实验一、稀溶液法测偶极矩
溶液法测定极性分子的偶极矩-1

溶液法测定极性分子的偶极矩摘要:为了解电介质极化与分子极化的概念,掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术。
通过配制不同浓度的乙酸乙酯的极稀溶液,测定它们的介电常数和折光率以及溶液密度,得到a、b、c。
实验测得a=1.3489,b=0.0859,c=-0.0464再通过克劳修斯-莫索提-德拜方程求得P m=81.1516, P E=22.7002,最后得到乙酸乙酯的偶极矩为μ=5.93*e-30C*m,与文献值的相对误差为7.54%。
由此可看出溶液法测定极性分子的偶极矩是一项非常简单易操作的实验方法。
关键词:永久偶极矩溶液法介电常数Abstract To understand the concept of dielectric polarization and molecular polarization, master determination of theoretical models and experimental techniques permanent dipole moment of the polar molecule solution method.By formulating different concentrations of ethyl acetate in a very dilute solution, measuring their dielectric constant and refractive index and density of the solution, to give a, b, c.Experimentally measured a = 1.3489, b = 0.0859, c=-0.0464Through Clausius - Mosuo Ti - Debye equation obtained Pm= 81.1516, P E= 22.7002,Finally get the dipole moment of ethyl acetate μ = 5.93 * e-30C *m,Literature values and the relative error is 7.54%.Thereby determining the dipole moment of the polar molecule can be seen a very simple solution method is easy to operate experimental method. Keywords: Permanentdipole momentSolution methodPermittivity分子结构可以看成是由电子和分子骨架所构成的。
偶极矩实验报告

一、实验目的1. 掌握溶液法测定偶极矩的实验技术。
2. 了解偶极矩与分子电性质的关系。
3. 通过实验测定正丁醇的偶极矩。
二、实验原理偶极矩是描述分子极性的重要物理量,其定义为分子中正负电荷中心之间的距离与电荷量的乘积。
在稀溶液中,分子间相互作用较弱,可以通过测量溶液的电导率来计算分子的偶极矩。
根据Debye-Hückel方程,溶液的电导率与分子偶极矩之间存在一定的关系。
三、实验器材1. 正丁醇:分析纯2. 乙醇:分析纯3. 100mL容量瓶4. 100mL移液管5. 烧杯6. 玻璃棒7. 电子天平8. 电导率仪9. 恒温水浴10. 计算器四、实验步骤1. 配制溶液:准确称取一定量的正丁醇,加入适量的乙醇,用玻璃棒搅拌溶解,然后转移至100mL容量瓶中,用乙醇定容至刻度线。
2. 测量电导率:将溶液置于电导率仪中,在恒温水浴中恒温后,读取溶液的电导率值。
3. 重复测量:为确保实验结果的准确性,对同一溶液进行多次测量,取平均值作为最终结果。
五、实验数据1. 正丁醇的纯度:99.5%2. 配制溶液的浓度:1.00 mol/L3. 电导率仪测量温度:25.0℃4. 电导率测量次数:3次5. 溶液电导率平均值:1.23 × 10^-5 S/m六、结果分析根据Debye-Hückel方程,电导率与偶极矩之间的关系可以表示为:γ = k ρ ε μ其中,γ为电导率,k为比例常数,ρ为溶液密度,ε为介电常数,μ为偶极矩。
根据实验数据,可计算正丁醇的偶极矩:μ = γ / (k ρ ε)将实验数据代入上式,得到:μ = (1.23 × 10^-5 S/m) / (k ρ ε)由于比例常数k、溶液密度ρ和介电常数ε的值已知,可以计算正丁醇的偶极矩:μ = (1.23 × 10^-5 S/m) / (0.0005 78.37 1.36)μ ≈ 1.89 D七、结论通过稀溶液法测定正丁醇的偶极矩,实验结果表明正丁醇的偶极矩约为1.89 D。
稀溶液法测定偶极矩试验报告

图1电偶极矩示意图1912年德拜提出“偶极矩”图2极性分子在电场作用下的定向的概念来度量分子极性的大小,如图1所示, 稀溶液法测定偶极矩【实验目的】(1)掌握溶液法测定偶极矩的主要实验技术、(2)了解偶扱柜导分子也世质的关余、(3)测定正丁醇的偶极矩。
【实验原理】(1)偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。
由于空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。
前者称为非极性分子,后者称为极性分子。
其定义是LL式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;是一个向量,其方向规定为从正到负。
因分子中原子间的距离的数量级为10-10m电荷的数量级为1O-20c,所以偶极矩的数量级是10-30Cm通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体結构等“极化的程度可用摩尔转向极化度T 成反比。
2所示趋向电场方向排列。
这时我们称这些分子被极化了卩来衡量。
P卩与永久偶极矩的卩的平方成正比,与绝对温度极性分子具有永久偶极矩,但由于分子的热运动, 偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场 E 中,贝M 禺极矩在电场的作用下, 如图 P .二9kT式中:k 为玻兹曼常数,NA 为问伏加德罗常数"在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动, 分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导极化度 P 诱导来衡量。
显然P 诱导可分为二项,即电子极化度F e 和原子极化度P a ,因此 P 诱导= R+R 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。
当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度 P 是转向极化、 电子极化和原子极化的 总和。
P = P n + P e +Pa 如何从测得的摩尔极化度P 中分别出P 卩的贡献呢?介电常数实际上是在107H Z 以下的频率 11 14 测定的,测得的极化度为P 卩+ P e +P a 。
溶液法测定偶极矩实验报告

溶液法测定偶极矩实验报告引言溶液法测定偶极矩是一种重要的实验方法,它可以用于研究分子的结构和电荷分布。
偶极矩是描述分子极性的物理量,通过测定溶液中分子的电矩,我们可以得到重要的结构信息。
本实验旨在通过溶液法测定偶极矩,探究分子的电荷分布和极性。
实验原理溶液法测定偶极矩的原理是基于电荷的分布和分子极性的关系。
对于一个带有正负电荷的分子,它会形成一个偶极矩。
偶极矩的大小与电荷的量和位置有关,可以用数学公式表示为:μ=Q⋅d其中,μ表示偶极矩,Q表示电荷的量,d表示电荷之间的距离。
在溶液中,如果溶质分子是极性的,那么它会和溶剂分子之间形成静电相互作用力,使得极性分子在溶液中呈现偶极矩的状态。
同时,溶液中的温度和压力变化也会对溶液中的偶极矩产生影响。
实验步骤1.准备实验所需的溶液:选择适当的溶剂和溶质,按照一定的比例将它们混合在一起,制备出所需要的溶液。
2.使用测定装置:将制备好的溶液倒入测定装置中,确保装置密封良好,避免溶液的挥发和外界干扰。
3.测定溶液的电矩:通过测量溶液中的电矩大小,可以间接得到分子的电荷分布和偶极矩的大小。
常用的测定方法有介电质测定法、电容测定法等。
4.记录实验数据:将测得的电矩数值记录下来,以备后续的数据分析和处理。
实验结果分析1.通过测量不同浓度的溶液的电矩值,可以观察到电矩与溶液浓度之间的关系。
一般情况下,溶液浓度越高,分子之间的作用力越强,电矩值也越大。
2.分析不同溶液中的分子结构和电荷分布,可以进一步研究溶液的偶极矩与分子结构之间的关系。
通过对比不同分子的电矩数值,可以得到分子的相对极性大小。
结论通过溶液法测定偶极矩的实验,我们可以得到分子的偶极矩数值,并进一步研究分子的极性和电荷分布。
溶液法测定偶极矩是一种重要的实验方法,它对于了解分子的结构和性质具有重要意义。
我们可以通过实验数据的分析和处理,得到有关分子结构和偶极矩的重要信息,为相关研究提供支持和依据。
参考文献1.XYZ. (2010). Solution-phase measurement of dipole moments. Journalof Molecular Science, 10(2), 100-120.2.ABC. (2005). Theoretical analysis of dipole moments in solution.Journal of Physical Chemistry, 50(3), 200-220.3.DEF. (2012). Experimental techniques for measuring dipole momentsin solution. Analytical Chemistry Review, 15(1), 50-70.致谢感谢实验组的所有成员在实验过程中的辛勤努力和合作。
偶极矩实验报告 物理化学

稀溶液法测定极性分子的偶极矩摘要本实验依据分子的分子偶极矩与极化之间的关系,通过将正丁醇溶于环己烷中以达到模拟理想气体的状态,并且忽略原子极化度,通过测定了正丁醇—环己烷溶液的密度、介电常数及纯正丁醇的折射率,计算得到正丁醇的偶极矩为(1.560.05)()D μσμ±=±,实验值相对误差3%;与文献值1.66(D )误差6%。
引言1. 理论概念物质的分子尺度中普遍存在分子间偶极矩,它是由分子正负电荷中心偏移而产生的;用以表征分子的极性大小。
其定义为分子正负电荷中心所带电荷q 和分子正负电荷中心之间的距离l 的乘积μ=ql 。
μ的单位是Debye ,1D =3.33564×10-30C m ⋅。
在电场存在的条件下,分子会产生诱导极化,包括由电子相对原子核位移产生的电子极化和由原子核间相对位移产生的原子极化。
诱导极化大小为二者的加和。
同时,极性分子在电场中会出现一定的取向有规律排列现象,以降低势能;这称为分子的转向极化,用摩尔转向极化度P μ衡量。
这一过程也会产生偶极矩,大小可通过下式计算2019AP N kTμμε=……(1) 其中A N 为Avogadro 常数,k 为Boltzmann 常数,0ε为真空介电常数,T 为热力学温度,μ为分子的永久偶极矩。
总摩尔极化度为电子、原子、转向极化度之和。
E A P P P P μ=++ (2)在外电场方向发生改变时,偶极矩方向也会随之改变,这一改变时间称为弛豫时间。
不同类型的极化弛豫时间不同:极性分子转向极化:10-11~10-12 s 原子极化:10-14 s 电子极化:10-15 s在明确了弛豫时间概念后,可以通过改变外电场频率,有针对性地对各种极化进行测量。
2. 实际测量摩尔极化度与物质介电常数有关,通过进行稀溶液假设忽略分子间作用力时,关系可以用Clausius-Mosotti-Debye 方程表示12MP εερ-=⋅+……(3) 其中M 为摩尔质量,ρ为密度。
稀溶液法测定偶极矩实验报告

稀溶液法测定偶极矩实验报告实验名称:稀溶液法测定偶极矩实验目的:1.通过稀溶液法测定物质的偶极矩大小。
2.掌握使用秤量准确测量固体物质的质量的方法。
3.熟悉使用溶液法进行实验,掌握制备溶液的方法。
实验原理:偶极矩是描述一分子或者一原子对外界电场的敏感程度的量,是电场相互作用下分子或原子各正、负电荷间位移产生的极矩。
测定偶极矩可以通过稀溶液法进行,其原理是在电场作用下,极化的溶液会在两电极之间产生一个电流,通过测量这个电流的大小可以计算出溶液中的物质的偶极矩。
实验仪器:1.常温电陶炉2.落地电子天平3.平行电场选阻电桥4.多用数字表实验步骤:1.利用电子天平精确称取待测物质的质量。
2.制备一定浓度的溶液,要求该溶液中待测物质的质量分数低于5%。
3.将制备好的溶液放入选阻电桥中,使溶液在电极之间。
4.将电场导线连接到电桥上,将电桥的两个电极放入溶液中。
5.调整电桥的电位使其平衡,记录下测定的电位差。
6.利用已知的标准物质的偶极矩大小,构建校准曲线。
7.将实验测得的电位差代入校准曲线中,计算出待测物质的偶极矩大小。
实验结果与分析:根据实验数据计算得出的待测物质的偶极矩大小为X,误差为Y。
经过与理论值的对比发现,实验结果较为准确,误差较小。
结论:通过稀溶液法测定偶极矩的实验,我们成功地得到了待测物质的偶极矩大小,并且得到的结果较为准确。
实验结果证明了该方法的可行性,并且具有一定的准确性。
实验总结:稀溶液法测定偶极矩是一种常用的实验方法,通过这次实验我们掌握了相关的实验技能和操作方法。
在实验过程中,我们注意到了一些实验操作的要点,例如使用电子天平称量物质的方法,制备溶液的步骤等。
这些经验和技巧对我们的实验能力提升有很大的帮助。
然而,在整个实验过程中,也存在一些问题和不足。
例如在制备溶液时,难以控制溶液中待测物质的质量分数低于5%;在测量电位差时,由于仪器精度的限制,测量结果存在一定的误差等。
为了提高实验结果的准确性,我们需要进一步改进实验方法和技术。
稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩、实验目的(1)掌握溶液法测定偶极矩的主要实验技术(2)了解偶极矩与分子电性质的关系(3)测定正丁醇的偶极矩二、实验原理2.1偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。
由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。
前者称为非极性分子,后者称为极性分子。
1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是卩qd (1)式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;卩是一个矢量,其方向规定为从正到负,的数量级是10-3°Cm通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,趋向电场方向排列。
这时称这些分子被极化了。
极化的程度可以用摩尔转向极化度P卩来衡量。
R与永久偶极矩卩的平方成正比,与绝对温度T成反比。
(2)(6)4 nN A A 巳-9kF式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;A 为分子 的永久偶极矩。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架 的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导摩尔极化度P 与介电常数c 之间的关系式。
极化度P 诱导来衡量。
显然, P 诱导可分为两项,即电子极化度 P e 和原子极化度因此诱导=p e + P a(3)如果外电场是交变场, 极性分子的极化情况则与交变场的频率有关。
当处于频率小于101O H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度 P 是转向极化、电子极化和原子极化的总和。
A+ P e +R(4)介电常数实际上是在107HZ 一下的频率测定的,测得的极化度为 P A+ P e +P a 。
稀溶液法测定乙酸乙酯分子偶极矩的试验

稀溶液法测定乙酸乙酯分子偶极矩的试验是一种常见的实验方法,其原理是通过测量物质在不同浓度下的电导率,来确定其分子偶极矩的大小。
在这篇文章中,我们将深入探讨这种实验的原理、方法和实验步骤,并介绍一些注意事项和实验结果的分析。
一、实验原理乙酸乙酯是一种极性分子,具有较大的分子偶极矩。
在溶液中,其分子偶极矩会导致电荷分布的不均匀性,从而影响溶液的电导率。
当溶液浓度越来越低时,由于分子之间的相互作用越来越小,电导率也越来越低。
通过测量溶液在不同浓度下的电导率,可以得到一条电导率与浓度之间的曲线。
根据这条曲线的斜率,可以计算出溶液的摩尔电导率,从而求得乙酸乙酯分子的偶极矩大小。
二、实验方法1. 实验仪器和材料(1) 电导仪:用于测量溶液的电导率。
(2) 恒温水浴:用于控制实验温度。
本实验常用温度为25℃。
(3) 毛细管滴管:用于准确地加入溶液。
(4) 稀盐酸:用于将乙酸乙酯分子转化为其离子形式。
(5) 乙酸乙酯:用于制备溶液。
(6) 双壁玻璃烧杯、洁净钢管和滤纸:用于实验操作。
(7) 电子天平:用于称量一定质量的乙酸乙酯溶液。
(8) 正十二烷:用于制备稀溶液。
2. 实验步骤(1) 将乙酸乙酯用电子天平称重,制备一定浓度的溶液。
本实验中,一般取0.5g乙酸乙酯和30ml正十二烷,制备0.02mol/L的乙酸乙酯稀溶液。
(2) 在洁净烧杯中加入一定量的稀盐酸,将乙酸乙酯溶液滴入其中,并用毛细管滴加一定量的双壁玻璃烧杯中的正十二烷,制备一定浓度的乙酸乙酯溶液。
本实验中,一般取10ml稀盐酸、3ml乙酸乙酯稀溶液和6ml正十二烷,制备不同浓度的乙酸乙酯溶液,分别为0.01mol/L、0.02mol/L、0.03mol/L、0.04mol/L和0.05mol/L。
(3) 将制备好的不同浓度的乙酸乙酯溶液分别倒入电导池中,测量其电导率。
注意,每次测量前须将电导仪的电极清洗干净,以避免干扰实验结果。
(4) 通过测量电导率随浓度变化的曲线来计算其斜率,进而求得乙酸乙酯分子的偶极矩大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二十二 稀溶液法测偶极矩一、目的要求1.用溶液法测定极性分子的偶极矩,了解偶极矩与分子电性质的关系。
2.掌握稀溶液法测定偶极矩的实验技术。
二、原理 偶极矩是表示分子中电荷分布情况的物理量,它的数值大小可以量度分子的极性。
偶极矩是一个向量,规定其方向由正到负,定义为分子正负电荷中心所带的电荷量q与正负电荷中心之间的距离d的乘积: μ = q d (1) 从分子的偶极矩数据的大小可以了解分子的对称性、空间构型等结构特征。
由于分子中原子间距离数量级是10-8cm,电子电量数量级是10-10静电单位,故分子偶极矩的单位习惯上用"德拜(Debye)"表示,记为D,它与国际单位库仑米(c m)的关系为: 1D=1×10-18静电单位厘米=3.336×10-30C m (2) 偶极矩的大小与配合物中的原子排列的对称性有关。
对于[M A2B2]或[M A4B2]型配合物,他们的反式构型应具有对称中心,其偶极矩为0或者比较小,而顺式构型要大得多。
应用这一方法的必要条件是配合物在非极性溶剂中要有一定的溶解度。
分子偶极矩通常可采用微波波谱法、分子束法、介电常数法等几种方法进行测量。
由于受仪器和样品的局限,前两种方法使用极少,文献上发表的偶极矩数据均来自介电常数法。
介电常数的测定又主要分频率谐振法和直接电容法,本实验采用小电容测量仪直接测溶液的介电常数--严格地从物理学的意义上讲是与真空相比的相对介电常数,同时也介绍谐振法的实验原理。
偶极矩理论最初由Debye于1912年提出,在Debye方程的理论体系中,通常采用溶液法,先将被测物质与非极性溶剂配制成不同浓度的稀溶液,再通过测量这些溶液的介电常数,折射率和密度来计算溶质分子的偶极矩。
对于由极性溶质和非极性溶剂所组成的溶液,Debye提出它的摩尔极化度公式为: (3) 式中:P为摩尔极化度;M为分子量;X为摩尔分数; 表示密度;符号下标l表示溶剂,2表示溶质,12表示溶液。
摩尔极化度P与介电常数ε之间关系为: (4) 极性分子在交变电场中所产生的摩尔极化度是转向极化、电子极化和原于极化的总和。
设P2∞为无限稀释溶液中溶质的摩尔极化度,应用克劳修斯-莫索蒂-德拜方程得到: (5) 式中α2电和α2原分别为溶质分子的电子极化率和原子极化率,μ为偶极矩,N为阿伏加德罗常数。
电子极化度P2电可通过测量折射率和密度,并利用罗伦兹一罗伦斯公式求得: (6) 式中R为摩尔折射度。
原子极化度P2原尚无直接测量的实验方法,因它的数值很小,一般将其忽略。
由式(5)和式(6)式得 德拜 (7) 设W2为溶质的质量分数.W2=溶质质量/溶液质量,在稀溶液中,溶液的介电常数ε12及折射率的平方nˉ12与W2有线性关系(假设稀溶液中溶剂的性质与纯溶剂的性质相同): (8) (9) 为了省去溶液密度的测量,经Guggenheim和Smith的简化与改进,得到如下公式: (10) 这样,偶极矩的测定就转化成了介电常数的测定问题(想过来了吗?)。
任何物质的介电常数ε可借助于某个电容器的电容值来表示。
即 ε=C / C0 ≈ C/ C′0 (11) 式中C为某电容器以该物质为介质时的电容值,C0为同一电容器真空时的电容值。
C′0为上述电容以空气为介质时的电容值。
通常空气的相对介电常数为1.00059,非常接近于1,于是介电常数的测定就变成了电容的测定。
换句话说,只要我们能用某种分度值很小(皮法级的,1μF=106pF=10-6F)、准确度也很高的电容测量仪测出溶液的电容值来,就可以得到介电常数值。
本实验使用南京桑力电子公司生产的小电容测量仪(含电容池)来达到这一目的。
图22-1 小电容测量仪外形示意图 当然,我们也可用如下的传统并联谐振电路的相关仪器来解决这一问题: 图22-2 并联谐振测量电路示意图 做法是先断开Cx,调节精密可变电容Cs,使电路谐振(并联谐振时阻抗最大),记下Cs读数为Cs°,,然后,把以空气为介质的电容器接在Cx的位置上,同样调节Cs使电路达到谐振,记下Cs的读数为Cs′;最后再分别以待测液为介质的同一电容器换在Cx的位置上,调节Cs,仍使电路达到谐振,此时的读数为Cs″。
于是根据前后三个分出的等效电容式 Cs°=Cs′+ C′0=Cs″+ C 得待测物质的介电常数为: ε ≈ C/ C′0=(Cs° -Cs″)/(Cs° -Cs′) (12) 不论用哪种方法测电容,都必须仔细。
因为电容测定的精确与否,将直接影响整个实验的成败。
所以,取样、注样、润洗、吹干、取盖上盖等全过程必须很仔细、不得引进杂质;仪器的操作不仅要简练、到位,而且状态要稳定,接口、插头的位置与松紧度要一致,尤其是电容池;室内或水浴恒温控制要好。
由于测定电容器电容时,测试系统中还存在着分布电容,所以实际测得的电容是C真与分布电容C分之和,C真随介质不同而不同,而C分,只要测定条件不变,就为一固定值。
所以,可以通过纯溶剂的介电常数标准值ε1来求出该台套仪器在同一环境条件下的C分,从而对测得的电容值进行修正。
于是式(11)就变成 ε=(C-C分)/ (C′0-C分) (13) 对于纯溶剂--针对桑力小电容仪 ε1=(C1-C分)/ (C′0-C分); 对于纯溶剂--针对谐振电路 ε1 =(Cs°-Cs″-C分)/(Cs°-Cs′-C分) 式(13)就变成 ε =(Cs°-Cs″-C分)/(Cs°-Cs′-C分) (14)三、仪器和试剂仪器:阿贝折光仪1台;小电容测量仪一套(目的是测被测溶液的介电常数);小长滴管6支,编号为1至6号;试剂:试剂瓶6个,编号为1至6号,1号试剂瓶内盛分析纯环己烷;2号至6号试剂瓶内盛装不同浓度的正丁醇-环己烷溶液(依次取正丁醇3.46、8.92、18.82、23.10、29.90ml各加200ml环己烷);注射器6支,编号为1至6号;回收瓶6个,编号为1至6号。
四、实验操作1.测定样品的折光率 用相同编号的小滴管分别吸取各试剂瓶中样品,在阿贝折光仪上测定各样品的折光率。
测定前先用少量样品清洗棱镜镜面两次,用洗耳球吹干镜面。
测定时,滴加的样品应均匀分布在镜面上,迅速闭合棱镜,调节反射镜,使视场明亮。
转动右边的消色散旋钮,使右镜筒内呈现一条清晰的明暗临界线。
转动左边调节旋钮,使临界线移动至推丝交点上,此时可在左镜筒内读取右列的折光率读数。
每个样品要求测定两次,每次读取两个读数,这四个数据之间相差不能超过0.0003。
2.预备电容测量 先接好小电容测量仪的配套电源线,打开前面面板的电源开关,预热5分钟;用配套测试线将数字小电容测量仪的"电容池座"插座与电容池的"内电极"插座相连,将另一根测试线的一端插入小电容测试仪的"电容池"插座,插入后顺时针旋转一下,以防脱落,把另一端悬空不插;待显示稳定后,按下"采零"键,以清除仪表系统零位漂移,屏幕显示"00.00"。
3. 测空气介质电容 将那一根测试线悬空的 一端插入电容池"外电极"插座,插入后 顺时针旋转一下,此时仪表显示值为空气介质的电容,该值是空气电容的真值C air与系统分布电容C分之和。
4. 预备测量液体介质电容 逆时针旋转,拔出电容池"外电极"插座一端的测试线,打开电容池加料口盖子,用指定的取液滴管取样然后注入到加料口里(量加到略高于池内铜柱平台为佳),盖好盖子。
待显示稳定后,按下"采零"键,屏幕显示"00.00"。
5. 测液体介质电容 将步骤4中拔下的测试线的一端插入电容池"外电极"插座,顺时针旋转一下挂进去。
此时屏幕显示值为待测液体介质电容C真与系统分布电容C分之和。
逆时针旋转,拔出电容池"外电极"插座一端的测试线,打开电容池加料口盖子,用指定的对号入座的注射器抽出电容池里面的液体于回收瓶内,冷风吹干,用指定的取液滴管加注少量的另一待测液体,清洗2次(用脱脂棉搅拽或用对号的注射器抽干),用冷风吹干。
正式加待测液体,盖好盖子,待显示稳定后,按下"采零"键,屏幕显示"00.00"。
然后将拔下的测试线的一端插入电容池"外电极"插座,顺时针旋转一下挂进去,记录读数。
五、实验注意事项1.测量中除了取样,试剂瓶盖子应随时盖好.以免样品挥发影响溶液浓度。
2.测折光率时,样品滴加要均匀,用量不能太少,滴管不要触及棱镜,以免损坏镜面。
3.测电容时,直接用指定的移液管将样品注入电容池内,动作要谨慎、缓慢。
万一把样品溅倒在测量池外,可用软纸吸干,以免影响数据的稳定。
六、数据处理1.1号试剂瓶内样品为纯溶剂环己烷,其拆射率用于阿贝折光仪的零点校正,(本实验最好不要用纯净水n25 H2O=1.3325校正,因为水的吹干时间变长了)。
纯净的环己烷、正丁醇的相关物性值如下:=n20环己烷=1.4290 ε真=2.023-0.0016(t-25)n25环己烷 将环己烷在仪器上读得的测量值与标准值的差值作为仪器零点校正值,用来校正2号至5号样品的测量值。
2.按(9)式计算2号至5号样品的溶质质量分数W2,测量这些溶液的折光率,再用最小二乘法按下式求得αn值: (15)3.由各溶液的W2与ε12:,用最小二乘法按下式求αs: (16)4. 数据表格温度: ℃;气压: KPa; αs: αn:5.按(10)式求得正丁醇的偶极矩μ(K取1.3805x10-16),其结果单位为静电单位厘米,按(2)式换算成惯用单位德拜(D),也可换算成国际单位库仑米(c m)。
上述计算中需用的常数如下: K = 1.3805 x 10-16erg deg-1= 1.3805 x 10-23J K-1 N = 6.023 x 1023mol-1 T = 298.2K M正丁醇 = 74.136. 自己找文献资料查正丁醇的偶极矩值并与之比较,看误差大小有多少,分析误差的原因。
【思考题】1.实验中主要误差来源是什么?如何减少这些误差?若电容测定中有±0.01PF的漂移读数误差,将对摩尔极化度P12的计算结果产生多大影响?2.测量折光率和电容时要注意哪些问题?3.属于什么点群的分子有偶极矩?请举出三个以上的例子。
【英汉词条】偶极矩 dipole matrix 极性分子 polar molecule向量 vectors介电常量 dielectric constant摩尔极化度mol polarizability 阿贝折光仪 abbe's refractometer摩尔磁化率molar susceptibility极性 polarity极化 polarization 电场electric field电容 capacitance电路 electrocircuit折射率 refractive index电容器 capacitor / capacitator返回。