化学反应工程_气固相催化反应本征动力学
《反应工程》气-固相催化反应本征及宏观动力学 ppt课件

PPT课件
1
2.1 催化及固体催化剂 2.2 化学吸附与气-固相催化反应本征动力学模型 2.3 气-固相催化反应宏观过程与催化剂颗粒内气
体的扩散 2.4 内扩散有效因子 2.5 气—固相间热、质传递过程对总体速率的影响 2.6 固体颗粒催化剂的工程设计 2.7 固体催化剂失活
PPT课件
2
1)反应特点 (1)反应物和产物均为气体; (2)使用固体催化剂,具有惊人的内表面; (3)反应区在催化剂颗粒内表面。 2)反应步骤
反应区在颗粒内部,整个反应过程是由物理过程和 化学反应过程组成的,反应分7步进行。
PPT课件
3
PPT课件
4
PPT课件
5
(1)反应物从气相主体扩散到颗粒外表面——外扩散; (2)反应物从颗粒外表面扩散进入颗粒内部的微孔——内 扩散;
容有以下几方面。
(1) 催化剂颗粒内气体的扩散;
(2) 催化剂颗粒内扩散-反应过程的关联方法——内扩散
有效因子;
(3)
宏观动力学方程,或称之为总体速率方程的建立。 PPT课件
7
2.1 催化及固体催化剂
PPT课件
8
2.1.1 催化反应
催化(Catalysis)的研究和发展对化学工业的变革起 着决定性的作用。18世纪到19世纪初期世界工业起步和发 展所需的基本化工原料如硫酸、氨和硝酸的生产,由于开 发了催化作用和研制了催化剂而发生了根本性的变革。 1831年研制了铂催化剂转化二氧化硫的接触法替代了铅室 法生产硫酸。1900年铂催化剂上进行的氮氧化反应取代了 硫酸和硝酸钠反应生产硝酸。1913年使用熔铁催化剂的氨 合成生产装置的开发带动了高压容器和压缩机的发展。 1923年采用锌铬催化剂使一氧化碳加氢合成甲醇取代了木 材干馏制甲醇。但由于低温下锌铬催化剂的催化作用低, 只能在350---420℃反应,较高反应温度下不利于甲醇合 成的热力学平衡,因此必须在25---30MPa高压下生产。 1966年铜基催化剂合成甲醇投产,可在220~270℃下反应, 相应压力可降至5MPa,节约了高压生产的能耗。
第二章--气固相催化反应本征动力学

化学吸附速率方程的建立
Adsorption
(1)单位表面上的气体分子碰撞数
Z=
(
2
pA mkT
)
1 2
(2)吸附活化能Ea
(3)表面覆盖度 A
exp( Ea ) RgT
f (A )
The fraction of the surface covered by adsorbed species A.
1.1催化反应
• 催化的研究和发展对化学工业的变革起着决定性 的作用。
• 多种性能不同催化剂的开发促使同一产品在反应 器、生产流程甚至生产方法和原料方面都发生了 根本性的变革,使产品的投资、原料消耗等技术 经济指标不断优化,同时环境污染也不断减少。
• 催化反应可分为:均相催化和多相催化反应。
1.2 固体催化剂
有两类模型描述吸附等温线的规律: 均匀表面吸附和不均匀表面吸附模型。
这样,可写出净的吸附速率的表达式
r
A
pA
f
(A )exp(
Ea RgT
)
k
'
f
'( A )exp(
Ed RgT
)
二、理想吸附层等温方程
理想吸附层模型
Langmuir Adsorption Isotherm
(1)表面均匀(2)吸附分子间无相互作用 (3)动态平衡
载体 • 以多孔物质为主,如硅藻土、三氧化二铝等。 • 根据不同的需要,有不同的孔径和比表面。 • 强度高,是对载体的要求。 助催化剂
• 加入的量小,增加催化活性,增加选择性, 延长催化剂寿命
催化剂常用制备方法
(1) 共混合法 即将催化剂的各个组份作成浆状,经过充分的混合(如 在混炼机中)后成型干燥而得。
化学反应工程 第一章 气固相催化反应本征 及宏观动力学

xA A )
n PV RT
n V n0 V0
V
V0 (1
nA0 n0
xA A )
V V0 (1 A xA )
A=
nA0 n0
A
Expansion ratio
膨胀率
等容条件下: A=0, A=0
CA
nA V
nA0 (1 xA ) V0 (1 A xA )
CA
多重反应是指有多个反应同时进行的体系
同时反应: Simultaneous reactions 连串反应:
k1
k2
A L,B
M
k1
k2
A
L
M
Consecutive reactions 平行反应:
Parallel reactions 复合反应(平行-连串反应)
A
Combination reactions
i 1
则 A
1
A
n
i
i=1
三、化学膨胀因子
在恒温恒压下进行
A A BB LL M M
A
L A
+M A
-1-B A
A
1
A
L
M
A
B
n
n0
(nA ) A
n0
nA0 xA A
n0 (1
nA0 n0
dnA =- 1 dt V
d(VCA)=- dCA
dt
dt
+CA V
dV dt
Relative rates of reaction
AA BB LL M M
rA : rB : rL : rM = nA : nB : nL : nM
化学反应工程_百度文库

第一章气-固相催化反应本征动力学概论化工生产中大多数反应是过程,气-固相催化反应是重要反应之一。
本章讨论:1,2,连续过程中化学反应速率的有关问题;气-固相催化反应的化学动力学,即本征动力学。
第一节化学计量学1-1化学计量式化学计量学是研究化学反应系统中反应物和产物组成相互关系变化的数学表达式。
化学计量式是化学计量的基础。
化学计量式表示参加反应的各组分的娄量关系,等式左边的组分为反应物,等式右边的组分为产物,化学计量式的通式为:或或一般将反应物的化学计量取负值,产物的化学计量取正值。
如果反应系统中有m 个反应,则第j个反应的化学计量式的通式为或也可用矩阵表示为......1-2 反应程度、转化率及化学膨胀因子一.反应程度对于间歇反应中的单反应进行物料衡算按化学计量关系有R上式中的ξ称为化学反应程度。
注意上述表达式中各项的正负号。
(1-7)式也可表达为:为i组分已反应的量,所以,知道反应程度即可计算出所有反应物及产物已经反应(或生成)的量。
二、转化率反应物A的反应量与其初如量之比称为A的转化率:nA0nA0nA0工业反应过程中的原料中各组分之间往往不符合化学计量关系,通常选择不过量的反应物计算转化率,这样的组分称为关键组分。
三、化学膨胀因子在恒温恒压的连续系统中发生反应对于液相反应,反应前后物料的体积流量变化不大,一般作为恒容过程。
对于气相反应,反应前后物料的体积流量变化较大。
定义每转化1mol的A时反应混合物增加或减少的量为化学膨胀因子,即:则有:由此,组分A的瞬时浓度可表示为:对于连续,则式中,大写字母表示摩尔流量,小写字母表示物质的量。
例1-1 计算下列反应的化学膨胀因子1. A+B→P+S2. A→P+S3. A+3B→2P解:1. δA=[(1+1)-(1+1)] / 1=02. δA=[(1+1)-1)] / 1=13. δA=[2-(1+3)] / 1=-21-4 多重反应的收率及选择率1,单一反应和多重反应单(一)反应:一组物定的反应物反应生成一组特定的产物。
化学反应工程第二章重点

bA k aA k dA
吸附达平衡时,ra=rd,则有:
对组分B,同理可得:
* kaB pB B * bB pB 1 A B kdB bB k aB k dB
2.2 气固催化本征动力学(8)
2.2 气固催化本征动力学(4)
考虑以上两种因素,脱附速率可以用下式表示:
rd=k’ f’’(θA ) exp(-Ed/RgT)
吸附净速率为: r= ra- rd=σA pA f(θA ) exp(-Ea/RgT)- k’ f’’(θA ) exp(-Ed/RgT) 3.3 吸附等温线 (absorption isotherms) 对于一定的吸附系统,恒温下测得的平衡吸附量与分压的关 系称为吸附等温线。 描述吸附等温线的模型有两类: 1)理想吸附层(Langmuir均匀表面吸附)模型; 2)真实吸附层(不均匀表面吸附)模型
r = ra- rd = ka pA (1- θA) - kd θA
2.2 气固催化本征动力学(6)
当吸附达到平衡时, ra= rd 若气相中的组分A的分压为平衡分压
p* A ,则有:
ka p* (1 A ) k d A A ka * p A b kk * ka pA kd bp* A A * k kd ka p* 1 bp * A A 1 a pA kd
催化剂
• • • • • • • •
颗粒
2.1 反应宏观过程(2)
2.1 反应宏观过程(2)
一 催化剂表面反应过程 (Surface reaction)
在多孔催化剂上进行的气固相催化反应,由反应物在位于催化剂内表 面的活性位上的化学吸附、活化吸附态组分进行化学反应和产物的脱 附三个连串步骤组成,因此,气固相催化反应本征动力学的基础是化 学吸附。
第五章气固相催化反应本征动力学

rd kd exp(h ) kd kd 0 f ( ) exp( Ed0 RT ) h RT
表观吸附速率为 r ra rd ka pA exp(g ) kd exp(h )
平衡时:ka kd
pA
exp[( g h) ]
令
K
A
ka kd
f hg
则
1 f
ln(K A pA )
焦姆金等温吸附方程
令
ka ka0 exp( Ea0 RT ) f ( )
活性 选择性 寿命
催化剂的性能
影响
物理性质: 比表面积; 孔容积; 孔容积分布。
1、比表面积:单位质量的催化剂具有的表面积Sg,m2/g; 影响催化剂的吸附量和活性。
!!!测定表面积的方法是:氮吸附法。
2、孔容积:每克催化剂内部微孔的容积Vg。cm3/g !!!测定孔容积较准确的方法是:氦-汞法。
非活化的,低活化能;活化的, 高活化能。>40kJ/mol
<8kJ/mol
>40kJ/mol
多分子层
单分子层
高度可逆
常不可逆
用于测定表面积、微孔尺寸
用于测定活化中心的面积及阐 明反应动力学规律
2、化学吸附速率的一般表达式
1)吸附方程:
A+σ→A σ
吸附率: A
被A组分覆盖的活性中心数 总的活性中心数
3)提高催化剂的机械强度。
4、催化剂活化:目的是除去吸附和沉积Байду номын сангаас外来杂质。
方法是:1)适度加热驱除易除去的外来杂质; 2)小心燃烧除去顽固杂质; 3)用氢气、硫化氢、一氧化碳或氯化烃作为活化剂
活化催化剂。
5、催化剂的开工和停工
化学反应工程-15-第四章-气固相催化反应本征动力学

Ed 则:rd k f A exp RT
' 0 '
净吸附速率:
E ' E r ra rd k0 PA f A exp a k0 f ' A exp d RT RT ka PA f A kd f ' A
K N PNV N
以上各式左、右两边分别相加,则:
V Ki Pi i
V
1 K i Pi 1
i
i
V 1
i i
K P 1 K P
i
i
∴
K i Pi i 1 K i Pi
课后习题
P95
7、8
P127
1、2、3
下周一交!
三、真实吸附层等温方程
1、焦姆金吸附模型 均匀表面吸附理论的关键在于认为催化剂表面各处吸附能力完全相 同,即吸附、脱附活化能和吸附程度无关,但实际上是有关系的。 一般吸附活化能Ea随覆盖率的增大而增大,脱附活化能Ed则随覆盖 率的增大而减小。 焦姆金认为:
0 Ea Ea A 0 Ed Ed A
4.3催化反应本征动力学
4.3.1化学吸附与脱附
吸附和温度: 低温下,物理吸附速率很快,化学吸附速率慢;物理吸附占主 导地位,化学吸附处于从属位置。随温度升高,物理吸附迅速减 弱,化学吸附的重要性显著起来。 温度达到一定值时,就完全是化学吸附了。 重要的是:实际进行的化学反应温度正是在化学吸附的温度范围 之内,所以研究化学吸附非常重要。
P
颗粒的孔体积 颗粒的总体积
压汞法测定催化剂孔径分布: 原理:压力愈高,汞进入的小孔的直径也愈细。
化学反应工程-16-第四章-气固相催化反应本征动力学

积分反应器定义:组分单程转化率较大(xA>25%)时的情况。 问题:由于转化率高,对于热效应大的反应,如何保持反应器恒温? 问题:由于转化率高,对于热效应大的反应,如何保持反应器恒温? ①气体进入催化剂床层之前,常有一段预热区;且要求反应管要 足够细,管外的传热要足够好。 ②用等粒度的惰性物质稀释催化剂,以减轻管壁传热的负荷。为 了强化管外传热,可选用恒温浴、流化床、铜块等方式,力求催 化剂床层等温。
2、内扩散影响的检验: 、内扩散影响的检验: 方法:改变催化剂的粒度(直径 d P),在恒定的 w / FA0下测量转化率 xA 以x A ~ d P 作图:
若 d P 在b点左边,x A 不变。表明内扩散无影响。
x 若d P 在b点右边, A 变化。表明内扩散有阻力存在。
二、实验反应器
1、固定床积分反应器 、
(1) (2)
试推导由式(1)(2)分别控制时的均匀表面吸附动力学方程。
解:(1)式控制时,由控制步骤得:
r = k1 PH 2 Oθ V − k1' PH 2θ O
因(2)式达到平衡:
' k 2 PCOθ O = k 2 PCO 2θ V
θ O + θV = 1
1 PCO 2 +1 k 2 PCO
θ B = K B PBθV
(2′)
对(4)
′ ′ k 4θ R = k 4 PRθV
θ R = K R PRθV
同理对(5)
′ k4 KR = k4 (4′)
θ S = K S PSθV
(5′)
θ A + θ B + θ R + θ S + θV = 1
1 1 + ∑ K i Pi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dnA dt
kmol
s
1m
2 cat
a
6
• 固体催化剂的特殊结构,造成化学反应 主要在催化剂的内表面进行。
• 催化剂的表面积绝大多数是内表面积。
a
7
• 气固相催化反应的7个步骤、3个过程:
• 1反应物由气流主体扩散到催化剂外表面; • 2反应物由催化剂外表面扩散到内表面; • 3反应物在催化剂表面活性中心上吸附; • 4吸附在活性中心的反应物进行化学反应; • 5产物在催化剂表面活性中心上脱附; • 6产物由催化剂内表面扩散到外表面; • 7产物由催化剂外表面扩散到气流主体。
a
15
• 孔径分布分率孔Åa16气固相催化反应本征动力学
• 本征:完全没有扩散影响的,单纯的反 应物及产物在催化剂表面吸附脱附反应 过程。其动力学表达为本征动力学。
• 物理吸附和化学吸附
• 物理吸附-吸附剂与被吸附物靠范德华 力结合
• 化学吸附-吸附剂与被吸附物之间可视 为发生化学反应
a
17
选择性 吸附温度
比表面积 Sg 单位质量催化剂具有的表面积m2g1 通常介于5 1000m2g1之间。注意因次 测定方法:BET 小比表面的测定为难题。
a
13
孔体积孔容Sg cm3g1单位质量催化剂内部微孔的体积
孔容与催化剂颗粒强度为一对矛盾,孔容大则强度下降。 在多数情况下,希望孔容大一些。
固体密度真密度s g cm3单位催化剂固体物质 不包括孔体积体积的质量
• 三者不能截然分开。 • 通常对活性组分的要求: • 具有尽可能高的催化活性,选择性和抗
毒性。 • 通常对载体的要求: • 高强度,高比表面。
a
10
• 活性组分 • 以金属为主,根据不同的用途,有金属
氧化物及硫化物等等。 • 一个成功的催化剂往往是主催化剂和助
催化剂及载体的完美结合。 • 活性组分的选择,根据目前的知识水平
ka0 kd0
exp Ed Ea RT
ka0 kd0
exp q RT
A p AV
上式称吸附平衡方程
式中:q Ed Ea
• θ难于测量,不便应用。可利用吸附模型
求得θ。
a
22
Langmuir 吸附模型
• 基本假定:
• 1催化剂表面活性中心的分布是均匀的; • 2吸、脱附活化能与表面覆盖率无关; • 3每个活性中心只能吸附一个分子; • 4吸附的分子之间互不影响。
dt
kmol
s
1
m
3 cat
或 rA
1 VS
dnA dt
kmol
s
1
m
3 cat
• 2、以催化剂质量定义反应速率
r
1 mS
d
dt
kmol
s
1kg
1 cat
或 rA
1 mS
dnA dt
kmol
s
1kg
1 cat
• 3、以催化剂内表面积定义反应速率
r
1 SV
d
dt
kmol
s
1m
2 cat
或 rA
1
a
4
非均相催化反应速率表达
• 对于均相反应,已经定义:
• 由于气r 固V1相dd催t 化反应及发 r生A 在催V1 化ddnt剂A 表面, 而且催化剂的量对于反应的速率起着关键 的作用,因此,反应速率不再由反应体积 来定义,而改由催化剂体积来定义。
a
5
• 1、以催化剂体积定义反应速率
r
1 VS
d
吸附热
物理吸附 弱
通常低于 沸点温度 接近被吸附 物的冷凝热
化学吸附 强
可高于 沸点温度 接近反应热
a
18
化学吸附与脱附
• 化学吸附速率的表达
• 活性中心:固体催化剂表面能够与气相分 子发生反应的原子。以符号σ表示。
• 吸附式可以表示为如下型式:
•
A+ σ→A σ
• A-反应物, σ-活性中心, A σ-吸附了反
p
AV
作为吸附的逆过程,脱附可以写为:
rd
kd0
exp
Ed RT
A
表观速率:
r
ra
rd
ka0
exp
Ea RT
pA
V
kd0
exp
Ed RT
A
a
21
• 达到平衡时,吸附与脱附速率相等
r ra rd 0
ka0
exp
Ea RT
pA
V
kd0
exp
Ed RT
A
平衡常数KA :
KA
颗粒密度p g cm3单位催化剂颗粒体积的质量
孔隙率p 催化剂孔体积占总体积的分率
以上参数之间互有换算关系。
a
14
• 孔径分布(孔体积分布)
• 催化剂是多孔物质,其孔的大小当然是 不规则的。不同的催化剂孔大小的分布 不同。
• 只有孔径大于反应物分子的孔才有催化 意义。
• 测定方法:压汞法和氮吸附法 • 典型的孔径分布曲线
化剂以同样的比例同时改变正逆反应的速 率。
a
3
• 催化剂可以在复杂的反应系统,有选择 地加速某些反应。
• 同样的反应物
在不同催化剂 的作用下可以
Cu,Zn,Al
CO
H
2
Ni Fe,Co
Rh络h络
生成不同的产
Ru
CH3OH
CH4 烃类混合物
CH2OHCH2OH 固体石蜡
品。
• 如果希望催化剂充分发挥作用,应当尽 可能增加反应物与催化剂的接触。
a
8
• 1,7为外扩散过程 • 2,6为内扩散过程 • 3,4,5为化学动力学过程 • 针对不同具体情况,三个过程进行的速
率各不相同,其中进行最慢的称为控制 步骤,控制步骤进行的速率决定了整个 宏观反应的速率。
• 本章讨论化学动力学过程。
a
9
固体催化剂
• 固体催化剂由三部分组成,活性组分、 助剂和载体。
第四章
气固相催化反应本征动力学
a
1
• 对于气固相催化反应,由于反应在异相 进行,存在本征动力学和宏观动力学之 分,其区别在于有无传递过程的影响。
• 本章主要讨论催化剂、催化反应机理和 本征的反应速率。
a
2
气固相催化过程
• 气固相:反应物和产物均为气相,催化剂 为固相。
• 催化剂参与反应,但在反应过程中不消耗。 • 催化剂的加入可以改变反应速率。 • 催化剂的加入,不能改变反应的平衡。催
只能有一个大致的方向,尚不能预先选 择。
a
11
• 载体 • 以多孔物质为主,如硅藻土、三氧化二
铝等。 • 根据不同的需要,有不同的孔径和比表
面。 • 强度高,是对所以载体的要求。 • 助催化剂 • 加入的量小,增加催化活性,增加选择
性,延长催化剂寿命
a
12
• 催化剂的比表面积、孔体积和孔体积分 布
应物的活性中心
a
19
吸附率:
A
被A组分覆盖的活性中心数 总活性中心数
如果有多种组分被吸附,则有
B,C,
,等等
D
空位率:
未被覆盖的活性中心数
V
总活性中心数
自然有 n i V 1 i1
a
20
• 既然吸附过程可以视为化学反应(基元 反应),吸附速率式就可以写成:
ra
ka0
exp
Ea RT