高三高考数学总复习《概率与统计》题型归纳与训练

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高三《概率与统计》专题复习

高三《概率与统计》专题复习

高三《概率与统计》专题复习一、常用知识点回顾 1、概率:古典概型nm=p (枚举法、列表法);几何概型。

2、特征数:众数、中位数、平均数、方差得概念及其求法。

3、频率分布直方图、茎叶图。

(1)在频率分布直方图中,各小组得频率等于小长方形得面积,且各小长形得面积之与等于1;(2)在频率分布直方图中,求众数、中位数、平均数得方法;频率频数样本容量,样本容量频率,频数样本容量频数)频率(÷=⨯==34、回归分析。

(1)回归直线必过样本中心点),(y x ;(2)求回归直线方程。

(3)求相关系数,判断拟合效果。

5、独立性检验。

填写22⨯列联表,并根据22⨯列联表求随机变量K 2,判断“两个随机变量有关”可能性大小。

二、题型训练【例1】、某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出得酸奶降价处理,以每瓶2元得价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份得订购计划,统计了前三年六月份各天得最高气温数据,得下面得频数分布表:(1)求六月份这种酸奶一天得需求量不超过300瓶得概率;(2)设六月份一天销售这种酸奶得利润为Y (单位:元),当六月份这种酸奶一天得进货量为450瓶时,写出Y 得所有可能值,并估计Y 大于零得概率.【练习1】、某汽车美容公司为吸引顾客,推出优惠活动:对首次消费得顾客,按200元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:该公司从注册得会员中, 随机抽取了100位进行统计, 得到统计数据如下:消费次第第1次第2次第3次第4次第5次频数60201055假设汽车美容一次, 公司成本为150元, 根据所给数据, 解答下列问题:(1)估计该公司一位会员至少消费两次得概率;(2)某会员仅消费两次, 求这两次消费中, 公司获得得平均利润;(3) 设该公司从至少消费两次, 求这得顾客消费次数用分层抽样方法抽出8人, 再从这8人中抽出2人发放纪念品, 求抽出2人中恰有1人消费两次得概率、【练习2】、2017年春节前,有超过20万名广西、四川等省籍得外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年得摩托车驾驶人有一个停车休息得场所。

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。

高考数学概率统计知识点总结(文理通用)

高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。

高考文科数学《概率与统计》题型归纳与训练.pptx

高考文科数学《概率与统计》题型归纳与训练.pptx
书山有路
2020 年高考文科数学《概率与统计》题型归纳与训练
【题型归纳】
题型一 古典概型
例 1 从甲、乙等5名学生中随机选出2 人,则甲被选中的概率为( ).
A. 1
5 9 25
B. 2
5
C. 8
D.
25
【答案】 B
【解析】 可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方
法有:
一次随机摸出2 只球,则这2 只球颜色不同的概率为

【答案】 P 5
6
8
书山有路
【解析】1只白球设为 a ,1只红球设为b , 2 只黄球设为 c , d ,
则摸球的所有情况为a,b,a,c, a,d, b,c ,b,d,c,d,共 6 件, 满足题意的事件为a,b , a,c,a,d, b,c , b,d,共 5 件,故概率为P 5 .
参考数据: 7 yi 9.32 , 7 ti yi 40.17 , 7 ( yi y) 2 0.55 , 7 2.646.
i1
i1
i1
参考公式:相关系数r
n
(ti t )( yi y)
i1

n
n
(ti t )2 (yi y)2
i1
i1
回归方程 y a bt 中斜率和截距的最小二乘估计公式分别为:
(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),
(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前 4 种是甲被选中, 所以所求概率为 4 2 .故选 B.
10 5
例 2 将 2 本不同的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练高考文科数学概率与统计题型归纳与训练近年来,随着高考评价重点的转变,我国高考数学概率与统计所占的比重越来越大,也极大地影响了学生的试题解答,特别是对文科类学生而言。

因此,归纳与训练概率与统计的题型对提升高考成绩非常有效。

一、高考概率与统计试题类型1、概率题:(1)概率概念题:要求判断某事件的可能性大小、求概率大小、比较概率大小,以及用中文描述概率大小等概念性问题。

(2)条件概率及贝叶斯公式:求两事件同时发生的条件概率,用贝叶斯公式求解概率问题。

(3)随机变量和概率分布:讨论正态分布、泊松分布等随机变量的概率分布。

2、统计学题:(1)数据的勘误析:把调查所得原始数据准确地归类编单,以便找出这些数据中蕴含的结论。

(2)图表分析:分析调查对象之间的关系,从折线图、饼形图、柱形图等图表中获取相应的数据。

二、概率与统计的训练方法1、理论思考训练:多看有关概率、统计的权威论文和教材,把基本概念牢牢掌握,把常见的概率公式及统计公式及推导式脱口而出。

2、示范练习:对常考的知识点补充示范练习,可以通过复现例题和大量习题来熟悉该知识点,从而深入理解,提高解题能力。

3、联系模拟考试:利用模拟考试把学过的知识点和技巧联系起来,在试题中能够驾轻就熟地掌握各试题技巧,大大提升实力。

4、强化记忆:记忆知识点、公式要选择相应的方法,通过反复记忆和熟习,把重点内容融会贯通,熟练记忆几个重点的式子和结论有助于考试的取得好成绩。

总之,学习概率与统计,除了要用心去理解之外,还需要不断的训练,把一些重点的知识点、公式强化记忆,加深理解,才能在考试中取得较好的成绩。

2020年高考理科数学《概率与统计》题型归纳与训练

2020年高考理科数学《概率与统计》题型归纳与训练
例 1、某大学艺术专业 400 名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽 取了100 名学生,记录他们的分数,将数据分成 7 组:[20,30),[30,40),,[80,90], 并整理得到如下频率分
布直方图:
(Ⅰ)从总体的 400 名学生中随机抽取一人,估计其分数小于 70 的概率; (Ⅱ)已知样本中分数小于 40 的学生有 5 人,试估计总体中分数在区间[40,50) 内的人数; (Ⅲ)已知样本中有一半男生的分数不小于 70 ,且样本中分数不小于 70 的男女生人数相等.试估计总体
100 (Ⅲ)由题意可知,样本中分数不小于 70 的学生人数为 (0.02 0.04) 10 100 60 ,所以样本中分数不 小于 70 的男生人数为 60 1 30 .所以样本中的男生人数为 30 2 60 ,女生人数为100 60 40 ,男生
2 和女生人数的比例为 60 : 40 3 : 2 ,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为 3: 2 .
【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应
注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1 ,当小矩形等高时,说明
频率相等,计算时不要漏掉其中一个. 【思维点拨】 1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少. 2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数 较多. 3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数 利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的; (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中 点的横坐标之和. 5.求回归直线方程的关键

高考数学概率统计题型归纳

高考数学概率统计题型归纳

高考数学概率统计题型归纳高考数学中的概率统计是一个重要的考点,其题型多样,涵盖了众多知识点。

为了帮助同学们更好地应对高考中的概率统计题目,下面对常见的题型进行归纳和分析。

一、古典概型古典概型是概率统计中最基本的题型之一。

其特点是试验中所有可能的结果有限,且每个结果出现的可能性相等。

例如,从装有 5 个红球和 3 个白球的袋子中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解决这类问题的关键是要准确计算基本事件的总数和所求事件包含的基本事件数。

在上述例子中,基本事件的总数可以通过组合数计算,即从 8 个球中取出 2 个球的组合数;所求事件包含的基本事件数为从 5 个红球中取出 2 个球的组合数。

然后用所求事件包含的基本事件数除以基本事件的总数,即可得到所求概率。

二、几何概型几何概型与古典概型的区别在于试验的结果是无限的。

通常会涉及到长度、面积、体积等几何度量。

比如,在区间0, 5上随机取一个数,求这个数小于 2 的概率。

解决几何概型问题时,需要确定几何区域的度量,并计算出所求事件对应的几何区域的度量,最后用所求事件对应的几何区域的度量除以总的几何区域的度量,得到概率。

三、相互独立事件与条件概率相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。

例如,甲、乙两人分别独立射击,甲击中目标的概率为 08,乙击中目标的概率为 07,求两人都击中目标的概率。

条件概率则是在已知某个事件发生的条件下,求另一个事件发生的概率。

比如,已知某班级男生占 60%,女生占 40%,男生中优秀的比例为30%,女生中优秀的比例为 20%,现从班级中随机抽取一名学生为优秀,求这名学生是男生的概率。

对于相互独立事件,其概率的计算使用乘法公式;对于条件概率,使用条件概率公式进行计算。

四、离散型随机变量离散型随机变量是指取值可以一一列出的随机变量。

常见的离散型随机变量有二项分布、超几何分布等。

二项分布是指在 n 次独立重复试验中,某事件发生的次数 X 服从二项分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习题型分类汇《概率与统计》篇经典试题大汇总目录【题型归纳】题型一古典概型 (3)题型二几何概型 (3)题型三抽样与样本数据特征 (4)题型四回归与分析 (7)题型五独立性检验 (8)【巩固训练】题型一古典概型 (9)题型二几何概型 (10)题型三抽样与样本数据特征 (11)题型四回归与分析 (13)题型五独立性检验 (16)高考数学《概率与统计》题型归纳与训练【题型归纳】题型一古典概型例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为().A. 15B. 25C. 825D. 925【答案】B【解析】可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42105=.故选B.例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:4263p==.【易错点】列举不全面或重复,就是不准确【思维点拨】直接列举,找出符合要求的事件个数.题型二几何概型例 1 如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率D是( ).A.14 B. π8 C. 12 D. π4【答案】B【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为822122ππ=⎪⎭⎫⎝⎛⨯⨯a a .故选B.例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】32【解析】方程22320x px p 有两个负根的充要条件是2121244(32)020320p p x x p x x p ⎧∆=--≥⎪+=-<⎨⎪=->⎩即21,3p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503-+-=-,故填:32. 【易错点】“有两个负根”这个条件不会转化.【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数p 的范围.在利用几何概型的计算公式计算即可. 题型三 抽样与样本数据特征例1 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ________件. 【答案】18【解析】按照分层抽样的概念应从丙种型号的产品中抽取60300181000⨯=(件).例2 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 . 【答案】11【解析】 因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,又样本数据121x +,221x +,⋅⋅⋅,21n x +的和为()122n x x x n ++++,所以样本数据的均值为21x +=11.例3 某电子商务公司对10000名网络购物者2018年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.30.9],内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.50.9],内的购物者的人数为. /万元a【答案】3a = 人数为0.6100006000⨯=【解析】 由频率分布直方图及频率和等于1,可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[]0.50.9,内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=, 所以消费金额在区间[]0.50.9,内的购物者的人数为0.6100006000⨯=.例4 某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图所示./度(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则从月平均用电量在[)220,240的用户中应抽取多少户? 【答案】见解析【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=, 得0.0075x =.(2)由图可知,月平均用电量的众数是2202402302+=. 因为()0.0020.00950.011200.450.5++⨯=<, 又()0.0020.00950.0110.0125200.70.5+++⨯=>, 所以月平均用电量的中位数在[)220,240内.设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=, 得224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=(户); 月平均用电量为[)240,260的用户有0.00752010015⨯⨯=(户); 月平均用电量为[)260,280的用户有0.0052010010⨯⨯=(户); 月平均用电量为[]280,300的用户有0.0025201005⨯⨯=(户).抽取比例为11125151055=+++,所以从月平均用电量在[)220,240的用户中应抽取12555⨯=(户). 【易错点】没有读懂题意,计算错误.不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式;2牵涉到策略问题,一般可以转化为比较两个指标的大小. 题型四 回归与分析例1下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图y年生活垃圾无害化处理量年份代码t(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明 (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55= 2.646≈.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得4t =,()27128i i t t =-=∑,0.55=,()()77711140.1749.32 2.89iii iii i i t t y y t y t y ===--=-=-⨯=∑∑∑, 2.890.990.552 2.646r ≈≈⨯⨯. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(1)变量y 与t的相关系数7777()()7iii i i it t y y t y t y r ---⋅==∑∑∑∑,又7128i i t ==∑,719.32i i y ==∑,7140.17i i i t y ==∑5.292==0.55=,所以740.17289.320.997 5.2920.55r ⨯-⨯=≈⨯⨯ ,故可用线性回归模型拟合变量y 与t 的关系.(2)4t=,y =7117i i y =∑,所以7172211740.17749.327ˆ0.10287i ii ii t y t yb tt ==-⋅-⨯⨯⨯===-∑∑, 1ˆˆ9.320.1040.937ay bx =-=⨯-⨯≈,所以线性回归方程为ˆ0.10.93y t =+. 当9t =时,ˆ0.190.93 1.83y =⨯+=.因此,我们可以预测2016年我国生活垃圾无害化处理1.83亿吨.【易错点】没有读懂题意,计算错误.【思维点拨】将题目的已知条件分析透彻,利用好题目中给的公式与数据. 题型五 独立性检验例1 甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现A、B两变量更强的线性相关性?()A.甲B.乙C.丙D.丁【答案】D【解析】D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数r的绝对值越趋向于1,相关性越强.残差平方和m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】56【解析】将先后两次点数记为(),x y,则基本事件共有6636⨯=(个),其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6,共6种,则点数之和小于10共有30种,所以概率为305366=.2.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是().A.112B.114C.115D.118【答案】C【解析】不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两数有45(种)情况,其中两数相加和为30的有7和23,11和19,13和17,共3种情况,根据古典概型得314515P ==.故选C .3.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 【答案】56P =【解析】1只白球设为a ,1只红球设为b ,2只黄球设为c ,d , 则摸球的所有情况为(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,(),c d ,共6件, 满足题意的事件为(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,共5件,故概率为56P =.题型二 几何概型1.某公司的班车在7:00,8:00,8:30发车,学.小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ).A .13B .12C .23D .34【答案】B【解析】 如图所示,画出时间轴.D C A小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟. 根据几何概型,所求概率10101402P +==.故选B . 2. 从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为().A .4nm B .2n mC .4m nD .2mn【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41m n=,所以4πmn =.故选C .3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则 A .12p p = B .13p p = C .23p p = D .123p p p =+【答案】A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可.设直角三角形ABC 的三个角A ,B ,C 所对的边长分别为a ,b ,c ,则区域Ⅰ的面积为112S ab =,区域Ⅱ的面积为222211111111πππ22222222S c b ab a ab ⎛⎫⎛⎫⎛⎫=++-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 区域Ⅲ的面积为22231111111πππ2222282S c b ab a ab ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 显然12p p =.故选A .题型三 抽样与样本的数据特征1.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 . 【答案】10【解析】平均数()146587666x =+++++=.2.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】3;6000【解析】频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)0,0.5, [)0.5,1,⋅⋅⋅,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由. 【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在[)00.5,中的频率为0.080.50.04⨯=,同理,在[)0.5,1,[)1.5,2,[)22.5,, [)33.5,,[)3.54,,[)44.5,中的频率分别为0.08,0.20,0.26, 0.06, 0.04, 0.02.由0.04+0.08+0.50.200.260.50.060.040.021a a ⨯+++⨯+++=,解得0.30a =.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为3000000.1236000⨯=.(3)因为前6组的频率之和为0.040.080.150.200.260.15=0.880.85----->, 而前5组的频率之和为0.04+0.08+0.150.200.26=0.730.85--<,所以2.5 3.x < 由()0.3 2.50.850.73x ⨯-=-,解得 2.9x =. 题型四 回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 【答案】B【解析】由已知得8.28.610.011.311.9105x ++++==(万元),6.27.58.08.59.885y ++++==(万元),故ˆ80.76100.4a=-⨯=, 所以回归直线方程为ˆ0.760.4y x =+.当社区一户收入为15万元,家庭年支出为ˆ0.7615y =⨯+0.411.8=(万元).故选B .2.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为( ).A . 160B . 163C . 166D .170 【答案】C 【解析】 22.5x =,160y =,所以160422.570a =-⨯=,24x =时,42470166y =⨯+=.故选C .3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量()1,2,,8i y i =⋅⋅⋅数据作了初步处理,得到下面的散点图及一些统计量的值.年宣传费/千元表中i w =8118i i w w ==∑,(1)根据散点图判断,y abx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系式为0.2z y x =-,根据(2)的结果回答下列问题:(ⅰ)年宣传费49x =时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据()11,u v ()22,u v ,⋅⋅⋅,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i nii uu v v uuβ==--=-∑∑,ˆˆv u αβ=-. 【答案】见解析【解析】(1)由散点图变化情况可知选择y c =+较为适宜.(2)由题意知()()()81821108.8681.6iii ii w w y y d w w ==--===-∑∑.又y c =+一定过点(),y ω,所以c y d ω=-=56368 6.8100.6-⨯=, 所以y 与x 的回归方程为100.6y =+(3)(ⅰ)由(2)知,当49x =时,()100.668576.6t y =+=,0.2576.649z =⨯-=66.32(千元),所以当年宣传费为49x =时,年销售量为()576.6t ,利润预估为66.32千元.(ⅱ)由(2)知,(0.20.2100.6z y x x =-=+-=x +20.12=)226.8 6.820.12-++ 6.8=时,年利润的预估值最大,即26.846.24x ==(千元). 题型五 独立性检验1.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H :“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的K 2≈3.918,则下列表述中正确的是( ) A .有95℅的把握认为“这种血清能起到预防感冒的作用” B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒 C .这种血清预防感冒的有效率为95℅ D .这种血清预防感冒的有效率为5℅ 【答案】A【解析】由题可知,在假设H 成立情况下,)841.3(2≥K P 的概率约为0.05,即在犯错的概率不错过0.05的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用”.这里的95℅是我们判断H 不成立的概率量度而非预测血清与感冒的几率的量度,故B 错误.C ,D 也犯有B 中的错误.故选A2.观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是( )A .B .C .D . 【答案】D【解析】在频率等高条形图中,a ab +与cc d+相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中12,x x 所占比例相差越大,则分类变量,x y 关系越强,故选D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.频率频率组距箱产量/kg新养殖法旧养殖法箱产量/kg(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg , 新养殖法的箱产量不低于50kg ,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n ad bc K a b c d a c b d -=++++ .【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B ,“新养殖法的箱产量不低于50kg ”为事件C ,由题图并以频率作为概率得()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯0.62=,()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯0.66=,()()()0.4092P A P B P C ==.(2)由计算可得2K的观测值为()222006266383415.70510010096104k ⨯⨯-⨯==⨯⨯⨯,因为15.705 6.635>,所以()2 6.6350.001P K ≈≥,从而有99%以上的把握认为箱产量与养殖方法有关.(3)150.2÷=,()0.10.0040.0200.0440.032-++=,80.0320.06817÷=,85 2.3517⨯≈,50 2.3552.35+=,所以中位数为52.35.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。

相关文档
最新文档