一个数的因数的个数是有限的

合集下载

找一个数的因数的方法 - 答案

找一个数的因数的方法 - 答案

找一个数的因数的方法答案知识梳理教学重、难点作业完成情况典题探究例1.现有草莓40个,可以平均分给多少个小朋友?考点:找一个数的因数的方法.分析:根据因数与倍数的意义,和找一个数的因数的个数的方法,求出40的因数有哪些,根据题意可以平均分给多少个小朋友,那就不是1个.由此解答.解答:解:40的因数有:1,2,4,5,8,10,20,40.根据题意不可能分给1个小朋友,因此可以平均分给2个,4个,5个,8个,10个,20个,或40个.答:可以分给2个,4个,5个,8个,10个,20个,或40个小朋友.点评:此题主要考查求一个数的因数的方法,根据求一个数的因数的方法解决问题.例2.只有一个因数的数是1只有两个因数的数是质数有三个因数以上的数是合数.考点:找一个数的因数的方法.专题:数的整除.分析:在自然数中,只有一个因数的数是1;除了1和它本身外,没有别的因数的数为质数;除了1和它本身外还有别的因数的数为合数;据此解答即可.解答:解:只有一个因数的数是1;只有两个因数的数是质数;有三个因数以上的数是合数.故答案为:1;质数;合数.点评:此题考查了质数与合数的含义以及找一个数的因数的方法.属于识记内容.例3.有144块糖平均分成若干份,要求每份不得少于10颗,也不能多于50颗,那么一共有6种分法.考点:找一个数的因数的方法.专题:约数倍数应用题.分析:找到144的约数中大于10且小于50的即可求解.解答:解:因为144=2×2×2×2×3×3,所以144在10到50之间的约数有:12、16、18、24、36、48,所以有6种;答:一共有6种分法.故答案为:6.点评:解答此题的关键是先把144进行分解质因数,然后找出符合条件的数解答即可.例4.a、b、c是三个互不相等的自然数,而且a÷b=c,a至少有4个约数.考点:找一个数的因数的方法.专题:压轴题.分析:首先a.b.c肯定是a的因数,而且互不相等,所以算三个;然后考查1,1肯定是a 的因数,问题是会不会与上面的三个重复首先a≠1,这个很明显;然后,如果b=1,则a=c,这是不行的,所以b也不等于1,同样地,c也不等于1;也就是说1.a.b.c是互不相等的,至少有这四个数是a的因数.解答:解:由分析知:a的约数有1、a、b、c;共4个;故答案为:4.点评:根据找一个的因数的方法进行解答即可.例5.5是15的因数,又是5的倍数.×.(判断对错)考点:找一个数的因数的方法;找一个数的倍数的方法.专题:数的整除.分析:因数和倍数是相对的,是相互依存的,只能说一个数是另一个数的倍数或另一个数是这个数的因数,不能单独存在.解答:解:根据因数和倍数的关系,我们可以说5是15的因数,15是5的倍数,不能说5是15的因数,又是5的倍数.故答案为:×.点评:解答此题的关键是根据因数和倍数的意义进行分析.例6.两个不同质数相乘的积,一共有4个约数.考点:找一个数的因数的方法;合数与质数.专题:数的整除.分析:根据质数的意义进行分析:一个数除了1和它本身两个约数外,不含其它的约数,这样的数叫做质数;两个不同的质数相乘的积,约数有:1、这两个数的乘积、这两个质数本身;进而得出结论.解答:解:两个不同的质数相乘的积,约数有:1、这两个数的乘积、这两个质数本身,共4个约数;如2和3,2×3=6,6的约数有1,2,3,6,共4个.故答案为:4.点评:解答此题的关键是根据质数的含义进行分析、解答.演练方阵A档(巩固专练)一.选择题(共21小题)1.(2013•牡丹江)要把402个水杯装箱,选择每箱()个水杯的包装箱正好装完.A.12 B.4C.3D.5考点:找一个数的因数的方法.专题:数的整除.分析:求要把402个水杯装箱,选择每箱多少个水杯的包装箱正好装完,每箱的个数只要是402的因数即可.解答:解:在12、4、3、5中,只有3是402的因数,所以选择每箱3个水杯的包装箱正好装完;故选:C.点评:明确要求的问题,即只要每箱的个数是402的因数的即可.2.(2012•广州)某小学的教师共有70人,这个学校男女老师人数的比不可能是()A.3:4 B.2:3 C.1:2 D.1:6考点:找一个数的因数的方法.专题:压轴题;数的整除.分析:学校共有70人,本题的四个选项都是最简整数比,那么男女教师比的前项和后项相加应能被70整除,70的因数有:1、2、5、7、10、14、35、70,而1+2=3,3不是70的因数,由此作答.解答:解:70的因数有:1、2、5、7、10、14、35、70,而1+2=3,3不是70的因数,又不能被70整除.故选:C.点评:本题的关健是看各个选项的前项、后项的和是否能被总人数整除.3.(2012•建华区)自然数36的因数有()个.A.10 B.8C.9考点:找一个数的因数的方法.专题:压轴题;数的整除.分析:根据找一个数的因数的方法,进行列举即可.解答:解:36的因数有1、2、3、4、6、9、12、18、36,故选:C.点评:解答此题应根据找一个数的因数的方法进行解答,注意写因数时要两个两个的写防止遗漏.4.(2011•郑州模拟)1,2,3,5都是30的()A.质数B.质因数C.约数考点:找一个数的因数的方法.分析:整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a,a叫b的倍数,b叫a的约数,因为30能被1、2、3、5整除,所以1、2、3、5是30的约数.解答:解:30÷1=30,30÷2=15,30÷3=10,30÷5=6,所以1、2、3、5是30的约数;故选:C.点评:解答此题根据约数的定义,只要30能被1、2、3、5整除即可.5.(2011•焦作模拟)在12的约数中,可以组成()组互质数.A.5B.6C.7D.8考点:找一个数的因数的方法;合数与质数.分析:先根据找一个数的因数的方法,列举出12的约数,12的约数有:1、2、3、4、6、12,共6个;进而根据互质数的含义:公因数只有1的两个数叫做互质数,写出即可.解答:解:12的约数有:1、2、3、4、6、12,互质数有1、2,1、3,1、4,1、6,1、12,2、3,3、4;共7组;故选:C.点评:解答此题应先根据找一个数因数的方法,求出12的因数;进而根据互质数的含义,进行列举,继而数出即可.6.(2011•东莞模拟)一个三位数,个位上的数是0,这个数一定能被()整除.A.2和3 B.2和5 C.3和5 D.2、3和5考点:找一个数的因数的方法.分析:此题应根据能被2和5整除的数的特征:这个数的个位数一定是0;进行解答即可.解答:解:能被2和5整除的数的特征是:这个数的个位数一定是0;故选:B.点评:此题的关键是根据能被2和5整除的数的特征解答.7.(2011•普定县模拟)因为12=2×2×3,所以12的因数有()个.A.3B.4C.5D.6考点:找一个数的因数的方法.专题:数的整除.分析:由题意可知:12的因数有:1、2、3、2×2、2×3、2×2×3;然后数出即可.解答:解:12的因数有:1、2、3、2×2=4、2×3=6、2×2×3=12,共6个;故选:D.点评:此题主要考查找一个数的因数的方法,应按照从小到大的顺序,做到不重复、不遗漏.8.(2012•哈尔滨模拟)48有()因数.A.6个B.8个C.10个D.12个考点:找一个数的因数的方法.分析:求一个数的因数的方法:用这个数分别除以自然数1,2,3,4,5,6…,一直除到商和除数互换位置结束,把能整除的商和除数按从小到大顺序写出来,就是这个数的因数,重复的只写一个,据此写出48的因数,然后数出即可.解答:解:48的因数有:1、2、3、4、6、8、12、16、24、48,共计10个;故选:C.点评:本题主要考查求一个数因数的方法.9.(2012•中山模拟)已知n=2×3×7,那么n的约数有()个.A.5B.6C.7D.8考点:找一个数的因数的方法.分析:根据找一个数因数的方法,进行列举:n约数有:1、2、3、7、2×3=6、2×7=14、3×7=21、2×3×7=42;数出即可.解答:解:a约数有::1、2、3、7、2×3=6、2×7=14、3×7=21、2×3×7=42;共8个;故选:D.点评:解答此题应根据找一个数的因数的方法,进行列举即可.10.(2010•安次区模拟)()是12的质因数.A.1B.2C.4D.12考点:找一个数的因数的方法.专题:数的整除.分析:先把12分解质因数,找出因数里面的质数即可.解答:解:12=2×2×3,质数有2、3,即2、3是12的质因数;故选:B.点评:此题主要考查分解质因数的方法以及求一个数的质因数的方法.11.(2009•京山县)一个自然数的最小倍数是18,这个数的因数有()个.A.2B.4C.6考点:找一个数的因数的方法.分析:根据”一个数最小的倍数是它本身”可知:该自然数是18,进而根据找一个数的因数的方法,进行列举,数出即可.解答:解:这个数是18,18的因数有:1、2、3、6、9、18,共6个;故选:C.点评:解答此题的关键:先判断出这个自然数是多少,进而根据一个数的因数的方法,进行列举即可.12.(2009•绵阳)一个数它既是18的倍数,又是18的约数,这个数是()A.1B.9C.18 D.324考点:找一个数的因数的方法;找一个数的倍数的方法.专题:压轴题.分析:根据找一个数的因数的方法:一个数的因数的个数是有限的,最大的因数是它本身,最小的因数是1;根据找一个数的倍数的方法,一个数的倍数的个数是无限的,最小的一个倍数是它本身,可见一个数的本身既是其最大约数又是其最小倍数.解答:解:由分析得:一个数既是18的倍数,又是18的因数,这个数是18.故选:C.点评:此题主要考查了因数和倍数的意义及其求法.根据找一个数的因数、倍数的方法进行解答.13.(2008•武昌区)一个数的最大因数()这个数的最小倍数.A.大于B.等于C.小于考点:找一个数的因数的方法;找一个数的倍数的方法.专题:压轴题.分析:根据“一个数的最大的因数是它本身,最小的倍数也是它本身”进行解答即可.解答:解:由分析知:一个数的最大因数等于这个数的最小倍数;故选:B.点评:解答此题的关键是根据因数和倍数的意义进行解答.14.自然数A=2×3×5,A的全部因数有()个.A.3B.4C.6D.8考点:找一个数的因数的方法.分析:结合题意,根据找一个数的因数的方法进行列举即可.解答:解:自然数A=2×3×5,A的全部因数有:1,2,3,5,6,10,15,30共8个;故选:D.点评:此题应根据找一个数的因数的方法进行分析、解答.15.1、2、3都是6的()A.质数B.约数C.公约数考点:找一个数的因数的方法.分析:求一个数的约数的方法:用这个数分别除以自然数1,2,3,4,5,6…,一直除到商和除数互换位置结束,把能整除的商和除数按从小到大顺序写出来,就是这个数的约数,重复的只写一个,据此写出;解答:解:6÷1=6,6÷2=3,6÷3=2,6÷6=1,即6的约数有:1,2,3,6.故选:B点评:重点要注意1和它本身也是6的约数.16.32的所有约数之和是()A.30 B.62 C.63考点:找一个数的因数的方法.专题:数的整除.分析:先找出32的约数有1,2,4,8,16,32,然后把它们相加即可.解答:解:32的约数有1,2,4,8,16,32,1+2+4+8+16+32=63;答:32的所有约数之和是63;故选:C.点评:此类题做题的关键是先找出32的约数,然后根据题意,相加即可得出结论.17.360的因数共有()个.A.26 B.25 C.24 D.23考点:找一个数的因数的方法.专题:数的整除.分析:按从小到大的顺序依次找到360的因数即可求解.解答:解:360的因数有:1、2、3、4、5、6、8、9、10、12、15、18、20、24、30、36、40、45、60、72、90、120、180、360;一共24个.故选:C.点评:考查了找一个数的因数的方法,可以小到大的顺序依次找,也可以两个两个的找,是基础题型.18.已知m=2×2×3×5,那么m的因数有()A.3B.4C.12 D.无数考点:找一个数的因数的方法.分析:根据因数的意义可知:m=2×2×3×5,那么m的因数有;1、2、3、5、2×2、2×3、2×5、3×5、2×2×3、2×2×5、2×3×5、2×2×3×5,据此求出然后数出即可.解答:解;m=2×2×3×5,那么m的因数有;1、2、3、5、2×2=4、2×3=6、2×5=10、3×5=15、2×2×3=12、2×2×5=20、2×3×5=30、2×2×3×5=60,共计12个;故选:C.点评:解答本题关键是根据m的质因数求出它因数,即把质因数分别相乘即可,最后不要忘记1是它的公因数.19.7与15是105的()A.因数B.质因数C.质数考点:找一个数的因数的方法.专题:数的整除.分析:因为7×15=105,所以7与15是105的因数.解答:解:7与15是105的因数,故选:A.点评:此题考查了因数的意义.20.已知自然数n只有2个约数,那么3n有()个约数.A.2B.3C.4D.3或4考点:找一个数的因数的方法.专题:数的整除.分析:根据找一个数的因数的方法进行解答即可.解答:解:因为n只有两个约数,那么n为质数,那么3n最多有4个约数:1、n、3、3n;当n=3时,3n只有3个约数;n≠3时,有4个约数;故选:D.点评:解答此题应根据题意,进行认真分析,找出3n的所有约数,进而得出结论.21.两个数的最小公倍数是36,下面哪个数不可能是这两个数的公因数?()A.8B.9C.12考点:找一个数的因数的方法;合数分解质因数.分析:根据两个数的公因数和最小公倍数的意义可知:这两个数的公因数一定是他们的最小公倍数的因数,据此分析各答案中的数是不是36的因数即可判断.解答:解:8不是36的因数,9和12是36的因数,所以两个数的最小公倍数是36,8不是这两个数公因数,9和12是这两个数的公因数;故选:A.点评:解答本题关键是理解:这两个数的公因数一定是他们的最小公倍数的因数.二.填空题(共7小题)22.(2014•广州模拟)已知自然数a只有两个约数,那么5a最多有3个约数.错误.(判断对错)考点:找一个数的因数的方法;用字母表示数.分析:根据找一个数的因数的方法进行解答即可.解答:解:因为a只有两个约数,那么a为质数,那么5a最多有4个约数:1、a、5、5a;故答案为:错误.点评:解答此题应根据题意,进行认真分析,找出5a的所有约数,进而得出结论.23.(2014•武平县模拟)24的约数有1、2、3、4、6、8、12、24,选择其中四个数组成一个比例为1:2=12:24.考点:找一个数的因数的方法;比例的意义和基本性质.专题:数的整除;比和比例.分析:(1)求一个数的约数的方法:用这个数分别除以自然数1,2,3,4,5,6…,一直除到商和除数互换位置结束,把能整除的商和除数按从小到大顺序写出来,就是这个数的约数,重复的只写一个,据此写出;(2)把24的约数写乘积是24的等式,然后根据比例的基本性质,把一个算式的因数分别作为比例的内项,另一个算式的因数作为外项,据此写出比例式.解答:解:(1)24的约数有:1、2、3、4、6、8、12、24;(2)1×24=24,2×12=24,把1和24做外项,2和12做内项,写出比例式是:1:2=12:24;故答案为:1、2、3、4、6、8、12、24,1:2=12:24.点评:本题主要考查约数的求法和根据比例的基本性质组成比例的方法.24.(2014•岚山区模拟)50以内只含有质因数2的数有2、4、8、16、32.考点:找一个数的因数的方法.分析:求50以内只含有质因数2的数,即求50以内的偶数,根据偶数的含义:自然数中是2的倍数的数叫做偶数;由此列举即可.解答:解:50以内的只含质因数2的数有2、4、8、16、32;故答案为:2、4、8、16、32.点评:此题考查了找一个数的因数的方法,应结合偶数的含义进行解答.25.(2014•贵州模拟)我国首艘航母辽宁舰的弦号是16,这个数共有5个因数.考点:找一个数的因数的方法.专题:数的整除.分析:找一个数的因数,可以一对一对的找,把16写成两个数的乘积,那么每一个乘积中的因数都是16的因数,然后从小到大依次写出即可.解答:解:因为16=1×16=2×8=4×4,所以这个数共有5个因数:1、2、4、8、16.故答案为:5.点评:此题主要考查了找一个数的因数的方法,要熟练掌握.26.(2013•广州模拟)36的约数共有9个,选择其中四个组成比例,使两个比的比值等于,这个比例式是4:3=12:9.考点:找一个数的因数的方法;解比例.分析:根据求一个数的因数的方法,求出36的因数,由此可以解决问题.解答:解:36的约数有1、2、3、4、6、9、12、18、36,共有九个.从中选出3、4、9、12可以组成比例式4:3=12:9.故答案为:9,4:3=12:9.点评:此题考查了求一个数的因数的方法和比例的基本性质的应用.27.(2013•道里区模拟)乙数是甲数的倍数,甲乙两数的最大公因数是B,最小公倍数是CA.1 B.甲数C.乙数D.甲、乙两数的积.考点:找一个数的因数的方法;找一个数的倍数的方法.专题:数的整除.分析:倍数关系的两个数的最大公因数是较小数,最小公倍数是较大数,因为乙数是甲数的倍数,即乙数和甲数是倍数关系,乙数是较大数,甲数是较小数,据此解答.解答:解:乙数是甲数的倍数,所以甲乙的最大公因数是甲数;最小公倍数是:乙数;故答案为:B,C.点评:本题主要考查倍数关系的两个数的最大公因数和最小公倍数的求法,注意找准较大数和较小数.28.(2012•宜良县)24的因数中有2个素数,5个合数;从24的因数中选出两个奇数和两个偶数,组成一个比例式是2:1=6:3(答案不唯一).考点:找一个数的因数的方法;合数与质数;比例的意义和基本性质.分析:先根据找一个数倍数的方法,列举出24的因数,然后结合质数和合数的意义:只有1和它本身两个约数的数是质数,除了1和它本身以外,还含有其它约数的数是合数,进行解答;然后根据奇数和偶数的意义,根据题意选出两个奇数和两个偶数,组成一个比例式即可.解答:解:24的因数有:1、2、3、4、6、8、12、24;其中素数(质数)有:2、3两个;合数有:4、6、8、12、24五个;选出两个奇数和偶数,组成一个比例式为:2:1=6:3(答案不唯一);故答案为:2,5,2:1=6:3(答案不唯一).点评:此题涉及的知识点有:(1)找一个倍数的方法;(2)质数和合数的意义;(3)奇数和偶数的含义;(4)比例的含义.B档(提升精练)一.选择题(共19小题)1.(2010•高阳县)古希腊认为:如果一个数恰好等于它的所有约数(本身除外)相加之和,那么这个数就是“完全数”.例如:6有四个约数1、2、3、6,除本身6以外,还有1、2、3三个约数.6=1+2+3,恰好是所有约数之和,所以6就是“完全数”.下面的数中是“完全数”的是()A.12 B.15 C.28 D.36考点:找一个数的因数的方法.专题:压轴题.分析:根据完全数的定义,可将下列选项中的数字进行计算,即可得出答案.解答:解:A、12的因数有:1、2、3、4、6、12,所以1+2+3+4+6=16;B、15的因数有:1,3,5,15,所以1+3+5=9;C.28的因数有:1、2、4、7、14、28,所以1+2+4+7+14=28;D、36的因数有:1、2、3、4、9、12、18、36,所以1+2+3+4+9+12+18=49;因此只有C选项符合题意.故选:C.点评:本题主要考查求一个数的约数的方法,注意完全数的意义:如果一个数恰好等于它的所有约数(本身除外)相加之和,那么这个数就是“完全数”.2.我们发现一些数具有一个有趣的特点,例如,6有四个因数1、2、3、6,除6本身以外,还有1、2、3三个因数.6=1+2+3,恰好是所有因数(本身除外)之和.那么下面的数中也具有同样特点的是()A.12 B.28 C.32考点:找一个数的因数的方法.分析:求一个数的因数的方法:用这个数分别除以自然数1,2,3,4,5,6…,一直除到商和除数互换位置结束,把能整除的商和除数按从小到大顺序写出来,就是这个数的因数,重复的只写一个,据此写出12、28、32的因数,然后根据题中的方法分析找出.解答:解:12的因数有:1、2、3、4、6、12,1+2+3+4+6=16;28的因数有:1、2、4、7、14、28,1+2+4+7+14=28;32的因数有:1、2、4、8、16、32,1+2+4+8+16=31;故选:B.点评:本题主要考查求一个数的因数的方法,此题先求出因数然后分析.3.有72颗糖,平均分成若干份,每份不得少于5颗,也不能多于20颗,一共有几种方法.()A.4B.5C.6D.10考点:找一个数的因数的方法.专题:数的整除.分析:找到72的约数中>5且<20的有:6,8,9,12,18,依此即可求解.解答:解:因为72的约数有:1,2,3,4,6,8,9,12,18,24,36,72,又因为每份不得少于5颗,也不能多于20颗,只有6,8,9,12,18.故选:B.点评:考查了一个数的约数的求法,本题要注意找在5和20之间的约数.4.下列各数分解质因数后,只含有质因数3的是()A.12 B.15 C.81 D.105考点:找一个数的因数的方法.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数相乘的形式叫做分解质因数,据此把12、15、81、105分解质因数即可.解答:解:12=2×2×3;15=3×5;81=3×3×3×3;105=3×5×7;所以,81分解质因数后,只含有质因数3,故选:C.点评:本题主要考查分解质因数的方法.注意是质数相乘的形式.5.下面四句话中正确的一句是()A.18的所有因数都是合数B.位置数对是(3,2)的物体和(2,3)的物体处于同一位置.C.通常情况下,盈利用正数表示,亏损用负数表示D.分数的基本性质用式子表示是==考点:找一个数的因数的方法;分数的基本性质;负数的意义及其应用;数对与位置.专题:综合判断题.分析:A、18的所有因数是:1、2、3、6、9、18,所以18的所有因数是2,3,6,9为错误;B、数对是用有顺序的两个数表示出一个确定的位置,用数对表示位置时,先表示第几列,再表示第几行,根据数对表示的意义可以判断出结果;C、此题主要用正、负数来表示具有意义相反的两种量判定即可;D、分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(0除外),分数的大小不变.解答:解:A、18的所有因数是:1、2、3、6、9、18,故A错误;B、(3,2)的物体:物体在第三列,第二行,(2,3)的物体:物体在第二列,第三行,所以不在同一个位置故B错误;C、通常情况下,盈利用正数表示,亏损用负数表示,是正确的;D、根据分数的基本性质可知:用式子表示是==,是错误的.故选:C.点评:此关键理解用数对表示物体位置的方法.并理解数对中的两个数字是有顺序的.此题根据“找一个数的因数的方法”,进行解答即可.此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.此题主要考查分数的基本性质.6.参加学校体操表演的男女生共120人,男女生人数比一定不可能是()A.1:5 B.7:5 C.11:13 D.9:2考点:找一个数的因数的方法.专题:数的整除.分析:由题意知道,男女人数的总份数必须是120的约数,由此即可得到答案.解答:解:9+2=11(份),11不是120的约数,所以男女生人数的比不可能是2:9;故选:D.点评:由题意知道,男女人数的总份数必须是120的约数,由此即可得到答案.7.20名少先队员参加义务劳动,分成人数相等的若干小组(组数和每组人数都不少于2),最多有()种分法.A.2B.3C.4D.6考点:找一个数的因数的方法.专题:数的整除.分析:根据题干可知:分成人数相等的若干小组(组数和每组人数都不少于2),那么这里只要求出20的因数中大于2即可解决问题.解答:解:20=1×20,20=2×10,20=10×2,20=4×5,20=5×4,因为大于或者等于2的有4组:2×10,10×2,4×5,5×4.故答案为:C.点评:此题考查了求一个数因数的方法解决实际问题的方法的灵活应用.8.下面四句话中正确的一句是()A.18的所有因数都是合数B.把3米长的绳子截成相等的7段,每段长是1米的C.今年爸爸比明明大b岁,八年后爸爸比明明大b+8岁D.分数的基本性质用式子表示是==考点:找一个数的因数的方法;分数的意义、读写及分类;分数的基本性质;用字母表示数.专题:综合判断题.分析:A、18的所有因数是:1、2、3、6、9、18,所以18的所有因数都是合数为错误.B、把3米长的绳子平均截成7段,根据分数的意义,即将根3米长的绳子当做单位“1”平均分成7份,则每份是全长的1÷7=,也可以看作每段长是1米的.C、8年后爸爸长了8岁,明明也长了8岁.他们的年龄差不变.据此解答.D、依据分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变;据此判断即可.解答:解:A、18的所有因数都是合数,错误;B、把3米长的绳子截成相等的7段,每段长是1米的,是正确的;C、今年爸爸比明明大b岁,八年后爸爸比明明大b+8岁,是错误的;D、分数的基本性质用式子表示是==,是错误的.故选:B.点评:对于综合知识的考查,注意基础知识的积累.9.任意两个不同的质数相乘的积有()个约数.A.2B.3C.4D.无法确定考点:找一个数的因数的方法;合数与质数.专题:数的整除.分析:根据质数、合数的概念及意义,质数只有1和它本身两个因数;合数至少有三个因数;据此解答.解答:解:两个不同的质数相乘的积,它的因数有1,这两个质数,和这两个质数的积本身4个因数;因此,两个不同的质数相乘的积一定有4个约数;故选:C.点评:此题主要考查质数、合数的意义以及求一个数的因数的方法.10.两个数的最大公约数是12,这两个数的公约数的个数有()A.2个B.4个C.6个考点:找一个数的因数的方法.分析:两个数的最大公约数是12,这两个数的公约数的个数也就是12的约数的个数,计算出12的约数个数即可进行选择.解答:解:12约数有:1,2,3,4,6,12共六个,故选:C.点评:此题主要考查求两个数的公约数个数的方法.11.把60支铅笔分成几堆,下面()的分法得到的堆数最少.A.每3支一堆B.每4支一堆C.每6支一堆考点:找一个数的因数的方法.专题:数的整除.分析:根据整数除法的意义列式计算即可作出选择.解答:解:60÷3=20(堆);60÷4=15(堆);60÷6=10(堆).因为20>15>10,所以C的分法得到的堆数最少.故选:C.点评:考查了整数除法的意义和整数大小的比较.12.一个数的最大因数与这个数的最小倍数()A.相等B.不相等C.有的相等D.无法确定考点:找一个数的因数的方法;找一个数的倍数的方法.专题:数的整除.分析:根据:一个数的最大因数和最小最小倍数都是它本身进行解答即可.解答:解:因为一个数的最大因数与这个数的最小倍数都是它本身,所以一个数的最大因数与这个数的最小倍数相等.故选:A.。

北师大版-数学-五年级上册-《找因数》知识讲解 找一个数的因数的方法

北师大版-数学-五年级上册-《找因数》知识讲解 找一个数的因数的方法

找一个数的因数的方法问题(1)导入用12个小正方形拼成一个长方形,有哪几种拼法?在下面的方格内画一画。

(教材37页例题)1.探究拼摆方法方法一用“拼”或“画”的方法,试拼(或画)长方形。

(如下图)方法二利用长方形的面积是12个小格,倒推这个长方形的长与宽各有几个小格,再来确定这样的长方形有几种拼法。

2.找出12的因数方法一利用拼摆长方形的方法类推出找因数的方法。

找一个数的因数的方法和找长方形的积等于这个数,那么这些自然数就是这个数的因数。

方法二利用写除法算式找因数。

问题(2)导入找出18的全部因数。

(教材37页例题)过程讲解1.找出18的因数方法一列乘法算式找出18的因数。

想哪两个数的乘积是18。

从自然数1开始找起,乘积是18的乘法算式有1×18=18,2×9=18,3×6=18。

依据乘法算式得出18的全部因数有1,2,3,6,9,18。

方法二列除法算式找出18的因数。

18÷1=18.18÷18=1. 18÷9=2,18÷3=6,18÷6=3,18的全部因数有1,2,3,6,9,18。

2. 18的因数的表示方法方法一列举法。

(l)方法说明。

在表示18的因数时,可以用列举法,把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束。

(2)表示方法。

18的因数:1,2,3,6,9,18。

方法二集合表示法。

(1)方法说明。

画一个圈,在圈的上面写上“18的因数”。

把18的因数按从小到大的顺序写在圈里,两个因数之间用逗号隔开,全部写完后不用加句号。

(2)表示方法。

3。

因数的特征观察18的因数,可以发现:18的最小因数是1,最大因数是18,18的因数的个数是有限的。

归纳总结1.找一个数的因数的方法:(1)列乘法算式,从1开始,一对一对地找;(2)列除法算式,想这个数可以写成哪些除法算式,算式中的商和除数就是这个数的因数。

《找因数》(一等奖创新教案)北师大版五年级数学上册

《找因数》(一等奖创新教案)北师大版五年级数学上册

《找因数》(一等奖创新教案)北师大版五年级数学上册第三单元倍数与因数·第4课时找因数·教案班级:课时:课型:学情分析学生已经学习了倍数与因数的意义,由于数论的问题对于学生而言,理解都有点偏难,所以建议教师使用数形结合的方式进行讲解,帮助学生直观理解找因数的方法。

而且学生在学习了前三课时后,已基本建立因数、倍数、奇数和偶数的概念,所以课上可以在给予了基本引导后给学生更多自主探究的空间。

教学目标1.在用小正方形拼长方形的活动中,体会找一个数的因数的方法。

2.能在1~100 的自然数中找出某个自然数的所有因数,体会一个数的因数的个数是有限的。

三、重点难点【教学重点】掌握找一个数的因数的方法,能在1~100 的自然数中找出某个自然数的所有因数。

【教学难点】能有序地找出某个自然数的所有因数,体会一个数的因数的个数是有限的。

四、教学过程设计第一板块【复习旧知引入新课】1.根据算式,说一说:哪个数是哪个数的倍数,哪个数是哪个数的因数。

24×5=100 144÷4=36师:同学们,让我们一起回忆一下倍数和因数的意义,说一说上面的式子中哪个数是哪个数的倍数,哪个数是哪个数的因数。

学生自由回答,教师出示答案。

100是24和5的倍数,24和5是100的因数。

144是4和36的倍数,4和36是144的因数。

师:同学们知道怎么找一个数的因数吗?一个数的因数又有什么特征呢?(板书:找因数)设计意图:利用已经学过的知识,唤起学生已有的知识经验,进一步为新知识的学习奠定基础。

第二板块【合作交流探索新知】1.列乘法算式找因数。

(1)合作探究:让学生提前准备好12个小正方形,用这些小正方形拼成一个长方形并画在方格纸上。

师:同学们自己拼一拼,再和同伴们讨论探究,总共有几种拼法?合作探究,教师巡堂指导。

学生汇报成果。

(2)成果展示。

师:同学们都画好了吧,你们能用算式来表示这些图形吗?生1:6×2=12。

2、倍数与因数

2、倍数与因数

总复习——数与代数倍数与因数1.理解倍数与因数的意义,会找一个数的倍数和一个数的因数。

2.掌握2、3、5的倍数的特征,能判断一个数是不是2、3、5的倍数。

3.理解奇数、偶数的意义,能快速地判断一个数是奇数还是偶数。

4.理解质数、合数、质因数、互质数的意义,能正确判断一个数是质数还是合数,会把一个合数分解质因数。

5.掌握公因数和最大公因数、公倍数和最小公倍数的意义,能求出两个数的公因数和最大公因数、公倍数和最小公倍数。

6.能运用最大公因数和最小公倍数的知识解决实际问题。

考点1 倍数和因数1.因数和倍数的意义。

如果a×b=c(a,b,c均为正整数),那么c就是a和b的倍数,a和b就是c的因数。

因数和倍数是相互依存的。

2.因数的特征。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

3.找因数的方法。

找因数时,可以一对一对地找。

(1)用乘法找。

把一个数写成两个自然数相乘的形式,只要找到所有的乘法算式,就可以找到这个数的全部因数。

(2)用除法找。

用这个数分别除以1,2,3,4…能整除的,这个除数与对应的商就是这个数的因数。

4.倍数的特征。

一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

5.找倍数的方法。

一个数和任意非0自然数的乘积都是这个数的倍数。

找一个数的倍数时,可以先写出这个自然数本身,然后用这个自然数分别乘2,3,4,5…求出对应的积即可。

1.9的最小因数是(),最大因数是(),最小倍数是()。

2.一个数的最大因数是24,这个数的最小倍数是()。

3.有一个数,它既是12的因数,又是12的倍数,这个数是()。

4.判断。

(1)李想说:“12是倍数,3是因数。

”()(2)一个数的倍数一定大于它的因数。

()(3)一个自然数越大,它的因数的个数就越多。

()5.选择。

(1)如果自然数a是自然数b的倍数,那么a()b。

A.一定大于 B一定小于 C.大于或等于(2)古希腊人认为,如果一个数恰好等于它的所有因数(本身除外)相加之和,那么这个数就是“完全数”。

五年级上册数学三单元知识点整理

五年级上册数学三单元知识点整理

五年级上册数学三单元知识点整理五年级上册数学三单元知识点整理篇1一、商不变的性质:(包括以下知识点)1、除数不变,被除数扩大或缩小多少倍,商就扩大或缩小多少倍;2、被除数不变,除数扩大或缩小多少倍,商就缩小或扩大多少倍;3、被除数与除数同时扩大或同时缩小多少倍,商不变;4、被除数与除数同时扩大时或同时缩小不同倍数;5、被除数与除数一个扩大一个缩小不同倍数;2.44÷1.3 ○ 24.4÷13 1.8÷7 ○ 18÷0.7二、计算1、除数是整数的除法知识点:除数是整数的小数除法的计算方法:按照整数除法的法则去计算,商的小数点要和被除数的小数点对齐。

10.32÷12= 14.28÷28= 易错题:2、除数是小数的除法知识点:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几们,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”来补足);然后按照除数是整数的除法的计算方法进行计算。

12÷2.4= 1.04÷0.26= 4.9÷0.07= 8.7÷0.03=竖式易错题:三、商的近似值知识点:用“四舍五入”法求商的近似值的方法:根据题目要求或实际情况,除到保留倍数的下一位,这一位上的数小于5就直接舍去尾数,大于或等于5就向前一位进1。

(保留两位小数) (保留一位小数) (保留整数)324.57÷7≈ 9÷11≈ 32÷6≈四、商与被除数的大小关系1、除数小与1时,商大于被除数(被除数≠0,除数≠0);2、除数大于1时,商小于被除数(被除数≠0);3、除数等于1时,商等于被除数。

3.25÷0.92 ○ 3.25 0.37÷0.99 ○ 0.370.85÷1.2 ○ 0.85 1.01÷2.4 ○ 1.01五、循环小数知识点:1、小数部分依次不断重复的一个或几个数字,叫做这个循环小数的循环节。

一个数的因数与倍数

一个数的因数与倍数
5×5=25 ……
5的倍数有 5,10,15,20,25,…
2的倍数有2,4,6,… 3的倍数有3,6,9,12,15,… 5的倍数有5,10,15,20,25,…
怎样找一个数的倍数?
可以想哪些整数除以这个数商是整数,那这些整数
就是这个数的倍数。
还可以用这个数分别乘1,2,3,4,5,…所得 的积就是这个数的倍数。
2的倍数有:2,4,6,8 …
2的倍数 2,4,6,8 …
2,4,_6_, _8_,1_0_,_12_,
2的倍数
找倍数
你能用找出3的倍数吗?想一想,能找出多少个? 3 × 1=( 3 ) 3 × 2=( 6 ) 3 × 3=( 9 ) ……
3的倍数有 3,6,9,12,15,18 ......
5的倍数有哪些? 5×1=5 5×2=10 5×3=15 5×4=20
1,2,3,4,6,9,12,18,36。
36的因数:_____________________________________________
怎样找一个数的因数?
用这个数除以从1开始的哪些整数的结果仍是 整数,除数和商都是这个数的因数。
也可以从1开始,看看哪两个整数的乘积是这 个数,那么这两个整数就都是这个数的因数。
4
7
10
6
9
4×1=4 4×2=8 4×3=12 4×4=16 4×5=20 …… 4的倍数有 4,8,12,16,20…
7×1=7 7×2=14 7×3=21 7×4=28 7×5=35 …… 7的倍数有 7,14,21,28,35…
10×1=10 10×2=20 10×3=30 10×4=40 10×5=50 …… 10的倍数有 10,20,30,40,50…

一个数的因数的个数是

一个数的因数的个数是

一个数的因数的个数是()的,其中最小的因数是(),最大的因数是()。

一个数的倍数的个数是()的,其中最小的倍数是()。

18的因数有()。

写出30以内3的倍数()5、一个数的最小倍数减去它的最大因数,差是()。

6、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是()。

7、我是54的因数,又是9的倍数,同时我的因数有2和3。

()8、我是50以内7的倍数,我的其中一个因数是4。

()9、我是30的因数,又是2和5的倍数。

()10、我是36的因数,也是2和3的倍数,而且比15小。

()11、根据算式25×4=100,()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。

12、在18、29、45、30、17、72、58、43、75、100中,2的倍数有();3的倍数有();5的倍数有( ),既是2的倍数又是5的倍数有(),既是3 的倍数又是5的倍数有()。

13、48的最小倍数是(),最大因数是()。

最小因数是()。

14、用5、6、7这三个数字,组成是5的倍数的三位数是();组成一个是3的倍数的最小三位数是()。

15、一个自然数的最大因数是24,这个数是()。

16、从0、3、5、7、这4个数中,选出三个组成三位数。

(1)组成的数是2的倍数有:()(2)组成的数是5的倍数有:()。

(3)组成的数是3的倍数有:()它是42的因数又是7的倍数,它可能是()。

它的最大因数和最小倍数都是18,它是()。

它的最小倍数是1,它是()。

二、判断题1、任何自然数,它的最大因数和最小倍数都是它本身。

( )2、一个数的倍数一定大于这个数的因数。

( )3、个位上是0的数都是2和5的倍数。

( )4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

( )5、5是因数,10是倍数。

( )6、36的全部因数是2、3、4、6、9、12和18,共有7个。

( )7、因为18÷9=2,所以18是倍数,9是因数。

人教版五年级数学下册第二单元第2课《找一个数的因数、倍数 》课件

人教版五年级数学下册第二单元第2课《找一个数的因数、倍数 》课件

18的因数有1,18, 2,9,3,6。
列举法 18的因数有1、2、3、6、9、18。
18的因数 1、2、3、6、
9、18
练一练 30的因数有哪些?36呢?
30除以几没有余数
30÷1=30 30÷2=15 30÷3=10 30÷5=6
30的因数有1,30,2, 15,3,10,5,6。
36的因数有1、2、3、4、6、9、12、18、36。
9.蓝蓝从一个装有40颗棋子的盒中拿棋子。要求不 能一次拿完,且每次拿的颗数相同,最后正好 拿完。蓝蓝共有几种拿法?每次各拿几颗?
40的因数有1,2,4,5,8,10,20,40,共8个。 8-1=7(种) 答:蓝蓝共有7种拿法,每次各拿1颗,2颗,4颗, 5颗,8颗,10颗或20颗。
2的倍数有哪些?
参照找因数的方法,说 说找倍数的方法。
2的倍数有哪些? 【方法一】 根据倍数的意义和因数与倍数的关系:
2与非0自然数的积
2×1=2 2×2=4 2×3=6 ……
2的倍数有2,4, 6……
2的倍数有哪些?
【方法二】 根据乘除法的关系:
除以2商整数无余数
2÷2=1 4÷2=2 6÷2=3 ……
2的倍数有2,4, 6……
列举法 2的倍数有2、4、6…… 2的倍数
2、4、6……
练一练 3的倍数有哪些?5呢?
3与非0自然数的积 3×1=3 3×2=6 3×3=9 ……
5与非0自然数的积
5×1=5 5×2=10 5×3=15 ……
3的倍数有3、6、9……
5的倍数有5、10、15……
在上面找因数和倍数的过程中,你有什么发现?
9=3×3
小兔子过河。
这里面3的倍数有6、 9、15、18、24。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档