2019年山东省东营市中考数学试卷(含答案解析)
2019年山东省东营中考数学试卷含答案解析

10 y 16
B.
x 2
y 10 x y 16
C.
x x
y 10 2 y 16
D.
x x
y 10 2 y 16
6. 从 1,2,3,4 中 任 取 两 个 不 同 的 数 , 分 别 记 为 a 和 b , 则 a2 b2>19 的 概 率 是
()
A. 1 2
B. 5 12
C. 7 12
D. 1 3
7.如图,在 Rt△ ABC b2 4ac 中, ACB=90 ,分别以点 B 和点 C 为圆心,大于 1 BC 的 2
长为半径作弧,两弧相交于 D、E 两点,作直线 DE 交 AB 于点 F ,交 BC 于点 G ,连
结 CF .若 AC=3 , CG=2 ,则 CF 的长为
xy xy y2
=
x
x
y
,正确;D、
3
7 无法计算,故此选项错误.故选:C.
3.【答案】A 【解析】 BA∥EF , A=30 , FCA=A=30 . F=E=45 , AOF=FCA F=30 45=75 .故选:A.
4.【答案】D 【解析】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、
第5页
21.(本题满分 8 分) 如 图 , AB 是 O 的 直 径 , 点 D 是 AB 延 长 线 上 的 一 点 , 点 C 在 O 上 , 且 AC=CD , ACD=120 . (1)求证: CD 是 O 的切线; (2)若 O 的半径为 3,求图中阴影部分的面积.
22.(本题满分 8 分) 如图,在平面直角坐标系中,直线 y=mx 与双曲线 y=n 相交于 A(2, a) 、 B 两 x 点, BC x 轴,垂足为 C , △ AOC 的面积是 2. (1)求 m、n 的值;
东营市2019年中考数学试题含答案(word版)

秘密★启用前 试卷类型:A二0一四年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.81的平方根是( ) A . 3± B . 3 C . 9±D . 92.下列计算错误..的是( )A .=B .236x x x ⋅=C .-2+|-2|=0D .91)3(2=--3.直线1+-=x y 经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 4.下列命题中是真命题的是( ) A .如果22a b =,那么a b =B .对角线互相垂直的四边形是菱形C .旋转前后的两个图形,对应点所连线段相等D .线段垂直平分线上的点到这条线段两个端点的距离相等5.如图,已知扇形的圆心角为60︒,则图中弓形的面积为(ABCD6.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A .B. C . D .7.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么, 这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是()A .②③B .①②C .③④D .②③④8.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖 落在阴影区域的概率是( )A .12B .31C .14D .619.若函数21(2)12y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-210.如图,四边形ABCD 为菱形,AB=BD ,点B 、C 、D 、G 四个点在同一个O 圆上,连接BG 并延长交AD于点F ,连接DG 并延长交AB 于点E ,BD 与CG 交于点H ,连接FH .下列结论: ①AE =DF ;②FH ∥AB ; ③△DGH ∽△BGE ;④当CG 为O 的直径时,DF =AF .其中正确结论的个数是( )A .1B .2C .3D .4(第8题图) 2 2 1 3 1 1(第10题图)A第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2019年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP 达到3250亿元.3250亿元用科学记数法表示为 元. 12.2327x y y -= .13.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如右表.请你根据表中数据选一人参加比赛,最合适的人选是 .14.如图,有两棵树,一棵高12米,另一棵高6米, 两树相距8米.一只鸟从一棵树的树梢飞到另一棵树 的树梢,问小鸟至少飞行 米.15.如果实数x 、y 是方程组30,233x y x y +=⎧⎨+=⎩的解,那么代数式12xy x y x y ⎛⎫+÷⎪++⎝⎭的值 为 .16.在⊙O 中,AB 是⊙O 的直径,AB =8cm ,AC CD BD ==,M 是AB 上一动点,CM+DM17.如图,函数1y x =和3y x =-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形P AB 的面积为 .(第16题图)xyAP B D C O1l 2l(第17题图) (第14题图)18.将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列第一行 1 4 5 16 17 … 第二行 2 3 6 15 … 第三行 9 8 7 14 … 第四行 10 11 12 13 … 第五行 … ……表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2019对应的有序数对为 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:20141331sin 3038(0.125)-++-+⨯-(-)()(2)解不等式组:21,32(1) 5.x x +⎧⎪⎨⎪-⎩<≤把解集在数轴上表示出来,并将解集中的整数解写出来.20.(本题满分8分)东营市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)求出被调查的学生人数; (2)把折线统计图补充完整;(3)求出扇形统计图中,公务员部分对应的圆心角的度数;(4)若从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是“教师”的概率. 21.(本题满分8分)如图,AB 是⊙O 的直径.OD 垂直于弦AC 于点E ,且交⊙O 于点D .F_务员 (第20题图)师 生 人 他其他 20%教师 公务员 医生15%军人10%是BA 延长线上一点,若CDB BFD ∠=∠. (1)求证:FD 是⊙O 的一条切线; (2)若AB =10,AC =8,求DF 的长.22.(本题满分8分) 热气球的探测器显示,从热气球底部A 处看一栋高楼顶部的仰角为30︒,看这栋楼底部的俯角为60︒,热气球A 处与高楼的水平距离为120m ,这栋高楼有多1.732≈,结果保留小数点后一位)?23. (本题满分8分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能按时完工,又能使工程费用最少. 24.(本题满分11分)【探究发现】如图1,ABC ∆是等边三角形,60AEF ︒∠=,EF 交等边三角形外角平分线CF 所在的直线于点F .当点E是BC 的中点时,有AE =EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E 是直线BC 上(B ,C 除外)任意一点时(其它条件不变),结论AE =EF 仍然成立.假如你是该兴趣小组中的一员,请你从“点E 是线段BC 上的任意一点”;“点E是线段BC 延长线上的任意一点”;“ 点E是线段BC 反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并进行证明.(第24题图1)(第24题备用图2)(第22题图) BAC (第24题备用图1)(第25题图)【拓展应用】当点E 在线段BC 的延长线上时,若CE = BC ,在备用图2中画出图形,并运用上述结论求出:ABC AEF S S ∆∆的值.25.(本题满分12分) 如图,直线y=2x+2与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线2y x bx c =-++与直线BC 交于点D (3,4-). (1)求直线BD 和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M 、O 、N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;(3)在直线BD 上方的抛物线上有一动点P ,过点P 作PH 垂直于x 轴,交直线BD 于点H .当四边形BOHP 是平行四边形时,试求动点P 的坐标.秘密★启用前 试卷类型:A数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分,只要求填写最后结果.11.113.2510⨯;12.3(3)(3)y x x +-;13.丙; 14.10;15.1; 16.8; 17. 8 ;18.(45,12).三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分)(1)解:20141331sin 3038(0.125)-++-+⨯-(-)()=1+2+131+- (2)分=6- (3)分(2)解: 2132(1)x x+⎧⎪⎨⎪-⎩<①≤5②解不等式①,得:x <1,解不等式②,得:x≥32-…………………………………………1分所以不等式组的解集为:32-≤x <1. ………………………………………………………2分 解集中的整数解有1,0-.……………………………………………………………………3分 …………………………………………………………………………………………………4分20. (本题满分8分)_解:(1)由公务员所占比例及相应人数可求出被调查的学生数是:40÷20%=200(人);……………………………………………………………………1分(2)喜欢医生职业的人数为:200×15=30(人); (2)分喜欢教师职业的人数为:200-70-20-40-30=40(人);………………………………3分折线统计图如图所示;…………………………………………………………………4分(3)扇形统计图中,公务员部分对应圆心角的度数是360°×20%=72°;………………6分(4)抽取的这名学生最喜欢的职业是教师的概率是:4012005=.…………………………………………………………………………………8分21.(本题满分8分) (1)证明:CDB BFD ∠=∠(已知), CAB CDB ∠=∠(圆周角相等)∴EAO DFO ∠=∠……………………………………1分在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠(公共角)∴ 90=∠=∠AEO FDOD 是半径OD 外端点,第21题图务员 (第20题图) 师 生 人 他 其他 20% 教师 公务员 医生15% 军人10% 20%35%DAC∴ FD 是⊙O 的一条切线. (4)分(2)在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠∴DFO ∆∽EAO ∆ ∴OEODEA DF =,…………………………………………………………………………6分 AB =10,AC =8,OD ⊥AC∴.3,4,5====OE EA OD OA ∴4520.33EA OD DF OE ⨯⨯=== …………………………………………………………………………………………………8分22. (本题满分8分)解:如图,作AD ⊥BC 于点D ,从热气球看这栋高楼顶部的仰角记为α底部的俯角记为β,则30,60αβ=︒=︒,AD =120.tan BD ADα=,tan ,CD ADβ=………………………2分∴BD =tan 120tan 30AD α︒⋅=⨯=1203=,…………………………………………………………4分 ∴CD =tan 120tan 60AD β︒⋅=⨯=120=…………………………………………………………6分∴BC=BD+CD==277.1≈………………………………7分答:这栋楼高约为277.1m .………………………………………………………8分 23. (本题满分8分)解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:121010=+xx ………………………………………………………………2分方程两边同乘以x 2,得302=x 解得:15=x经检验,15=x 是原方程的解.…………………………………………………………3分 ∴当x =15时,x 2=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天. ………4分 (2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案: 方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);……………………5分方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);………………………6分方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).……………7分∵75>70>67.5 ∴应该选择甲工程队承包该项工程. ……………………………………8分24.(本题满分11分)(1) 正确画出图形……………………………………………………………………………1分 ①第一种情况:当点E 在线段BC 上时. 证明:在AB 上取A G=CE ,连接EG .则BEG ∆是等边三角形∴∠AGE =120︒,而∠ECF =120︒∴∠AGE=∠ECF …………………………………2分∵∠AEC =∠AEF +∠CEF =∠GAE +∠B ,60AEF B ︒∠=∠=∴∠GAE =∠CEF ……………………………………………………………………………4分 ∴AGE ∆≌ECF ∆(ASA )∴AE =EF ………………………………………………………………………………………6分②第二种情况:当点E 在BC 延长线上时.在CF 取C G=CE ,连接EG .∵CF是等边三角形外角平分线∴∠ECF=60︒∵CG=CE∴CEG∆是等边三角形∴∠FGE=∠ACE=120︒………………………………2分∵∠AEF=∠AEG+∠GEF=∠AEG+∠AEC=60︒∴∠GEF=∠CEA∴ACE∆≌FGE∆(ASA)∴AE=EF分③第三种情况:当点E在BC的反向延长线上时.在AB的延长线上取A G=CE,连接EG.则有BG= BE;∴BEG∆是等边三角形∴∠G=∠ECF=60︒………………………………2分∵∠CEF=∠AEF-∠AEC=60︒-∠AEC∠EAB=∠ABC-∠AEC=60︒-∠AEC∴∠CEF=∠EAB……………………………………………4分∴AGE∆≌ECF∆(ASA)∴AE=EF……………………………………………………6分(2)正确画出图形…………………………………………7分∵CE = BC=AC∴∠CAE=∠C EA=30︒,∠BAE=90︒∴tan30ABAE︒== (9)分∵AE=EF,∠AEF=60︒∴AEF∆是等边三角形∴AEF∆∽ABC∆ (10)分∴22133ABC AEF S AB S AE ∆∆⎛⎛⎫=== ⎪ ⎝⎭⎝⎭.…………………………………………………………11分25. (本题满分12分)解:(1)在直线22+=x y 中,令0=x 得2=y ,所以得点B )2,0( 设直线BD 的解析式为:m kx y +=,代入B 、D 两点坐标得2,43m k m=⎧⎨-=+⎩解得:2,2-==k m .所以直线BD 的解析式为:22+-=x y .……………………………………………1分 将B 、D 两点坐标代入抛物线2y x bx c =-++中得:2,493c b c=⎧⎨-=-++⎩解得:2,1==c b .所以,抛物线的解析式为:22++-=x x y .……………………………………3分 (2)存在.假设存在点M (x,y )符合题意,则有如下两种情形:①若MNO ∆∽BOC ∆,则OC NO BO MN =,所以有12xy =, 即x y 2=又因为M 点在抛物线上所以22++-=x x y , 所以:222x x x =-++ 即:022=-+x x解得1=x 或2-=x ,又因为M 点在第一象限,2-=x 不符合题意, 所以1=x ,2=y 故M )2,1(.………………………6分②若ONM ∆∽BOC ∆,则MN OC ON BO =即x y 21=, 所以2122x x x =-++即:0422=--x x 解得4331+=x 或4331-=x , 又因为M 点在第一象限,4331-=x 不符合题意, 所以4331+=x ,8331+=y 故M (4331+,8331+)………………………8分 所以,符合条件的点M 的坐标为)2,1( ,(4331+,8331+)………………………9分 (3)设点P 坐标为),(b a 则22++-=a a b 又因为点P 在直线BD 上方, 所以0<a <3,又PH 垂直于x 轴,交直线BD 于点H , 所以H )22,(+-a a ,所以)22(22+--++-=a a a PH a a 32+-=,……………………………………10分因为四边形BOHP 是平行四边形, 所以PH=OB =2, 即0232=+-a a ,解得1=a 或2=a 均满足0<a <3………………………………………………………11分 当1=a 时,222=++-a a ,当2=a 时,022=++-a a ,所以点P 的坐标为)2,1(, )0,2(……………………………………………………12分。
2019年山东省东营中考数学试卷-答案

山东省东营市2019年初中学业水平考试数学答案与解析第Ⅰ卷(选择题 共30分)一、选择题 1.【答案】B【解析】2019-的相反数是:2019.故选:B . 2.【答案】C【解析】A 、333352--x x x =,故此选项错误;B 、32842÷x x x =,故此选项错误;C 、2xy --xxy y x y=,正确;D 无法计算,故此选项错误.故选:C . 3.【答案】A 【解析】BA EF ∥,30∠︒A=,30∴∠∠︒FCA A ==. 45∠∠︒F E ==,304575∴∠∠+∠︒+︒︒AOF FCA F ===.故选:A .4.【答案】D【解析】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D . 5.【答案】A【解析】设这个队胜x 场,负y 场,根据题意,得10216+=⎧⎨+=⎩x y x y .故选:A .6.【答案】D【解析】画树状图得:共有12种等可能的结果,任取两个不同的数,2219+a b >的有4种结果,2219∴+a b >的概率是41123=,故选:D . 7.【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC =,2CG BG ==,⊥FG BC ,90∠︒ACB =,∴FG AC ∥,∴BF CF =,∴CF 为斜边AB 上的中线,2235AB =,1522∴CF AB ==.故选:A .8.【答案】C【解析】A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C . 9.【答案】D【解析】如图将圆锥侧面展开,得到扇形'ABB ,则线段BF 为所求的最短路程. 设∠'︒BAB n =.64180⋅=n ππ,120∴n =即120∠'︒BAB =.E 为弧'BB 中点,90∴∠︒AFB =,60∠︒BAF =,•62∴∠⨯BF AB sin BAF ==∴最短路线长为D .10.【答案】B【解析】①四边形ABCD 是正方形,45∴⊥∠∠︒OC OD AC BD ODF OCE =,,==,90∠︒MON =,∴∠∠COM DOF =,∴COE DOF ASA △≌△(),故①正确; ②90∠∠︒EOF ECF ==,∴点O E C F 、、、四点共圆,∴∠∠∠∠E O G C F G O E G F C G=,=,∴OGE FGC △∽△,故②正确;③COE DOF △≌△,∴COE DOF S S △△=,1=4∴OCD ABCD CEOF S S S △正方形四边形=,故③正确; ④COE DOF △≌△,∴OE OF =,又90∠︒EOF =,∴EOF △是等腰直角三角形,45∴∠∠︒OEG OCE ==,∠∠EOG COE =,∴OEG OCE △∽△,∴OE OC OG OE :=:,2•∴OG OC OE =,12OC AC =,2OE EF =,2•∴OG AC EF =,CE DF BC CD =,=,∴BE CF =,又Rt CEF △中,222+CF CE EF =,222∴+BE DF EF =,22•∴+OG AC BE DF =,故④错误,故选:B . 二、填空题 11.【答案】4210⨯【解析】20 000用科学记数法表示为4210⨯. 12.【答案】(1)(3)--x x【解析】原式=(3)(3)(1)(3)-----x x x x x =. 13.【答案】1【解析】由统计表可知共有:1222105352++++=人,中位数应为第26与第27个的平均数, 而第26个数和第27个数都是1,则中位数是1.14.【答案】6+【解析】作⊥AD BC 于D ,AB AC =,∴BD DC =,在Rt ABD △中,30∠︒B =,12∴AD AB =,由勾股定理得,3BD ,26∴BC BD ==,∴ABC △的周长为:66++.15.【答案】71≤x ﹣<【解析】解不等式324--x x ()>,得:1x <,解不等式2x 1122-+≤x ,得:7≥-x ,则不等式组的解集为71-≤x <.16.【答案】2【解析】点M N ,分别是BC AC ,的中点,12∴MN AB =,∴当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大,连接AO 并延长交O 于点'B ,连接'CB ,'AB 是O 的直径,90∴∠'︒ACB =.45∠︒ABC =,5AC =,45∴∠'︒AB C =,sin 45∴'︒AC AB ==2∴MN 最大=. 17.【答案】0) 【解析】如图,ACE △是以菱形ABCD 的对角线AC 为边的等边三角形,2AC =,1∴CH =,∴AH 30∠∠︒ABO DCH ==,∴DH AO =,∴OD ,∴点D的坐标是0).18.【答案】10093-【解析】由题意可得,1⎛ ⎝⎭A,2(1,A,3(3,-A,4(-A,5A,6(9,-A ,…,可得21+n A 的横坐标为3-n ()2019210091⨯+=,∴点2019A 的横坐标为:1009100933--()=, 三、解答题19.【答案】(1)2020 (2)1+a b,1 【解析】(1)原式201912++=2020+=2020=;(2)原式()()222a •--+b aa ab a b =()()()()2•-+-+a b a b aa ab a b =+a b=, 当1a =-时,取2b =, 原式1112-+==. 20.【答案】(1)200(2)(3)126° (4)14【解析】(1)被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:2010%200÷=(人);(2)被抽到的学生中,报名“绘画”类的人数为:20017.5%35⨯=(人),报名“舞蹈”类的人数为:20025%50⨯=(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:360126200︒︒⨯=; (4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A B C D 、、、,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为41164=.21.【答案】(1)见解析(2)32π【解析】(1)证明:连接OC .AC CD =,120∠︒ACD =,30∴∠∠︒A D ==. OA OC =, 30∴∠∠︒ACO A ==.90∴∠∠∠︒OCD ACD ACO =﹣=.即⊥OC CD , ∴CD 是O 的切线.(2)30∠︒A =,260∴∠∠︒COB A ==.260333602⋅∴=BOC S ππ扇形=,在Rt OCD △中,CD OC tan 60︒=⋅=11S 322∴=⋅=⨯⨯OCD OC CD △32∴-=OCD BOC S S π△扇形,∴ 22.【答案】(1)=1=4m n -,-(2)112=-+y x【解析】(1)直线y mx =与双曲线=ny x相交于2A a B (-,)、两点, ∴点A 与点B 关于原点中心对称,2∴B a (,-), 20∴C (,); 2AOC S △=,1222∴⨯⨯a =,解得2a =, 22∴A (-,), 把22∴A (-,)代入y mx =和=n y x 得22-m =,n22=-,解得14m n =-,=-; (2)设直线AC 的解析式为+y kx b =, 直线AC 经过A C 、,2220-+=⎧∴⎨+=⎩k b k b ,解得1k 2b 1⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为112=-+y x .23.【答案】电子产品降价后的销售单价为180元时,公司每天可获利32 000元. 【解析】设降价后的销售单价为x 元,则降价后每天可售出3005200[]+-x ()个, 依题意,得:10030052003]200[0-+-x x ()()=, 整理,得:2360324000-+x x =, 解得:12180x x ==.180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元. 24.【答案】(1(2)当0360︒≤︒α<时,AFBD的大小没有变化 (3【解析】(1)①当0︒α=时,Rt ABC △中,90∠︒B =,∴==AC点D E 、分别是边BC AC 、的中点,11122∴====AE AC BD BC ,∴=AEBD. ②如图1﹣1中,当180︒α=时, 可得AB DE ∥,=AC BCAE BD ,∴==AE ACBD BC(2)如图2,当0360︒≤︒α<时,AFBD的大小没有变化, ∠∠ECD ACB =, ∴∠∠ECA DCB =,又ACBC==EC DC ∴ECA DCB △∽△,∴=AE ECBD DC. (3)①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE △中,2==CE BC ,1∴===BE ,5∴+AE AB BE ==,5=AEBD ,∴==BD .②如图3﹣2中,当点E 在线段AB 上时,易知1413-BE AE =,==,5=AEBD ,5∴=BD ,综上所述,满足条件的BD . 25.【答案】(1)2142=--y x x(2)24(-,-)(3)315,48⎛⎫- ⎪⎝⎭G【解析】(1)抛物线4+-y ax bx =经过点2040A B (-,),(,), 424016440+-=⎧∴⎨--=⎩a b a b , 解得1a 2b 1⎧=⎪⎨⎪=⎩,∴抛物线解析式为2142=--y x x ; (2)如图1,连接OP ,设点21,42⎛⎫+- ⎪⎝⎭P x x x ,其中40-x <<,四边形ABPC 的面积为S ,由题意得04C (,-),∴++AOC OCP OBP S S S S △△△=21111244(x)4x x 42222⎛⎫=⨯⨯+⨯⨯-⨯⨯--+ ⎪+⎝⎭, 24228---+x x x =, 2412--+x x =,2216-++x =().10-<,开口向下,S 有最大值,∴当2x =-时,四边形ABPC 的面积最大,此时,4y =-,即24--P (,). 因此当四边形ABPC 的面积最大时,点P 的坐标为24--(,). (3)221194(1)222=+-=+-y x x x , ∴顶点912--M (,).11 / 12如图2,连接AM 交直线DE 于点G ,此时,CMG △的周长最小. 设直线AM 的解析式为y kx =,且过点92012--A M (,),(,),2092+=⎧⎪∴⎨-+=-⎪⎩k b k b , ∴直线AM 的解析式为332=-y x . 在Rt AOC △中,===ACD 为AC 的中点,12∴==AD AC ADE AOC △∽△,∴=AD AF AO AC, 22=A , 5∴AE =,523∴--OE AE AO ===,30∴E (-,), 由图可知12D (,-)设直线DE 的函数解析式为+y mx n =,230+=-⎧⎨-+=⎩m n m n , 解得:1232⎧=-⎪⎪⎨⎪=-⎪⎩m n , ∴直线DE 的解析式为1322=--y x .12 / 12 1322332⎧=-⎪⎪⎨⎪=-⎪⎩y x y x , 解得:34158⎧=⎪⎪⎨⎪=⎪⎩x y , 315,48⎛⎫∴- ⎪⎝⎭G .。
2019年山东东营中考数学试题(附详细解题分析)

2019年山东省东营市市初中学生学业考试数学试题第I 卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. {题目}1. (2019•山东省东营市,1)-2019的相反数是( ) A.-2019 B.2019 C.20191-D.20191 {答案}B{解析}本题考查了相反数的定义,∵负数的相反数是正数,∴-2019的相反数是2019. 因此本题选B . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2019•山东省东营市,2) 下列运算正确的是( ) A .x x x 25333-=- B .x x x 2483=÷ C .yx xy xy xy -=-2 D .1073=+{答案}C{解析}选项A 考查了整式加减,系数相加,字母和字母指数不变,答案错误;选项B 考查了单项式除以单项式,答案为2x 2,答案错误;选项C 考查了分式的约分,首先把分母因式分解问哦y(x-y),然后分式的分子和分母同时约去因数y ,答案正确;选项D 不是同类二次根式,不能运算,答案错误.因此本题选C . {分值}3{章节:[1-2-2]整式的加减} {章节:[1-14-1]整式的乘法} {章节:[1-15-1]分式} {章节:[1-16-1]二次根式} {考点:合并同类项} {考点:单项式除法} {考点:约分}{考点:二次根式的加减法} {类别:常考题} {难度:2-简单}{题目}3.(2019•山东省东营市,3)将一副三角板(∠A =30°,∠E =45°) 按如图所示方式摆放,使得BA ∥EF ,则∠AOF 等于( )A .75°B .90°C .105°D .115° {答案}A{解析}本题考查了平行线的性质以及三角形外角的性质,∵BA ∥EF ,∴∠OCF=∠A=30°.所以∠AOF=∠F+∠OCF=∠F+∠A=45°+30°=75°. 因此本题选A . {分值}3{章节:[1-5-3]平行线的性质}{章节:[1-11-2]与三角形有关的角} {考点:两直线平行内错角相等} {考点:三角形的外角} {类别:常考题} {难度:3-中等难度}{题目}4.(2019•山东省东营市,4)下列图形中,是轴对称图形的是( ){答案}D{解析}本题考查了轴对称图形的定义.选项A 、B 、C 沿某直线对折,折线两旁的部分不能完全重合,选项D 符合要求. {分值}3{章节:[1-13-1-1]轴对称} {考点:轴对称图形} {类别:常考题} {难度:2-简单}{题目}5.(2019•山东省东营市,5)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( ) A .⎩⎨⎧=+=+16210y x y x B .⎩⎨⎧=-=+16210y x y x C .⎩⎨⎧=-=+16210y x y x D .⎩⎨⎧=+=+16210y x y x{答案}A{解析}本题考查了二元一次方程组模型的应用,∵某队参与了10场比赛,可列方程x+y=10;而该队在比赛中共得16分,可得2x+y=16,∴可得方程组⎩⎨⎧=+=+16210y x y x .因此本题选A .{分值}3{章节:[1-8-3]实际问题与二元一次方程组} {考点:简单的列二元一次方程组应用题} {类别:常考题} {难度:2-简单}{题目}6.(2019•山东省东营市,6)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则22b a +>19的概率是( ) A .21 B .125 C .127D .31{答案}Da a 2+b 2 b 1 2 3 4 1 5 10 17 2 5 13 20 3 10 13 25 4 17 20 25从表格可以看到,12种结果中,只有4种符合要求,所以概率为31124=.因此本题选D . {分值}3{章节:[1-25-1-2]概率} {考点:两步事件不放回} {类别:常考题} {难度:2-简单}{题目}7.(2019•山东省东营市,7)如图,在Rt △ABC 中,∠ACB=90°,分别以点B 和点C 为圆心,大于21BC 的长为半径作弧,两弧相交于D 、E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF ,若AC=3,CG=2,则CF 的长为( ) A .25 B .3 C .2 D .27{答案}A{解析}由作图可知,DE 是边BC 的垂直平分线,那么BC=2CG=4,在Rt △ABC 中,由勾股定理,可得AB=5.因为∠ACB=90°,所以DE ∥AC ,因为G 为BC 中点,所以F 为AB 中点,所以CF=21AB=25.因此本题选A . {分值}3{章节:[1-13-1-2]垂直平分线} {章节:[1-17-1]勾股定理} {考点:垂直平分线的性质} {考点:勾股定理}{考点:直角三角形斜边上的中线} {类别:常考题} {难度:2-简单}{题目}8.(2019•山东省东营市,8)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图像如图所示,请你根据图像判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙两队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢{答案}C{解析}从图像上可知,甲先到达终点,故选项A 错误;甲、乙两队比赛的路程都是300米,所以选项B 错误;从图像上可看出,在47.8秒时,甲、乙两队的路程都是174米,故选项C 正确;由图像可知,从出发到13.7秒的时间段内,甲队的图像在乙队的下方,所以在相同的时间,乙队行驶的路程比甲队长,那么此时乙队速度快,选项D 错误.因此本题选C . {分值}3{章节:[1-19-1-2] 函数的图象} {考点:距离时间图象}{类别:思想方法}{类别:常考题} {难度:2-简单}{题目}9.(2019•山东省东营市,9)如图所示时一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )A .23B .233 C .3 D .33 {答案}D{解析}本题考查了圆锥侧面图的知识,如图,将圆锥侧面展开,线段BD 为所求的最短路程,条件得,∠BAB /=120°,C 为弧BB /中点,所以BD=23AB=23×6=33(厘米).因此本题选D . {分值}3{章节:[1-24-4]弧长和扇形面积} {考点:圆锥侧面展开图}{类别:思想方法}{类别:常考题} {难度3-中等难度}{题目}10.(2019•山东省东营市,10)如图,在正方形ABCD 中,点O 时对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF=90°,OC 、EF 交于点G .给出下列结论:①△COE ≌△DOF ;②△OGE ∽△FGC ;③四边形CEOF 的面积为正方形ABCD 面积的41;④DF 2+BE 2=OG·OC .其中正确的是( )A .①②③④B .①②③C .①②④D .③④{答案}B{解析}因为正方形ABCD ,所以OC=OD ,∠OCE=∠ODC=90°,∠COD=90°.因为∠EOF=90°,所以∠DOF=∠COE ,所以△COE ≌△DOF ,①对;由△COE ≌△DOF ,得OE=OF ,所以∠OEF=45°,所以∠OEF=∠OCF .因为∠OGE ∠CGF ,可得△OGE ∽△FGC 所以②正确;由△COE ≌△DOF ,得△COE 与△DOF 面积相等,所以四边形CEOF 的面积=△COE 的面积+△COF 面积=△DON +△COF=△COD 的面积=为正方形ABCD 面积的41,所以③正确;④①②③④.因为∠OEG=∠OCE=45°,∠EOG=∠COE ,所以△OGE ∽△OEC ,所以OE:OC=OG:OE ,所以OE 2=OG·OC .因为OE 2+OF 2=EF 2=CE 2+CF 2,又因为OE=OF ,DF=CE ,CF=BE ,所以2OE 2=DF 2+BE 2=2OG·OC .所以④错误.故正确的是①②③. {分值}3{章节:[1-18-2-3] 正方形} {考点:切线的性质}{考点:三角形的全等与相似的综合} {考点:几何选择压轴}{类别:思想方法}{类别:常考题} {难度:4-较高难度}第‖卷(非选择题 共90分){题型:2-填空题}二、填空题:本大题共8小题,其中11—14题每小题3分,15—18题每小题4分,共28分.只要求填写最后结果.{题目}11.(2019•山东省东营市,11)2019年11月12日,“五指山”舰正式服役,是我国第六艘01型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为 . {答案}2×104{解析}本题考查了科学记数法,20000=2×104. {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}12.(2019•山东省东营市,12)因式分解:x(x-3)-x+3= . {答案}B{解析}本题考查了多项式的因式分解,因为x(x-3)-x+3=x(x-3)-(x-3)=(x-3)(x-1). {分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法} {类别:常考题} {难度:1-最简单}{题目}13.(2019•山东省东营市,3)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是 小时.{答案}1{解析}本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1. {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}14.(2019•山东省东营市,14)已知等腰三角形的底角是30°,腰长为32,则它的周长是 .{答案}346{解析}本题考查了锐角三角函数的定义或勾股定理.过等腰三角形的顶点作底边的垂线,设底边为2a ,那么cos30°=a32,所以a=3,所以周长=6+43. {分值}3{章节:[1-28-3]锐角三角函数} {考点:特殊角的三角函数值} {类别:常考题} {难度:2-简单}{题目}15.(2019•山东省东营市,15)不等式组⎪⎩⎪⎨⎧+≤-〉--21512,4)2(3xxxx的解集是.{答案}-7≤x<1{解析}本题考查了解不等式组,∵不等式x-3(x-2)>4的解集为x<1,不等式21512+≤-xx的解集是x≥-7,∴不等式组的解集为-7≤x<1.{分值}4{章节:[1-9-3]一元一次不等式组}{考点:解一元一次不等式组}{类别:常考题}{难度:2-简单}{题目}16.(2019•山东省东营市,16)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.第16题图{答案}225{解析}本题考查了圆的有个性质以及三角形中位线定义,因为当MN最大时,AB也最大,此时AB 为⊙O的直径,那么△ABC为等腰直角三角形,由锐角三角函数或勾股定理,求得AB=2AC=52.因为点M、N分别是AC、BC的中点,那么由三角形中位线定理,求得MN=21AB=225.{分值4{章节:[1-24-1-3]弧、弦、圆心角}{考点:直径所对的圆周角}{考点:三角形中位线}{类别:常考题}{难度3-中等难度}{题目}2.(2019•山东省东营市,17)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是.第17题图{答案}(33,0) {解析}本题考查了等边三角形的性质以及全等三角形、勾股定理等,设CE 交x 轴于点F ,因为△ACE是等边三角形,所以∠CAD=30°,那么CF=21AC=1.由勾股定理求得AF=3.因为CD 2=DF 2+CF 2,CD=2DF ,所以可求得DF=33.由“HL”定理易知△ABO 与△DCF 全等,所以AO=DF 33.所以OD=AF-AO-DF=3333333=--,即点D 坐标为(33,0). {分值}4{章节:[1-7-2]平面直角坐标系} {考点:含30度角的直角三角形} {考点:勾股定理}{考点:等边三角形的性质} {考点:全等三角形的判定HL} {类别:常考题} {难度3-中等难度}{题目}18.(2019•山东省东营市,18)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .{答案}-31009{解析}本题考查坐标里的点规律探究题,观察发现规律:A 1(1,33),A 2(1,3-),A 3(-3,3-),A 4(-3,33),A 5(9,33),A 6(9,39-),A 7(-27,39-),……A 2n+1[(-3)n ,3×(-3)n ](n 为自然数),2019=1009×2+1,所以A 2019的横坐标为:(-3)1009=-31009. {分值}4{章节:[1-7-2]平面直角坐标系} {考点:坐标与图形的性质}{考点:规律探究型问题:代数填空压轴} {类别:常考题} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共 7 小题,共 62 分.解答要写出必要的文字说明、证明过程或演算步骤.{题目}19.(2019·山东省东营市,19) (1)计算: E M B E D E q u a t i o n .D S M T 4 1(1)- {解析}(1)题考查了实数的有关运算,解决问题的关键在于掌握负整指数、零次幂、特殊角的三角函数值、开方运算以及绝对值的定义,解决此题时,可先求出E M B E D E q u a t i o n .D SM T 4{答案}解:(1)原式= 2019+1+232+2 22-23=2020; {章节:[1-28-2-1]特殊角} {考点:简单的实数运算} {类别:常考题} {难度:2-简单} {题目}19.(2019·山东省东营市,19)(2)化简求值:22222()a b a ab b a b a ab a +÷+---,当 a 1 时,请你选择一个适当的数作为b 的值,代入求值. {解析}(2)本题考查了分式的化简与求值.正确化简分式是解题的关键,熟练掌握整式的因式分解是化简的基础.将a 的值代入化简后的代数式进行求值. {答案}解: (2)原式=222()()a b a a a b a b ⨯--+=2()()()()a b a b a a a b a b ⨯-+-+=1a b +. {分值}8 {章节:[1-15-2-2]分式的加减} {考点:分式的混合运算} {类别:常考题} {难度:2-简单} {题目}20.(2019·山东省东营市,20) 为庆祝建国 70 周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图; (3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数; (4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率. {解析}本题考查了统计条形统计图、扇形统计图与概率.(1)利用书法人数和所占百分数直接计算求出总人数;(2)求出绘画、舞蹈人数补全条形统计图;(3)根据360⨯︒声乐人数总人数求出“声乐”类对绘画 声乐 17.5% 书法 10% 舞蹈 25% 器乐应扇形圆心角的度数;(4)小提琴、单簧管、钢琴、电子琴分别用A、B、C、D 表示列出所有可能性表,根据概率公式求解即可.{答案}解:(1)被抽到的学生中,报名“书法”类的人数有20 人,占整个被抽到学生总数的10%,所以抽取学生的总数为20÷10%=200(人).(2)被抽到的学生中,报名“绘画”类的人数为200×17.5%=35 人,报名“舞蹈”类的人数为200×25%=50 人.直方图如下:(3)被抽到的学生中,报名“声乐”类的人数为70 人,∴扇形统计图中“声乐”类对应扇形圆心角的度数为70360200⨯︒=126°.小颖小东A B C DA (A,A)(A,B)(A,C)(A,D)B (B,A)(B,B)(B,C)(B,D)C (C,A)(C,B)(C,C)(C,D)D (D,A)(D,B)(D,C)(D,D)由列表可以看出,一共有16 种结果,并且它们出现的可能性相等,同一种乐器的结果有4种,所以P(同一乐器)=416=14.{分值}9{章节:[1-25-2]用列举法求概率}{考点:统计的应用问题}{考点:两步事件放回}{类别:常考题}{难度:2-简单}{题目}21.(2019·山东省东营市,21) 如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且AC=CD,∠ACD=120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为3,求图中阴影部分的面积.{解析}本题考查了切线的判定以及阴影部分面积的求法.(1)连接OC ,证明DC ⊥CO 即可;(2)S 阴影=S △OCD - S 扇形OBC . {答案}(1)证明:如图,连接OC .∵AC =CD ,∠ACD =120°, ∴∠A =∠D =30°. ∵OA =OC ,∴∠ACO =∠A =30°,∴∠DCO =∠ACD -∠ACO =90°,即 DC ⊥CO , ∵点 C 在⊙O 上, ∴CD 是⊙O 的切线.(2)解:∵∠A =30°,∴∠COB =2∠A =60°, ∴ S 扇形OBC260333602ππ=g .在 R t △OCD 中, C D = O C ×tan 60=3 3,S △OCD =12 OC C D =123 33=932,∴ S △OCD -S 扇形OBC =9332-. ∴图中阴影部分的面积为9332-. {分值}8{章节:[1-24-4]弧长和扇形面积} {考点:切线的判定} {考点:扇形的面积} {类别:常考题} {难度:2-简单}{题目}22.(2019·山东省东营市,22) 如图,在平面直角坐标系中,直线y =mx 与双曲线 y nx相交于A (-2,a )、B 两点,BC ⊥x 轴,垂足为 C ,△AOC 的面积是 2. (1)求 m 、n 的值;(2)求直线 AC 的解析式.{解析}本题考查了反比例函数与一次函数的综合题,解决问题的关键是由两种函数关于原点成中心对称由点A的坐标得到点B的横坐标为2.(1)先由函数关于原点成中心对称得点B的横坐标为2,从而OC=2,再根据△AOC 的面积为2,求出点A的坐标,把坐标代入解析式从而确定出m、n的值;(2)由待定系数法直接求出直线AC 的解析式.{答案}解:(1)∵直线y=mx 与双曲线y nx相交于A(-2,a)、B 两点,∴点B横坐标为2,∵BC⊥x 轴,∴点C的坐标为(2,0),∵△AOC 的面积为2,∴122a 2 ,∴a=2∴点A的坐标为(-2,2),将A(-2,2)代入y=mx,y nx,∴2m 2,22n-=,∴m=-1,n=-4;(2)设直线AC 的解析式为y=kx+b,∵y=kx+b 经过点A(-2,2)、C(2,0),∴22 20k bk b-+=⎧⎨+=⎩解得k 12,b 1.∴直线A C 的解析式为y 12+1.{分值}8{章节:[1-26-1]反比例函数的图像和性质} {考点:中心对称}{考点:反比例函数与一次函数的综合} {考点:待定系数法求一次函数的解析式} {类别:常考题}{难度:2-简单}{题目}23.(2019·山东省东营市,23) 为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200 元时,每天可售出300 个;若销售单价每降低 1 元,每天可多售出 5 个.已知每个电子产品的固定成本为100 元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000 元?{解析}本题考查了一元二次方程应用中的营销问题.根据等量关系“利润=(售价-成本)×销售量”列出每天的销售利润与销售单价的方程求解,求解结果符合题意即可.{答案}解:设降价后的销售单价为x 元,根据题意得:x100300+5200x32000.整理得:x 1001300 5x 32000.即:x2 360x 32400 0.解得:x1 x2 180,x 180 200 ,符合题意.答:这种电子产品降价后的销售单价为180 元时,公司每天可获利32000 元.{分值}8{章节:[1-21-4]实际问题与一元二次方程}{考点:中心对称}{考点:一元二次方程的应用—商品利润问题}{类别:常考题}{难度:2-简单}{题目}24.(2019·山东省东营市,24) 如图1,在 Rt△ABC 中,∠B=90°,AB=4,BC=2,点D、E 分别是边BC、AC 的中点,连接DE.将△CDE 绕点C 逆时针方向旋转,记旋转角为α.(1)问题发现①当α =0°时,AEBD=;②当α= 180°时,AEBD=.(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图 2 的情形给出证明.(3)问题解决△CDE 绕点C 逆时针旋转至A、B、E 三点在同一条直线上时,求线段BD 的长.{解析}本题属于旋转的综合题.考查了、旋转的性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键.(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的AE BD 值是多少;②α=180°时,可得AB ∥DE ,然后根据AC BC AE BD =,求出AEBD的值是多少即可;(2)首先判断出∠ A CE =∠ B CD ,再根据5CACE CD CB==,判断出△ACE ∽△BCD ,然后由相似三角形的对应边成比例,求得答案.(3)分两种情况分析,A 、B 、E 三点所在直线与DC 不相交和与DC 相交,然后利用勾股定理分别求解即可求得答案. {答案}解:(1)5;5.(2)AE BD 的大小无变化.证明:如图 1, ∵∠B =90°,AB =4,BC =2,∴ A C =22AB BC +=2242+= 25, ∵点 D 、E 分别是边 BC 、AC 的中点,∴ C E =12AC =5,CD =12BC =1.如图 2,∵∠ DCE =∠ B CA ,∴∠ A CE +∠ D CA =∠ B CD +∠ D CA ,∴∠ A CE =∠ B CD , ∵5CA CE CD CB == ∴△ ACE ∽△BCD , ∴5CE AE BD CD ==,即AE BD的大小无变化.(3)第一种情况(如图 3):在 R t △BCE 中,CE 5,BC =2,BE 22EC BC -54-=1, ∴ A E =AB + B E = 5 ,由(2)得5AEBD∴ B D 55=第二种情况(如图 4):由第一种情况知:BE =1. ∴AE =AB - BE = 3 ,由(2)得5AEBD =,∴ B D =355=.综上所述,线段 B D 的长为5或35.{分值}10{章节:[1-23-1]图形的旋转} {考点:旋转的性质}{考点:平行线分线段成比例} {考点:相似三角形的性质} {考点:由平行判定相似} {类别:发现探究} {难度:3-中等难度}{题目}25.(2019·山东省东营市,25) 已知抛物线 y ax 2 bx 4 经过点 A (2,0)B (-4,0)与 y 轴交于点C .(1)求这条抛物线的解析式; (2)如图 1,点 P 是第三象限内抛物线上的一个动点,当四边形 ABPC 的面积最大时,求点 P 的坐标;(3)如图 2,线段 AC 的垂直平分线交 x 轴于点 E ,垂足为 D ,M 为抛物线的顶点,在直线 DE 上是否存在一点 G ,使△CMG 的周长最小?若存在,求出点 G 的坐标;若不存在,请说明理由.{解析}本题属于二次函数的的综合题、压轴题.(1)已知抛物线 yax 2bx 4 经过直接把点A (2,0)B (-4,0)代入y ax2bx4可求解析式;(2)连接OP,设点P(x,12x2 x 4),其中 4 x 0 ,四边形ABPC 的面积为S,则S S△AOC S△OCP S△OBP交直线D E 于点G,此时,△CMG 的周长最小,确定出AM、DE的解析式,然后联立求得点G的坐标.{答案}解:(1)∵抛物线y ax2bx4经过点A (2,0)、B (-4,0),∴424016440a ba b+-=⎧⎨--=⎩,解得121ab⎧=⎪⎨⎪=⎩∴这条抛物线的解析式为y12x2 x 4.(2)如图1,连接OP,设点P(x,12x2 x 4),其中 4 x 0 ,四边形ABPC 的面积为S, 由题意得C(0,-4),∴S S△AOCS△OCPS△OBP=122 4124 (x)124 (12x2 x 4)4 2x x2 2x 8x2 4x 12∵-1<0,开口向下,S 有最大值.∴当x=-2 时,四边形ABPC 的面积最大,此时,y12x2 x 4= 4 ,即P(-2,-4)因此当四边形A BPC 的面积最大时,点P的坐标为(-2,-4).(3)y12x2 x 4=12(x+1)2-92,∴顶点M(1,-92),如图2,连接A M 交直线D E 于点G,此时,△CMG 的周长最小,设直线AM 的函数解析式为y=kx+b,且过点A (2,0),M(1,-92),根据题意,得2092k bk b+=⎧⎪⎨-+=-⎪⎩,解得323kb⎧=⎪⎨⎪=-⎩∴直线AM 的函数解析式为y32x 3,在R t△AOC 中,A C 22AO OC+=2224+=25,∵D 为AC 的中点,∴A D12AC 5,∵△ADE∽△AOC,∴CADAOAEA=,∴5225AE=,∴A E 5 ,∴O E AE AO 5 2 3 ,∴ E (-3,0).由图可知D(1,-2),设直线DE 的函数解析式为y=mx+n,且过D(1,-2), E (-3,0),根据题意,得230m nm n+=-⎧⎨-+=⎩,解得1232mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线DE 的函数解析式为y12x-32由3321322y xy x⎧=-⎪⎪⎨⎪=--⎪⎩,得34158xy⎧=⎪⎪⎨⎪=-⎪⎩,∴G(34,158-).因此在直线DE 上存在一点G,使△CMG 的周长最小,此时G(34,158-). {分值}12{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:其他二次函数综合题}{考点:几何图形最大面积问题}{难度:5-高难度}。
【中考真题】2019年山东省东营市中考数学真题试卷(附答案)

………外…………○……装…………○学校:____姓名:___________班………内…………○……装…………○绝密★启用前 2019年山东省东营市中考数学真题试卷(附答案) 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 一、单选题 1.2019-的相反数是( )A .2019-B .2019C .12019-D .12019 2.下列运算正确的是( ) A .33352x x x ﹣=- B .3842x x x ÷= C .2xy x xy y x y =-- D = 3.将一副三角板(30,45AE ∠︒∠︒==)按如图所示方式摆放,使得//BA EF ,则AOF ∠等于( ) A .75︒ B .90︒ C .105︒ D .115︒ 4.下列图形中,是轴对称图形的是( ) A . B . C . D . 5.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )外…………○……………○…………订…※※请※※不※装※※订※※线※※内※※答内…………○……………○…………订…A .10216x y x y +=⎧⎨+=⎩ B .10216x y x y +=⎧⎨-=⎩ C .10216x y x y +=⎧⎨-=⎩ D .10216x y x y +=⎧⎨+=⎩ 6.从1,2,3,4中任取两个不同的数,分别记为a 和b ,则2219a b +>的概率是( ) A .12 B .512 C .712 D .13 7.如图,在Rt ABC V 中,90ACB ∠︒=,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于,D E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连结CF .若3,2AC CG ==,则CF 的长为( )A .52 B .3 C .2 D .728.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢…………○……………线…………○…:___________班级:__________…………○……………线…………○…爬到AC 的中点D 处,则最短路线长为( ) A .B .2 C .3 D .10.如图,在正方形ABCD 中,点O 是对角线,AC BD 的交点,过点O 作射线分别交,OM ON 于点,E F ,且90EOF ∠︒=,交,OC EF 于点G .给出下列结论:COE DOF V V ①≌;OGE FGC V V ②∽C ;③四边形CEOF 的面积为正方形ABCD 面积的14;22•DF BE OG OC +④=.其中正确的是( ) A .①②③④ B .①②③ C .①②④ D .③④ 第II 卷(非选择题) 二、填空题 11.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为_____. 12.因式分解:()33x x x --+=_____. 13.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是_____.…装…………○……订…………○…不※※要※※在※※装※※订※※※※答※※题※※…装…………○……订…………○…14.已知等腰三角形的底角是30°,腰长为_____.15.不等式组()32421152x xx x⎧-->⎪⎨-+≤⎪⎩的解集为_____.16.如图,AC是Oe的弦,5AC=,点B是Oe上的一个动点,且45ABC∠︒=,若点,M N分别是,AC BC的中点,则MN的最大值是_____.17.如图,在平面直角坐标系中,ACE△是以菱形ABCD的对角线AC为边的等边三角形,2,AC=点C与点E关于x轴对称,则点D的坐标是_____.18.如图,在平面直角坐标系中,函数y x=和y=的图象分别为直线12,l l,过1l上的点11,3A⎛⎝⎭作x轴的垂线交2l于点2A,过点2A作y轴的垂线交1l于点3A,过点3A作x轴的垂线交2l于点4A,…依次进行下去,则点2019A的横坐标为_____.…………外…………○…………线…………○……学校:…………内…………○…………线…………○……三、解答题 19.(1)计算:()101 3.142019π-⎛⎫+- ⎪⎝⎭2sin 45++o (2)化简求值:22222a b a ab b a b a ab a ⎛⎫++-÷ ⎪--⎝⎭,当1a =-时,请你选择一个适当的数作为b 的值,代入求值. 20.为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图; (3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数; (4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率. 21.如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且……○…………订………线…………※订※※线※※内※※答※※题……○…………订………线…………(1)求证:CD 是⊙O 的切线; (2)若⊙O 的半径为3,求图中阴影部分的面积. 22.如图,在平面直角坐标系中,直线y mx =与双曲线n y x =相交于()2A a B -,,两点,BC x ⊥轴,垂足为C ,AOC △的面积是2. ()1求,m n 的值;()2求直线AC 的解析式.23.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?24.如图1,在Rt △ABC 中,∠B=90°,BC=2AB=8,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现① 当0α︒=时,AEBD = ;② 当时,AEBD =(2)拓展探究试判断:当0°≤α<360°时,AEDB 的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长.……○…………订…………○……_______班级:___________考……○…………订…………○…… 25.已知抛物线24y ax bx +=﹣经过点()()20,40A B ,-,,与y 轴交于点C . 1()求这条抛物线的解析式;2()如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标; 3()如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为,D M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG V 的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.参考答案1.B【解析】【分析】直接利用相反数的定义分析得出答案.【详解】2019-的相反数是:2019.故选:B .【点睛】本题考查相反数的定义,解题的关键是掌握相反数的定义.2.C【解析】【分析】根据合并同类项、整式的除法、分式化简,进行计算,即可得到答案.【详解】解:333352A x x x =-、﹣,故此选项错误;32842B x x x ÷=、,故此选项错误;2xy x C xy y x y=--、,正确;D 无法计算,故此选项错误.故选:C .【点睛】本题考查合并同类项、整式的除法、分式化简,解题的关键是熟练掌握合并同类项、整式的除法、分式化简.3.A【解析】【分析】根据平行线的性质和三角形外角的性质进行计算,即可得到答案.【详解】解://,30BA EF A∠︒Q =,30∴∠=∠=︒.FCA AQ==,∠∠︒F E45===.∴∠∠+∠︒+︒︒304575AOF FCA F故选:A.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质.4.D【解析】【分析】根据轴对称的定义进行判断,即可得到答案.【详解】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查轴对称,解题的关键是掌握轴对称的定义.5.A【解析】【分析】设这个队胜x场,负y场,根据题意得到方程组.【详解】解:设这个队胜x场,负y场,根据题意,得10 216 x yx y+=⎧⎨+=⎩.故选:A.【点睛】本题考查列二元一次方程组,解题的关键是读懂题意,列出二元一次方程组. 6.D【解析】【分析】先画树状图,再结合题意,根据概率公式进行计算.【详解】解:画树状图得:Q共有12种等可能的结果,任取两个不同的数,2219a b+>的有4种结果,2219a b∴+>的概率是41 123=,故选:D.【点睛】本题考查概率,解题的关键是熟练掌握画树状图法求概率. 7.A【解析】【分析】根据平行线的性质和勾股定理进行计算,即可得到答案. 【详解】解:由作法得GF垂直平分BC,FB FC∴=,2CG BG==,FG BC⊥90ACB∠︒Q=,//FG AC∴,BF CF∴=,CF ∴为斜边AB 上的中线,5AB Q ,1522CF AB ∴==. 故选:A .【点睛】本题考查平行线的性质和勾股定理,解题的关键是掌握平行线的性质和勾股定理.8.C【解析】【分析】根据函数图形,结合选项进行判断,即可得到答案.【详解】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误; 故选:C .【点睛】本题考查函数图象,解题的关键是读懂函数图象的信息.9.D【解析】【分析】先将圆锥侧面展开,设BAB n ∠'︒=,根据三视图,即可得到答案.【详解】解:如图将圆锥侧面展开,得到扇形ABB ',则线段BF 为所求的最短路程.设BAB n ∠'︒=.64180n ππg Q =, 120n ∴=即120BAB ∠'︒=.E Q 为弧BB '中点,=6∴∠•BF AB sin BAF=∴最短路线长为故选:D.【点睛】本题考查三视图、圆锥、平面展开—最短路径,解题的关键是掌握三视图、圆锥、平面展开—最短路径.10.B【解析】【分析】根据全等三角形的判定(ASA)即可得到①正确;根据相似三角形的判定可得②正确;根据全等三角形的性质可得③正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】①四边形ABCD是正方形,解:Q∴⊥=,45OC OD AC BD,==,∠∠︒ODF OCEQ=,∠︒90MON∴∠∠=,COM DOF≌(),∴V VCOE DOF ASA故①正确;∴点,,,O E C F 四点共圆,∴,EOG CFG OEG FCG ∠∠∠∠==,∴OGE FGC V ∽,故②正确;③COE DOF QV V ≌,COE DOF S S ∴V V =,14OCD ABCDCEOF S S S ∴==V 正方形四边形, 故③正确; COE DOF QV V ④≌,OE OF ∴=,又90EOF ∠︒Q =,EOF ∴V 是等腰直角三角形,45OEG OCE ∴∠∠︒==,EOG COE ∠∠Q =,OEG OCE ∴V V ∽,::OE OC OG OE ∴=,2•OG OC OE ∴=,122OC AC OE EF Q =,=, 2•OG AC EF ∴=,,CE DF BC CD Q ==,BE CF ∴=,又Rt CEF Q V 中,222CF CE EF +=,222BE DF EF ∴+=,22•OG AC BE DF ∴+=,故④错误,故选:B .【点睛】本题考查全等三角形的判定(ASA )和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA )和性质、相似三角形的性质和判定.11.4210⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:20000用科学记数法表示为4210⨯.故答案是:4210⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法.12.()()13x x --【解析】【分析】使用乘法分配律进行计算,即可得到答案.【详解】解:原式()()()()3313x x x x x ----=-=,故答案为:()()13x x --【点睛】本题考查因式分解,解题的关键是掌握因式分解的基本求解方法.13.1【解析】【分析】根据中位数的求解方法可知中位数应为第26与第27个的平均数,即可得到答案.【详解】解:由统计表可知共有:1222105352++++=人,中位数应为第26与第27个的平均数, 而第26个数和第27个数都是1,则中位数是1.故答案为:1.【点睛】本题考查中位数,解题的关键是掌握中位数的求法.14.6+【解析】【分析】作AD BC ⊥于D ,由等腰三角形的性质和勾股定理,进行计算即可得到答案.【详解】解:作AD BC ⊥于D ,AB AC Q =,BD DC ∴=,在Rt ABD △中,30B ∠︒=,12AD AB ∴=由勾股定理得,3BD ,26BC BD ∴==,ABC ∴V 的周长为:66++,故答案为:6+.【点睛】本题考查等腰三角形的性质和勾股定理,解题的关键是掌握等腰三角形的性质和勾股定理. 15.71x -≤<【解析】【分析】先分别求出不等式组中的两个不等式的解,再求不等式组的解集.【详解】解:解不等式324x x --()>,得:x <1, 解不等式21152x x -+≤,得:7x ≥-, 则不等式组的解集为71x -≤<,故答案为:71x -≤<.【点睛】本题考查解一元一次不等式组,解题的关键是熟练掌握一元一次不等式组的求解方法.16.2【解析】【分析】由题意可知当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大,连接AO 并延长交O e 于点B ′,连接CB ',根据三角函数进行计算,即可得到答案.【详解】解:Q 点,M N 分别是,BC AC 的中点,12MN AB ∴=, ∴当AB 取得最大值时,MN 就取得最大值,当AB 是直径时,AB 最大,连接AO 并延长交O e 于点B ′,连接CB ',AB 'Q 是O e 的直径,90ACB ∴∠'︒=.45,5ABC AC ∠︒Q ==,45AB C ∴∠'︒=,sin452ACAB∴'o=2MN∴=最大.故答案为:2.【点睛】本题考查三角函数,解题的关键是熟练掌握三角函数.17.,03⎛⎫⎪⎪⎝⎭【解析】【分析】根据菱形的性质和等腰三角形的性质,进行计算,即可得到答案.【详解】解:如图,ACEQV是以菱形ABCD的对角线AC为边的等边三角形,2AC=,1CH∴=,AH∴,30ABO DCH∠∠︒Q==,DH AO∴=,333OD∴=-=∴点D的坐标是⎫⎪⎪⎝⎭.故答案为:⎫⎪⎪⎝⎭.【点睛】本题考查菱形的性质和平面直角坐标系,解题的关键是熟练掌握菱形的性质和平面直角坐标系.18.10093-【解析】【分析】根据题意得到21n A +的横坐标为3n (-),即可得到点2019A 的横坐标. 【详解】解:由题意可得,1A ⎛ ⎝⎭,(21,A ,(33,A -,(4A -,59A (,69,A -(,…, 可得21n A +的横坐标为3n (-)2019210091⨯+Q =,∴点2019A 的横坐标为:1009100933(-)=-,故答案为10093-.【点睛】本题考查数字类规律,解题的关键是读懂题意,得到21n A +的横坐标为3n (-). 19.(1)2020;(2)1【解析】【分析】(1)根据负指数幂、零指数幂、绝对值和三角函数、二次根式,即可得到答案;(2)根据分式的性质进行化简,再代入1a =-,即可得到答案.【详解】解:1()原式201912++-=2020+=2020=;2()原式()()222a b a a a b a b -=-+g ()()()()2a b a b a a a b a b -+=-+g 1a b=+, 当1a =-时,取2b =, 原式1112==-+. 【点睛】本题负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简,解题的关键是掌握负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简.20.(1)200人;2() “绘画”:35人,“舞蹈”:50人;3() 126︒;4()14【解析】【分析】(1)根据统计图可得报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,再进行计算即可得到答案;(2)根据统计图可以报名“绘画”类的人数,从而报名“舞蹈”类的人数,则可以将条形统计图补充完整;(3)由报名“声乐”类的人数为70人,可得“声乐”类对应扇形圆心角的度数;(4)根据树状图进行求解即可得到答案.【详解】解:1Q ()被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%, ∴在这次调查中,一共抽取了学生为:2010%200÷=(人);2()被抽到的学生中,报名“绘画”类的人数为:20017.5%35⨯=(人), 报名“舞蹈”类的人数为:20025%50⨯=(人); 补全条形统计图如下:3()被抽到的学生中,报名“声乐”类的人数为70人, ∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:70360126200⨯︒︒=; 4()设小提琴、单簧管、钢琴、电子琴四种乐器分别为,,,A B C D , 画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为41164=.【点睛】本题考查条形统计图和扇形统计图及概率,解题的关键是掌握条形统计图和扇形统计图.21.(1)见解析;(2)9√3−3π2【解析】【分析】(1)根据圆周角定理和等腰三角形的性质,即可得到答案;(2)根据扇形面积公式进行计算,即可得到答案.【详解】(1)证明:连接OC .∵AC =CD,∠ACD =120°,∴∠A =∠D =30°.∵OA =OC ,∴∠ACO =∠A =30°.∴∠OCD =∠ACD ﹣∠ACO =90°.即OC ⊥CD ,∴CD 是⊙O 的切线.(2)解:∵∠A =30°,∴∠COB =2∠A =60°.∴S 扇形BOC =60π·32360=3π2,在Rt △OCD 中,CD =OC ·tan60∘=3√3,∴S △OCD =12OC •CD =12×3×3√3=9√32,∴S △OCD −S 扇形BOC =9√3−3π2,∴图中阴影部分的面积9√3−3π2. 【点睛】 本题考查圆周角定理、等腰三角形的性质和扇形面积公式,解题的关键是掌握圆周角定理、等腰三角形的性质和扇形面积公式22.(1)14m n =-=-,;(2)112y x =-+ 【解析】【分析】(1)根据中心对称的性质进行计算,即可得到答案;(2)用待定系数法即可得到答案.【详解】解:1Q ()直线y mx =与双曲线n y x=相交于()2A a B -,,两点, ∴点A 与点B 关于原点中心对称,()2,B a ∴-,20C ∴(,); 2AOC S V Q =,1222a ∴⨯⨯=,解得2a =, ()2,2A ∴-,把()2,2A -代入y mx =和n y x =得22,22n m --==,解得14m n =-=-,; 2()设直线AC 的解析式为y kx b +=, Q 直线AC 经过,A C ,22,20k b k b -+=⎧∴⎨+=⎩解得121k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 的解析式为112y x =-+. 【点睛】本题考查中心对称的性质和用待定系数求二元一次方程解析式,解题的关键是掌握中心对称的性质和用待定系数求二元一次方程解析式.23.销售单价为180元时,公司每天可获利32000元【解析】【分析】 根据题意设降价后的销售单价为x 元,由题意得到1003005200[32000]x x -+-()()=,则可得到答案.【详解】解:设降价后的销售单价为x 元,则降价后每天可售出3005200[]x +-()个, 依题意,得:1003005200[32000]x x -+-()()=, 整理,得:2360324000x x +﹣=,解得:12180x x ==. 180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用.24.(1),.(2)无变化;理由参见解析.(3)5. 【解析】【分析】(1)①当α=0°时,在Rt △ABC 中,由勾股定理,求出AC 的值是多少;然后根据点D 、E 分别是边BC 、AC 的中点,分别求出AE 、BD 的大小,即可求出AE BD 的值是多少. ②α=180°时,可得AB ∥DE ,然后根据AC BC AE BD=,求出AE BD 的值是多少即可.(2)首先判断出∠ECA=∠DCB ,再根据2EC AC DC BC ==,判断出△ECA ∽△DCB ,即可求出AE BD 的值是多少,进而判断出AE BD的大小没有变化即可. (3)根据题意,分两种情况:①点A ,D ,E 所在的直线和BC 平行时;②点A ,D ,E 所在的直线和BC 相交时;然后分类讨论,求出线段BD 的长各是多少即可.【详解】(1)①当α=0°时,∵Rt △ABC 中,∠B=90°,∴==∵点D 、E 分别是边BC 、AC 的中点,∴AE ==,BD=8÷2=4,∴AE BD ==. ②如图1,,当α=180°时,可得AB ∥DE , ∵AC BC AE BD =,∴AE AC BD BC ==(2)如图2,,当0°≤α<360°时,AE BD的大小没有变化, ∵∠ECD=∠ACB ,∴∠ECA=∠DCB ,又∵EC AC DC BC == ∴△ECA ∽△DCB ,∴AE EC BD DC == (3)①如图3,,∵CD=4,CD ⊥AD ,∴8=∵AD=BC ,AB=DC ,∠B=90°,∴四边形ABCD 是矩形,∴BD=AC=②如图4,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,,∵AC=CD=4,CD ⊥AD ,∴8=,∵点D 、E 分别是边BC 、AC 的中点,∴DE=111(82)4222AB =⨯÷=⨯=2, ∴AE=AD-DE=8-2=6,由(2),可得AE BD =, ∴=.综上所述,BD的长为25.(1) 2142y x x --=;(2)点P 的坐标为()2,4--;(3)315,48G ⎛⎫- ⎪⎝⎭ 【解析】【分析】(1) 用待定系数法即可得到答案;(2)连接OP ,设点21,42P x x x ⎛⎫+- ⎪⎝⎭,由题意得到AOC OCP OBP S S S S ∴++V V V =()2216x ++=.即可得到答案.(3)用待定系数法求解析式,再结合勾股定理即可得到答案.【详解】解:1Q ()抛物线4y ax bx +-=经过点()()2,0,40A B -,, 424016440a b a b +-=⎧∴⎨--=⎩, 解得1,21a b ⎧=⎪⎨⎪=⎩∴抛物线解析式为2142y x x --=; 2()如图1,连接OP ,设点21,42P x x x ⎛⎫+- ⎪⎝⎭,其中40x -<<,四边形ABPC 的面积为S ,由题意得0,4C-(),AOC OCP OBP S S S S ∴++V V V =()1124422x =⨯⨯+⨯⨯-2114422x x ⎛⎫+⨯⨯--+ ⎪⎝⎭, 24228x x x ---+=,2412x x -+=-,()2216x ++=.10Q ﹣<,开口向下,S 有最大值,∴当2x =-时,四边形ABPC 的面积最大,此时,4y =-,即()2,4P --.因此当四边形ABPC 的面积最大时,点P 的坐标为()2,4--.3()()2211941222y x x x =+-=+-, ∴顶点91,2M ⎛⎫-- ⎪⎝⎭. 如图2,连接AM 交直线DE 于点G ,此时,CMG V 的周长最小.设直线AM 的解析式为y kx b +=,且过点20A (,),91,2M ⎛⎫-- ⎪⎝⎭, 20,92k b k b +=⎧⎪∴⎨-+=-⎪⎩∴直线AM 的解析式为332y x =-. 在Rt AOC V中,AC ==.D Q 为AC 的中点,12AD AC ∴== ADE AOC QV V ∽,AD AE AO AC∴=,2=, 5AE ∴=,523OE AE AO ∴--===,()30E ∴-,,由图可知()1,2D -设直线DE 的函数解析式为y mx n =+,2,30m n m n +=-⎧∴⎨-+=⎩ 解得:12,32m n ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线DE 的解析式为1322y x =--. 1322,332y x y x ⎧=--⎪⎪∴⎨⎪=-⎪⎩解得:34,158x y ⎧=⎪⎪⎨⎪=-⎪⎩ 315,48G ⎛⎫∴- ⎪⎝⎭. 【点睛】本题考查一次函数和勾股定理,解题的关键是掌握用待定系数法求一次函数解析式.。
2019年山东省东营中考数学试卷

3 上的点 A(1 1, )作 x 轴的垂线交 l2 于点 A2 ,过点 A2 作 y 轴的垂线交 l1 于点 A3 ,过点
3
A3 作 x 轴的垂线交 l2 于点 A4 ,…依次进行下去,则点 A2019 的横坐标为
.
三、解答题:本大题共 7 小题,共 62 分.解答要写出必要的文字说明、证明过程或演算步 骤.
于
()
答
A. 75
B. 90
题
4.下列图形中,是轴对称图形的是
C.105°
D.115 ()
无
A
B
C
D
5.篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 2 分,负 1 场得 1 分,某队在 10 场 比赛中得到 16 分.若设该队胜的场数为 x ,负的场数为 y ,则可列方程组为 ( )
x y 10
分别交 BC、CD 于点 E、F ,且 EOF=90 , OC、EF 交于点 G .给出下列结论:①
△COE≌△DOF ;②△OGE∽△FGC ;③四边形 CEOF 的面积为正方形 ABCD 面
积的 1 ;④ DF 2 BE2=OG • OC .其中正确的是 4
()
A.①②③④
B.①②③
C.①②④
在
绝密★启用前
山东省东营市 2019 年初中学业水平考试
数学
此
(总分 120 分,考试时间 120 分钟)
第Ⅰ卷(选择题 共 30 分)
一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正
确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.
卷
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
2019年山东省东营市中考数学试题(含答案解析)

数学试题 第 1 页(共 6 页)x3 7 秘密★启用前 试卷类型:A二〇一九年东营市初中学业水平考试数 学 试 题(总分 120 分 考试时间 120 分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30 分;第Ⅱ卷为非选择题,90 分;本试题共 6 页。
2.数学试题答题卡共 8 页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回。
3.第Ⅰ卷每题选出答案后,都必须用 2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用 0.5mm 碳素笔答在答题卡的相应位置上。
第Ⅰ卷(选择题 共 30 分)一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分。
1. -2019的相反数是( )A . -2019B . 2019C . -12019D .120192.下列运算正确的是( )A . 3x 3- 5x 3= -2xB. 8x 3÷ 4x = 2xxyC.xy - y 2 = x - yD. + =BA3.将一副三角板(∠A =30°,∠E =45°)按如图所示方式摆放,使得 BA ∥ DEF ,则∠AOF 等于()OA .75°B .90°C .105°D .115°FC(第 3 题图)10E⎩ ⎩ ⎩ ⎩CDGFE (s米)4.下列图形中,是轴对称图形的是()5.篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 2 分,负 1 场得 1 分,某队在 10 场比赛中得到 16 分.若设该队胜的场数为x,负的场数为y ,则可列方程组为( )⎧x +y = 10 A. ⎨2x +y = 16⎧x +y = 10B. ⎨2x -y = 16⎧x +y = 10C. ⎨x - 2 y =16⎧x +y = 10D. ⎨x + 2 y = 166 .从1 ,2 ,3 ,4 中任取两个不同的数,分别记为 a 和b ,则a2 +b2 > 19的概率是()A.12 B.512C.712D.1317.如图,在 Rt△ABC 中,∠ACB = 90︒,分别以点B 和点C 为圆心,大于2BC 的长为半径作弧,两弧相交于D、E 两点,作直线DE 交AB 于点F,交BC 于点G,连结CF.若AC =3,CG=2,则CF 的长为()300174A B73O13.7 47.8 82.3 90.2甲乙t(秒)(第7 题图)(第8 题图)数学试题第2 页(共6 页)数学试题 第 3 页(共 6 页)23 3 3OEMGF CNDDB C8.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程 s (米)与时间 t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A .乙队率先到达终点B .甲队比乙队多走了 126 米C .在 47.8 秒时,两队所走路程相等D .从出发到 13.7 秒的时间段内,乙队的速度慢9.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点 B 出发,沿表面爬到 AC 的中点 D 处,则最短路线长为( )A . 3B .C .3D . 32 AABAB主视图 左视图俯视图(第 9 题图)CD(第 10 题图)10.如图,在正方形 ABCD 中,点 O 是对角线 AC 、BD 的交点,过点 O 作射线 OM 、ON分别交 BC 、CD 于点 E 、F ,且∠EOF =90°,OC 、EF 交于点 G .给出下列结论:①△COE ≌△DOF ;②△OGE ∽△FGC ;③四边形CEOF 的面积为正方形ABCD 面积④ DF 2+ BE 2= OG ⋅ OC .其中正确的是( )A. ①②③④B. ①②③C. ①②④D. ③④第Ⅱ卷(非选择题 共 90 分)64O N AMC O二、填空题:本大题共8 小题,其中11-14 题每小题3 分,15-18 题每小题4 分,共28 分.只要求填写最后结果。
2019年山东东营中考数学试题(解析版)

{来源}2019•山东省东营市市初中学业水平考试数学试题
(总分 120 分 考试时间 120 分钟)
{适用范围:3. 九年级}
{标题}2019•山东省东营市市初中学生学业考试数学试题
第 I 卷(选择题 共 30 分)
{题型:1-选择题}一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一个是正
1
ABCD 面积的 ;④DF2+BE2=OG·OC.其中正确的是(
)
4
A.①②③④ B.①②③
C.①②④
D.③④
{答案}B { 解 析 } 因 为 正 方 形 ABCD , 所 以 OC=OD , ∠OCE=∠ODC=90° , ∠COD=90° . 因 为 ∠EOF=90° , 所 以 ∠DOF=∠COE , 所 以 △COE≌△DOF , ① 对 ; 由 △COE≌△DOF , 得 OE=OF,所以∠OEF=45°,所以∠OEF=∠OCF.因为∠OGE∠CGF,可得△OGE∽△FGC 所 以②正确;由△COE≌△DOF,得△COE 与△DOF 面积相等,所以四边形 CEOF 的面积=△COE
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年山东省东营市中考数学试卷(含答案解析)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)下列运算正确的是()A.3x3﹣5x3=﹣2x B.8x3÷4x=2xC.=D.+=3.(3分)将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF等于()A.75°B.90°C.105°D.115°4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.6.(3分)从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.B.C.D.7.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为()A.B.3C.2D.8.(3分)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢9.(3分)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.310.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为.12.(3分)因式分解:x(x﹣3)﹣x+3=.13.(3分)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是.时间(小时)0.51 1.52 2.5人数(人)1222105314.(3分)已知等腰三角形的底角是30°,腰长为2,则它的周长是.15.(4分)不等式组的解集为.16.(4分)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.17.(4分)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是.18.(4分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:()﹣1+(3.14﹣π)0+|2﹣|+2sin45°﹣;(2)化简求值:(﹣)÷,当a=﹣1时,请你选择一个适当的数作为b的值,代入求值.20.(8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.21.(8分)如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC =CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.22.(8分)如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(﹣2,a)、B 两点,BC⊥x轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式.23.(8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?24.(10分)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.25.(12分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.2019年山东省东营市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.2.(3分)下列运算正确的是()A.3x3﹣5x3=﹣2x B.8x3÷4x=2xC.=D.+=【分析】直接利用合并同类项法则以及单项式除以单项式、分式的约分、二次根式的加减运算法则分别化简得出答案.【解答】解:A、3x3﹣5x3=﹣2x3,故此选项错误;B、8x3÷4x=2x2,故此选项错误;C、=,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及单项式除以单项式、分式的约分、二次根式的加减运算,正确掌握相关运算法则是解题关键.3.(3分)将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF等于()A.75°B.90°C.105°D.115°【分析】依据AB∥EF,即可得∠FCA=∠A=30°,由∠F=∠E=45°,利用三角形外角性质,即可得到∠AOF=∠FCA+∠F=30°+45°=75°.【解答】解:∵BA∥EF,∠A=30°,∴∠FCA=∠A=30°.∵∠F=∠E=45°,∴∠AOF=∠FCA+∠F=30°+45°=75°.故选:A.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.【分析】设这个队胜x场,负y场,根据在10场比赛中得到16分,列方程组即可.【解答】解:设这个队胜x场,负y场,根据题意,得.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.6.(3分)从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与a2+b2>19的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,a2+b2>19的有4种结果,∴a2+b2>19的概率是=,故选:D.【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为()A.B.3C.2D.【分析】利用线段垂直平分线的性质得到FB=FC,CG=BG=2,FG⊥BC,再证明BF =CF,则CF为斜边AB上的中线,然后根据勾股定理计算出AB,从而得到CF的长.【解答】解:由作法得GF垂直平分BC,∴FB=FC,CG=BG=2,FG⊥BC,∵∠ACB=90°,∴FG∥AC,∴BF=CF,∴CF为斜边AB上的中线,∵AB==5,∴CF=AB=.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.(3分)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢【分析】根据函数图象所给的信息,逐一判断.【解答】解:A、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C、由函数图象可知,在47.8秒时,两队所走路程相等,均无174米,本选项正确;D、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误;故选:C.【点评】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9.(3分)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE.线段AC与BB'的交点为F,线段BF是最短路程.【解答】解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∵=4π,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×=3,∴最短路线长为3.故选:D.【点评】本题考查了平面展开﹣最短路径问题,解题时注意把立体图形转化为平面图形的思维.10.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE ∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.【点评】本题属于正方形的综合题,主要考查了正方形的性质,全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用.解题时注意:全等三角形的对应边相等,相似三角形的对应边成比例.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3分)2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为2×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:20000用科学记数法表示为2×104.故答案是:2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)因式分解:x(x﹣3)﹣x+3=(x﹣1)(x﹣3).【分析】原式变形后,提取公因式即可.【解答】解:原式=x(x﹣3)﹣(x﹣3)=(x﹣1)(x﹣3),故答案为:(x﹣1)(x﹣3)【点评】此题考查了因式分解﹣提公因式法,熟练掌握因式分解的方法是解本题的关键.13.(3分)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是1.时间(小时)0.51 1.52 2.5人数(人)12221053【分析】由统计表可知总人数为52,得到中位数应为第26与第27个的平均数,而第26个数和第27个数都是1,即可确定出中位数为1.【解答】解:由统计表可知共有:12+22+10+5+3=52人,中位数应为第26与第27个的平均数,而第26个数和第27个数都是1,则中位数是1.故答案为:1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.也考查了条形统计图.14.(3分)已知等腰三角形的底角是30°,腰长为2,则它的周长是6.【分析】作AD⊥BC于D,根据直角三角形的性质求出AD,根据勾股定理求出BD,根据三角形的周长公式计算即可.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=DC,在Rt△ABD中,∠B=30°,∴AD=AB=,由勾股定理得,BD==3,∴BC=2BD=6,∴△ABC的周长为:6+2+2=6+4,故答案为:6+4.【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15.(4分)不等式组的解集为﹣7≤x<1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3(x﹣2)>4,得:x<1,解不等式≤,得:x≥﹣7,则不等式组的解集为﹣7≤x<1,故答案为:﹣7≤x<1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(4分)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是.【分析】根据中位线定理得到MN的长最大时,AB最大,当AB最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及解直角三角形的综合运用,解题的关键是了解当什么时候MN的值最大,难度不大.17.(4分)如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是().【分析】设CE和x轴交于H,根据等边三角形的性质可知CH=1,根据勾股定理即可求出AH的长,再根据菱形的性质和含30°的直角三角形的性质可求DH、AO的长,所以OD可求,又因为D在x轴上,纵坐标为0,问题得解.【解答】解:如图,∵△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,∴CH=1,∴AH=,∵∠ABO=∠DCH=30°,∴DH=AO=,∴OD=﹣﹣=,∴点D的坐标是(,0).故答案为:(,0).【点评】本题考查了菱形的性质、等边三角形的性质、含30°的直角三角形的性质、点关于x轴对称的特点以及勾股定理的运用.18.(4分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为﹣31009.【分析】根据题意可以发现题目中各点的坐标变化规律,每四个点符号为一个周期,依此规律即可得出结论.【解答】解:由题意可得,A1(1,),A2(1,﹣),A3(﹣3,﹣),A4(﹣3,3),A5(9,3),A6(9,﹣9),…,可得A2n+1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:()﹣1+(3.14﹣π)0+|2﹣|+2sin45°﹣;(2)化简求值:(﹣)÷,当a=﹣1时,请你选择一个适当的数作为b的值,代入求值.【分析】(1)分别计算负指数幂、零次幂、绝对值、三角函数值、二次根式,然后算加减法;(2)先化简分式,然后将x的值代入计算即可.【解答】解:(1)原式=2019+1++2×﹣2=2020+2﹣+﹣2=2020;(2)原式=•==,当a=﹣1时,取b=2,原式==1.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.(8分)为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.【分析】(1)根据抽取的报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,得出算式即可得出结果;(2)由抽取的人数乘以报名“绘画”类的人数所占的比例得出报名“绘画”类的人数;补全条形统计图即可;(3)用360°乘以“声乐”类的人数所占的比例即可;(4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A、B、C、D,画出树状图,即可得出答案.【解答】解:(1)∵被抽到的学生中,报名“书法”类的人数有20人,占整个被抽取到学生总数的10%,∴在这次调查中,一共抽取了学生为:20÷10%=200(人);(2)被抽到的学生中,报名“绘画”类的人数为:200×17.5%=35(人),报名“舞蹈”类的人数为:200×25%=50(人);补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:×360°=126°;(4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A、B、C、D,画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,∴小东和小颖选中同一种乐器的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.21.(8分)如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC =CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°.∴∠OCD=∠ACD﹣∠ACO=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠COB=2∠A=60°.∴S扇形BOC=,在Rt△OCD中,CD=OC,∴,∴,∴图中阴影部分的面积为.【点评】此题综合考查了等腰三角形的性质、切线的判定方法、扇形的面积计算方法.22.(8分)如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(﹣2,a)、B 两点,BC⊥x轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式.【分析】(1)根据反比例函数的对称性可得点A与点B关于原点中心对称,则B(2,a),由于BC⊥x轴,所以C(2,0),先利用三角形面积公式得到×2×a=2,解得a=2,则可确定A(﹣2,2),然后把A点坐标代入y=mxy=mx和y=中即可求出m,n;(2)根据待定系数法即可得到直线AC的解析式.【解答】解:(1)∵直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,∴点A与点B关于原点中心对称,∴B(2,﹣a),∴C(2,0);∵S△AOC=2,∴×2×a=2,解得a=2,∴A(﹣2,2),把A(﹣2,2)代入y=mx和y=得﹣2m=2,2=,解得m=﹣1,n=﹣4;(2)设直线AC的解析式为y=kx+b,∵直线AC经过A、C,∴,解得∴直线AC的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象的性质.23.(8分)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【分析】设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(10分)如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据=,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据==,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AV的延长线上时,②如图3﹣2中,当点E在线段AB上时,分别求解即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC===2,∵点D、E分别是边BC、AC的中点,∴AE=AC=,BD=BC=1,∴=.②如图1﹣1中,当α=180°时,可得AB∥DE,∵=,∴==.故答案为:①,②.(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==..(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt△BCE中,CE=,BC=2,∴BE===1,∴AE=AB+BE=5,∵=,∴BD==.②如图3﹣2中,当点E在线段AB上时,易知BE=1,AE=4﹣1=3,∵=,∴BD=,综上所述,满足条件的BD的长为或.【点评】本题属于几何变换综合题,考查了旋转变换,相似三角形的判定和性质,平行线的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(12分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.【分析】(1)把点A、B的坐标代入抛物线解析式,利用待定系数法求函二次数解析式解答;(2)连接OP,由S=S△AOC+S△OCP+S△OBP,可得出关于P点横坐标的表达式,然后利用二次函数的最值问题求出点P的坐标;(3)连接AM交直线DE于点G,此时,△CMG的周长最小.求出直线AM的解析式,再由△ADE∽△AOC,求出点E的坐标,求出直线DE的解析式,则由AM、DE两直线的交点可求得G点坐标.【解答】解:(1)∵抛物线y=ax+bx﹣4经过点A(﹣2,0),B(4,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),∴S=S△AOC+S△OCP+S△OBP=+,=4﹣2x﹣x2﹣2x+8,=﹣x2﹣4x+12,=﹣(x+2)2+16.∵﹣1<0,开口向下,S有最大值,∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).(3),∴顶点M(﹣1,﹣).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),∴,∴直线AM的解析式为y=﹣3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=﹣﹣.∴,解得:,∴G().【点评】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,三角形的面积,相似三角形的判定与性质,勾股定理,二次函数的最值问题.理解坐标与图形性质;会运用数形结合思想解决数学问题.。