY=0.25,GXY=8E10,输入密度7800,单击OK按钮完成。
图2.3下面定义截面特性,在GUI中选择Main Menu→Preprocessor→Real Con stants→Add/Edit/Delete命令,弹出Real Constants对话框,单击Add按钮选择LINK180,输入实常号1,截面积0.0014,单击Apply按钮,设置常数编号2,截面积0.0011,单击OK按钮完成,此时Real Constants对话框中列出了已定义的两个不同的实常数,完成单元及材料属性的定义,如图2.4和图2.5所示。
图2.4 图2.52.3 建立有限元模型在GUI界面中选择Main Menu>Preprocessor>Modeling>Create>Nodes>I n Active CS命令,弹出Create Nodes in Active Coordinate System对话框。
输入第一个节点号11以及节点11的坐标,单击Apply按钮,继续输入节点号及坐标,直至完成所有的节点号和坐标,直至完成表2-1所示的所有节点,结果如图2.6所示。
节点号X Y Z11 0 0 112 2 3/8 0.1+0.9/4*313 4 6/8 0.1+0.9/4*214 6 9/8 0.1+0.9/4*415 8 12/8 0.116 16/3 8/6 0.417 8/3 7/6 0.718 0 1 121 0 0 -122 2 3/8 -(0.1+0.9/4*3)23 4 6/8 -(0.1+0.9/4*2)表2-1图2.6在GUI 界面中选择Main Menu>Preprocessor>Modeling>Create>Elem En ts>Elem Attributes 命令,弹出如图2.7所示的Element Attributes 对话框。
设置参数如图所示,单击OK 按钮完成,在GUI 界面选择Main Menu>Preproces sor>Modeling>Create>Elements>Auto Numbered>Thru Nodes 命令,弹出所示对话框,将工作区中的11号节点与12号节点连接,单击Apply 按钮,生成单元,继续如下表2-2所示连接,生成结果如图所示。
节点1 节点2 11 12 12 13 13 14 14 15 15 16 16 17 171824 6 9/8 -(0.1+0.9/4)25 8 12/8 -0.1 26 16/3 8/6 -0.4 27 8/3 7/6 -0.7 281-118 1212 1717 1313 1616 1421 2222 2323 2424 2525 2626 2727 2828 2222 2727 2323 2626 24表2-2图2.7在GUI界面中选择Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes 命令,弹出Element Attributes 对话框。
将实常数改为2,如图2.8所示。
在GUI 界面中选择Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>Thru Nodes 命令,将表2-3所示节点连接成单元。
完成的单元如图所示。
在命令输入/ESHAPE ,1运行,可以在工作区中显示单元的实际模型如图2.9和2.10所示。
表2-3图2.8节点1 节点2 12 22 13 23 14 24 16 26 17 27 22 17 23 16 2614图2.9图2.102.4 施加边界条件由于建立的是有限元模型,直接生成了节点和单元,所以跳过划分网格,直接进入加载步骤。
在界面中选择Main Menu>Preprocessor>Loads>Define Loads>Apply>Str uctual>Displacement>On Nodes命令,弹出对话框,在工作区域拾取11、21、18、28 4个节点,如图所示,单击OK按钮,弹出对话框,选择ALL DOF,单击OK按钮,完成节点约束,如图2.11所示。
图2.11在界面中选择Main Menu>Solution>Define Loads>Apply>Structural>For ce/Moment>On Nodes命令,弹出图所示的对话框,在工作区中拾取节点15,单击OK按钮,弹出Apply F/M on Nodes对话框在对话框中选择施加载荷的方向为FY,加载方式为常量,大小为-10000,单击OK按钮完成加载,加载完成如图2.12所示。
图2.12接下来耦合节点自由度。
在界面中选择Main Menu→Preprocessor→coupl ing/Ceqn→Couple DOFs命令,弹出Define Coupled Dofs。
在工作区中选择节点15和节点25,单击OK按钮,在弹出的Define Coupled DOFs对话框。
输入耦合节点编号1,选择要耦合的自由度为ALL,单击OK按钮,完成边界条件施加。
过程如图2.13所示。
图2.133 求解结果完成了建模,施加边界条件,完成了计算前的准备工作,然后进行求解,在GUI界面选择Main Menu>Solution>Solve>Current LS命令,完成求解,结果如下图所示。
图2.14 起重机桁架的变形图图2.15起重机桁架位移图图2.16起重机桁架平移矢量图2.16起重机桁架X方向应力图图2.17起重机桁架第一主应力图2.18起重机桁架支反力图2.19起重机桁架X方向的轴力图2.20 应力最大的点的坐标及坐标信息4 结论由以上的分析可以看出起重机桁架所受的最大变形是0.019342m,在10000N 力的作用下其变形很小,根据国标GB/T10051.1-1988,说明起重机材料和变形是满足使用要求的。
从平移矢量图可以看出,其变形情况和桁架受力情况一致;从分析结果还可看到其最大应力为0.288E8Pa,并可看到最大应力对应的坐标信息,由此就找出了起重机桁架最容易失效的地方,为构件结构和材料的改进提供了依据。
参考文献1 曾攀.有限元基础教程.北京:高等教育出版社,20092 张建伟.ANSYS14.0超级学习手册.北京:人民邮电出版社,20133 刘浩.ANSYS15.0有限元分析.北京:机械工业出版社,2014附录log文件/BATCH/COM,ANSYS RELEASE 14.5 UP20120918 16:13:00 01/06/2015 /input,menust,tmp,''/GRA,POWER/GST,ON/PLO,INFO,3/GRO,CURL,ON/CPLANE,1/REPLOT,RESIZEWPSTYLE,,,,,,,,0!*/NOPRKEYW,PR_SET,1KEYW,PR_STRUC,1KEYW,PR_THERM,0KEYW,PR_FLUID,0KEYW,PR_ELMAG,0KEYW,MAGNOD,0KEYW,MAGEDG,0KEYW,MAGHFE,0KEYW,MAGELC,0KEYW,PR_MULTI,0KEYW,PR_CFD,0/GO!*/COM,/COM,Preferences for GUI filtering have been set to display:/COM, Structural!*/PREP7!*ET,1,LINK180!*!*MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2E11MPDATA,EY,1,,3E11MPDATA,EZ,1,,MPDATA,PRXY,1,,0.25MPDATA,PRYZ,1,,MPDATA,PRXZ,1,,MPDATA,GXY,1,,8E10MPDATA,GYZ,1,, MPDATA,GXZ,1,, MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,7800 R,1,0.0014, ,0!*R,2,0.0011,0,0!*n,11,0,0,1n,12,2,3/8,0.1+0.9/4*3 n,13,4,6/8,0.1+0.9/4*2 n,14,6,9/8,0.1+0.9/4n,15,8,12/8,0.1n,16,16/3,8/6,0.4n,17,8/3,7/6,0.7n,18,0,1,1n,21,0,0,-1n,22,2,3/8,-(0.1+0.9/4*3) n,23,4,6/8,-(0.1+0.9/4*2) n,24,6,9/8,-(0.1+0.9/4) n,25,8,12/8,-0.1n,26,16/3,8/6,-0.4n,27,8/3,7/6,-0.7n,28,0,1,-1TYPE, 1MA T, 1 REAL, 1 ESYS, 0 SECNUM,TSHAP,LINE!*e,11,12e,12,13e,13,14e,14,15e,15,16e,16,17e,17,18e,18,12e,12,17e,17,13e,13,16e,16,14e,21,22e,22,23e,23,24e,24,25e,25,26e,26,27e,27,28e,28,22e,22,27e,27,23e,23,26e,26,24TYPE, 1MA T, 1REAL, 2ESYS, 0SECNUM,TSHAP,LINE!*e,12,22e,13,23e,14,24e,16,26e,17,27e,22,17e,23,16e,16,14/ESHAPE,1/USER, 1/VIEW, 1, -0.608062369507 , 0.460162417711 , 0.646924032724 /ANG, 1, -17.7114328942/REPLOFLST,2,4,1,ORDE,4FITEM,2,11FITEM,2,18FITEM,2,21FITEM,2,28!*/GOD,P51X, , , , , ,ALL, , , , ,FLST,2,1,1,ORDE,1FITEM,2,15!*/GOF,P51X,FY,-10000FLST,4,2,1,ORDE,2FITEM,4,15FITEM,4,25CP,1,ALL,P51XFINISH/SOL/STA TUS,SOLUSOLVEFINISH/POST1PLDISP,2!*/EFACET,1PLNSOL, U,SUM, 0,1.0!*/VSCALE,1,1,0!!*PLVECT,U, , , ,VECT,ELEM,ON,0 !*/PSF,DEFA, ,1,0,1/PBF,DEFA, ,1/PIC,DEFA, ,1/PSYMB,CS,0/PSYMB,NDIR,0/PSYMB,ESYS,0/PSYMB,LDIV,0/PSYMB,LDIR,0/PSYMB,ADIR,0/PSYMB,ECON,0/PSYMB,XNODE,0/PSYMB,DOT,1/PSYMB,PCONV,/PSYMB,LAYR,0/PSYMB,FBCS,0!*/PBC,ALL,,0/PBC,NFOR,,1/PBC,NMOM,,1/PBC,RFOR,,1/PBC,RMOM,,1/PBC,PATH,,1/REP!*EPLOT!*PLESOL, F,X, 0,1.0 !*PLESOL, F,Y, 0,1.0 !*PLESOL, F,Z, 0,1.0 FINISH! /EXIT,ALL。