指数幂与负整数指数幂练习题

合集下载

整数指数幂知识点及相关练习题

整数指数幂知识点及相关练习题

整数指数幂:①正整数指数幂a n (n 是正整数),表示n 个相同的因数a 相乘的积。

例如,43= 4×4×4= 。

①零指数幂,任何不等于0的数的零次幂都等于1,即a 0 =1(a ≠0)。

例如,60=1,(31)0= 。

①负整数指数幂p a -(p 是正整数),等于a 的p 次幂的倒数,即p a -=1p a 。

例如,3-2 =231= 。

答案:64 , 1 , 91 例题:一、选择题1、20160 = ( )。

A .0B .1C . -2017D .2017答案:B2、计算|-6| - (-31)0的值是( ) A .5 B .-5 C .532 D .7答案:A解析:原式= 6-1= 5。

3、计算:(-1)2009的结果是( )A .-1B .1C .-2009D .2009答案:A4、计算(-2)-3的结果等于( )A .-8B .8C .-81D .81 答案:C5、计算:(-31)2·3-1=( ) A .31 B .1 C .271 D .-271 答案:C解析:原式=91·31=2716、计算(-2)2 - (π-2016)0 + ( 21)-3的结果为( ) A .-1 B .5 C .8D .11 答案:D解析:原式 = 4-1+ 8 = 11二、填空题1、(23)0= 。

答案:12、23= ,2-2= 。

答案:8,41 3、(-21)-2 + (π-2)0 = 。

答案:5解析:原式 = 4+1=5。

4、计算(-41)-1 ×(1-π) 0 - |-15| = 。

答案:-19解析:原式 = -4×1-15 = -195、计算:20170 – (-1)2019+ (-31)-1 = 。

答案:-1解析:原式 = 1-(-1)+ (-3) = -1。

6、你见过拉面馆的师傅拉面吗?他们用一根粗的面条,第1次把两头捏在一起抻拉得到两根面条,再把两头捏在一起抻拉,反复数次,就能拉出许多根细面条,如下图,第3次捏合抻拉得到 根面条,第5次捏合抻拉得到 根面条,第n 次捏合抻拉得到 根面条,要想得到64根细面条,需 次捏合抻拉。

初中数学 习题:16.4.1零指数幂与负整数幂

初中数学 习题:16.4.1零指数幂与负整数幂

零指数幂与负整数幂课时练习一、选择题1.计算(﹣1)0的结果为( )B .﹣1 D .无意义答案:A解析: 根据零指数幂的运算方法:a 0=1(a ≠0),求出(﹣1)0的结果为多少即可. 解答:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A .2.计算:(﹣32)0=( ) B .﹣23 D .32 答案:A解析: 根据零指数幂:a 0=1(a ≠0),求出(﹣32)0的值是多少即可. 解答:(﹣32)0=1. 故选:A .3.(π﹣)0的相反数是( )D .﹣1答案:D解析: 首先利用零指数幂的性质得出(π﹣)0的值,再利用相反数的定义进行解答,即只有符号不同的两个数交互为相反数.解答:(π﹣)0的相反数是:﹣1.故选:D .4.下列运算正确的是( )=0 B .﹣32=9 C .﹣|﹣3|=﹣3 D .9=3答案:C解析: 根零指数幂、绝对值、算术平方根、平方等知识点进行解答.解答:=1,故错误,B.﹣32=﹣9,故错误,C.﹣|﹣3|=﹣3,正确;D.9=3,故错误,故选C .5.计算:(﹣2)0=( )A .﹣2答案:C解析: 根据任何非0数的0次幂等于1进行计算即可.解答::(﹣2)0=1.故选:C .6.计算(﹣21)﹣1的结果是( ) A .﹣21 B .21 D .﹣2 答案:D解析:根据负整数指数幂的运算法则计算.解答:原式=﹣211=﹣2.故选D . 7.下列计算正确的是( )=4 =0﹣1=﹣2 D .4=±2答案:A解析: A.根据有理数的乘方的运算方法判断即可.B.根据零指数幂的运算方法判断即可.C.根据负整数指数幂的运算方法判断即可.D.根据算术平方根的含义和求法判断即可.解答:∵22=4,∴选项A 正确;∵20=1,∴选项B 不正确;∵2﹣1=, ∴选项C 不正确; ∵4=2∴选项D 不正确.故选:A .8.计算﹣3﹣2的值是( )B .91D .﹣6 答案:B 解析:根据负整数指数幂:a ﹣p =p a 1(a ≠0,p 为正整数)进行计算. 解答:﹣3﹣2=﹣(31)2=﹣91, 故选:B .9.下列运算正确的是( )A .﹣(﹣a +b )=a +b ﹣3a 2=a C .(x 6)2=x 8 ÷)32(﹣1=32 答案:D解析: 根据去括号法则,幂的乘方,底数不变指数相乘;负整数指数次幂等于正整数指数次幂的倒数对各选项解析判断后利用排除法求解.解答:A.﹣(﹣a +b )=a ﹣b ,故本选项错误;﹣3a 2不能运算,故本选项错误;C.(x 6)2=x 12,故本选项错误;÷(32)﹣1=1÷23=32,故本选项正确. 故选D .10.下列运算正确的是( )A .4=2B .(﹣3)2=﹣9﹣3=﹣6 =0答案:A解析: 根据算术平方根、乘方、负整数指数幂、零指数幂等知识点进行作答.解答:A.4=2,故选项正确;B.(﹣3)2=9,故选项错误;﹣3=81,故选项错误; =1,故选项错误.故选:A .11.下列计算中,正确的是( )﹣2=91 B .2)3( =﹣3 ÷m 2=m 3 D .(a ﹣b )2=a 2﹣b2 答案:A解析: 分别根据负整数指数幂及同底数幂的除法法则、数的开方法则及完全平方公式对各选项进行逐一解析即可.解答:A.原式=231=91,故本选项正确; B.原式=3,故本选项错误;C .原式=m 6﹣2=m 4,故本选项错误; D.原式=a 2+b 2﹣2ab ,故本选项错误.故选A .12.下列各式中计算正确的是( )﹣3=271 ﹣5=﹣a 5 C .(﹣3a ﹣3)2=9a 6 +a 3=a 8 答案:A解析: 根据负指数幂、二次方、实数加法的运算法则进行逐一判断即可.解答:﹣3=271,故本选项正确, ﹣5=51a,故本选项错误, C .(﹣3a ﹣3)2=961a ,故本选项错误, +a 3已经是最简形式,故本选项错误,故选A .13. 20150=( )C .﹣2015答案:B解析: 根据非零的零次幂等于1,可得答案.解答:20150=1.故选:B .14.如果(m ﹣3)m =1,那么m 应取( )≥3 =0 =3 =0,4或2答案:D解析: 根据任何非零数的0次幂为1和±1的偶次幂为1进行解答即可.解答:∵(0﹣3)0=1,∴m =0,∵(2﹣3)2=1,∴m =2,∵(4﹣3)4=1,∴m =4,故选:D .15.计算20140的结果是( )D .﹣1答案:A解析: 根据零指数幂计算即可.解答:20140=1,故选A .二、填空题16.=----01)2()21( . 答案:-3解析: 利用零指数幂及负整数指数幂的定义求解即可. 解答:01)2()21(----=﹣2﹣1=﹣3.故答案为:﹣3.17. 20150= .答案:1解析: 根据非零的零次幂等于1,可得答案.解答:20150=1.故答案为:1.18.式子(x +)0=1成立,则字母x 不能取的值是 .答案:解析: 根据任何非0数的0次幂等于1进行解答即可.解答:由题意得,x +≠0,x ≠﹣,故答案为:﹣.19.若(x ﹣2)0=1,则x 应满足条件 .答案:x ≠2解析: 根据0指数幂的概念解答.解答:若(x ﹣2)0=1,则x 应满足x ﹣2≠0,即x ≠2,故本题答案为:x ≠2.20.计算:(21)﹣2+(﹣2)3﹣20110= . 答案:﹣5解析: 根据任何一个不为0的数的0次幂都为1和a ﹣n =n a 1和有理数的加减法进行计算即可.解答:原式=4﹣8﹣1=﹣5.故答案为:﹣5.三、解答题21.已知:42)2(--x x =1,求x 的值.答案:x =﹣2或x =3解答:∵42)2(--x x =1,∴x 2﹣4=0,∴x =±2.又∵底数不能为0,∴x ≠2.∴x =﹣2,当x ﹣2=1,解得:x =3,∴x =﹣2或x =3解析: 由零指数幂的定义可知指数为0,解出x 的值即可解答,注意一个正数有两个平方根,他们互为相反数.22.计算:1)21(--+4)1(02++x .答案:1解答:原式=(﹣2)+1+2=1,故答案为1.解析: 分别根据零指数幂、算术平方根、负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.23.计算:4)12010(0--.答案:﹣1解答:原式=1﹣2=﹣1.解析: 分别根据零指数幂,算术平方根的运算法则计算,然后根据实数的运算法则求得计算结果.解答:原式=1﹣2=﹣1.24.计算:(﹣2)2﹣20070+|﹣6|答案:9解答:原式=4﹣1+6=9.解析: 根据有理数的乘方、零指数幂、绝对值等知识点进行解答,注意(﹣2)2=4,20070=1,|﹣6|=6,代入代数式即可得解.25.计算:3220610)23(-+-.答案:5解答:原式=1+3416⨯=1+4=5.解析:0)23( =1,3次方根的被开方数可用平方差公式计算得到,把所求得的数值代入即可求解.。

八年级负整指数幂的计算题

八年级负整指数幂的计算题

八年级负整指数幂的计算题一、计算。

1. 2^-3- 解析:根据负整指数幂的定义a^-p=(1)/(a^p)(a≠0,p为正整数),对于2^-3,这里a = 2,p=3,则2^-3=(1)/(2^3)=(1)/(8)。

2. 3^-2- 解析:同理,a = 3,p = 2,3^-2=(1)/(3^2)=(1)/(9)。

3. ((1)/(2))^-2- 解析:a=(1)/(2),p = 2,根据负整指数幂定义((1)/(2))^-2=(1)/((frac{1){2})^2}=(1)/(frac{1){4}} = 4。

4. ((1)/(3))^-3- 解析:a=(1)/(3),p = 3,((1)/(3))^-3=(1)/((frac{1){3})^3}=(1)/(frac{1){27}}=27。

5. 5^-1+3^-1- 解析:先分别计算负指数幂,5^-1=(1)/(5),3^-1=(1)/(3),则5^-1+3^-1=(1)/(5)+(1)/(3)=(3 + 5)/(15)=(8)/(15)。

6. 2^-2-4^-1- 解析:2^-2=(1)/(4),4^-1=(1)/(4),所以2^-2-4^-1=(1)/(4)-(1)/(4)=0。

7. ( - 2)^-3- 解析:(-2)^-3=(1)/((-2)^3)=(1)/(-8)=-(1)/(8)。

8. (-3)^-2- 解析:(-3)^-2=(1)/((-3)^2)=(1)/(9)。

9. 10^-3×10^5- 解析:根据同底数幂相乘,底数不变,指数相加,10^-3×10^5=10^-3 +5=10^2=100。

10. 2^-3÷2^-5- 解析:根据同底数幂相除,底数不变,指数相减,2^-3÷2^-5=2^-3-(-5)=2^-3 + 5=2^2=4。

11. (3×10^-2)×(2×10^3)- 解析:根据乘法交换律和结合律以及同底数幂相乘法则,(3×10^-2)×(2×10^3)=(3×2)×(10^-2×10^3) = 6×10^-2+3=6×10^1=60。

零指数幂与负整数指数幂练习题

零指数幂与负整数指数幂练习题

6.4 零指数幂与负整数指数幂练习题一、选择题1.下列说法正确的是( )A .(π﹣3.14)0没有意义B .任何数的0次幂都等于1C .a 2•(2a )3=8a 6D .若(x +4)0=1,则x ≠﹣42.若(a +2)0=1,则a 的取值正确的是( )A .a >﹣2B .a =﹣2C .a <﹣2D .a ≠﹣23.若(x ﹣2)x =1,则x 只能取( )A .x ≥2B .x =0C .x =2D .x =0或x =34.如果(x ﹣)0有意义,那么x 的取值范围是( )A .x >B .x <C .x =D .x ≠ 5.等式(x +4)0=1成立的条件是( )A .x 为有理数B .x ≠0C .x ≠4D .x ≠﹣4 6.计算()0的结果是( )A . B .3C .0D .1 7.三个数20,3﹣2,(﹣3)﹣1中,负数的个数是( )A .0个B .1个C .2个D .3个8.在(﹣1)2023,|﹣1|3,﹣(﹣1)18,3﹣3这四个有理数中,负数共有( )A .1个B .2个C .3个D .4个9、20×()﹣1=( )A .﹣2 B .C .2D . 10、20230×2﹣1等于( )A .107B .0C .D .﹣2022 11、计算的结果是( )A .﹣9 B . C . D .9 12、计算2﹣1的结果是( )A .B .﹣C .﹣2D .2 13、下列运算正确的是( )A .a 5+a 5=a 10B .a 6×a 4=a 24C .a 0÷a ﹣1=aD .a 4﹣a 4=a 0 14、计算(20231)﹣1所得结果是 ( )A .2023 B .20231 C .-20231 D .﹣2023 15、若a =0.32,b =﹣3﹣2,c =(﹣)﹣2,d =(﹣)0,则( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b二、填空题1、当x 满足 时,(x ﹣2)0有意义,且(x ﹣2)0= .2、(π﹣2021)0﹣|﹣3|= .3、当 时,(x ﹣4)0=1.4、(2022﹣π)0的值为 .5、计算:+20210= . 6、计算:2﹣2﹣(3.14﹣π)0= .7、计算:(﹣)﹣1+(π﹣3)0= .8、计算:﹣3﹣2+(﹣)0的结果是 . 9、计算:= . 10、计算:= . 11、如果a ,b ,c 是整数,且a c =b ,那么我们规定一种记号(a ,b )=c ,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,﹣)= .12、若实数m ,n 满足|m ﹣2|+(n ﹣2022)2=0,则m ﹣1+n 0= .三、解答题1、计算:(﹣)﹣1﹣2+(π﹣3.14)0.2、计算:1012312023332---÷-+⨯)()()(π.3、计算:102120231-----)(4、计算:(﹣)﹣1×(﹣2)2﹣(1﹣2)2023.5、.6、计算:.。

八年级数学上册负整数指数幂练习题

八年级数学上册负整数指数幂练习题

八年级数学上册负整数指数幂练习题(含答案解析)学校:___________姓名:___________班级:__________一、单选题1.()02-的值为( )A .2-B .0C .1D .2 2.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<< B .b a c d <<< C .b a d c <<< D .a b d c <<<3.020*******)(0.125)8+⨯的结果是( )AB 2C .2D .04.计算x 2•x 3的结果是( )A .x 6B .x 5C .x 4D .x 35.若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是( ) A .b a b a -<<<-B .b b a a <-<<-C .a b b a <-<<-D .a b b a <<-<- 6.下列运算中,正确的是( )A 3±B .()020-=C .122-=-D 2- 7.已知212m -⎛⎫= ⎪⎝⎭,()32n =-,012p ⎛⎫=-- ⎪⎝⎭,则m ,n ,p 的大小关系是( ) A .m p n << B .n m p << C .p n m << D .n p m <<二、填空题8.计算:(1=__________; (2)=__________;(3)|2-=_________;(4)2|+=__________.9.计算:3|-11()3-=_______.10.计算:10(4)(π--+=_________.三、解答题11.计算:(1)(⎛⨯- ⎝;)12;(4))11112-⎛⎫ ⎪⎝⎭. 12.计算:|1-.13.已知一元二次方程20ax bx c ++=有一根为1,且1a =,求2013abc 的值.14.观察并验证下列等式:332121()29+=+=,3332123123()36++=++=,333321234123)410(0+++=+++=,(1)续写等式:3333312345++++=________;(写出最后结果)(2)我们已经知道()112312n n n +++⋅⋅⋅+=+,根据上述等式中所体现的规律,猜想结论:333331231()n n +++⋅⋅⋅+-+=________;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:①333333695760+++⋅⋅⋅++;①333313521()n +++⋅⋅⋅+-;(4)试对(2)中得到的结论进行证明.参考答案:1.C【分析】根据零指数幂的运算法则求出()02-的值.【详解】解: ()021-=.故选:C .【点睛】本题考查了零指数幂,零指数幂法则:任何一个不等于零的数的零次幂都等于1.2.D【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭, ①10011999-<-<<, ①a b d c <<<,故选D .【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.3.C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=. 故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.4.B【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:x 2•x 3=x 2+3=x 5.故选:B .【点睛】此题主要考查同底数幂的乘法,解题的关键是熟知其运算法则.5.C【分析】根据0a <,0b >,且a b >,可得0a ->,0b -<,a b ->,据此判断出b ,a -,b -的大小关系即可.【详解】解:①0a <,0b >,且a b >,①0a ->,0b -<,a b ->,①a b <-,①a b b a <-<<-.故选:C .【考点】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小.6.D【分析】根据算术平方根,零指数幂,负整数指数幂,立方根的性质,逐项判断即可求解.【详解】解:3=,故本选项错误,不符合题意;B.()021-=,故本选项错误,不符合题意; C.1122-=,故本选项错误,不符合题意;2=-,故本选项正确,符合题意.故选:D .【点睛】本题主要考查了算术平方根,零指数幂,负整数指数幂,立方根的性质,熟练掌握相关运算法则是解题的关键.7.D【分析】根据负整数指数幂,有理数的乘方,零指数幂分别求得,,m n p 的值,进而比较大小即可.【详解】解:①212m -⎛⎫= ⎪⎝⎭4=,()32n =-8=-,012p ⎛⎫=-- ⎪⎝⎭1=-, ①n p m <<故选:D .【点睛】本题考查了负整数指数幂,有理数的乘方,零指数幂,掌握运算法则是解题的关键.8. 2; 2+【分析】根据同类根式的合并法则和去绝对值符号法则进行计算.【详解】解:(1=(2)=(3)|22=,(4)2|2++故答案为:2;2【点睛】本题考查同类根式的计算,掌握运算法则是关键.9.【分析】利用绝对值的性质、负整数指数幂的性质化简,再利用实数的加减运算法则得出结果.【详解】解:原式33=,=故答案为:【点睛】此题主要考查了绝对值的性质、负整数指数幂,解题的关键是正确化简各数.10.34##0.75【分析】根据零指数幂和负整数指数幂的计算法则求解即可【详解】解:原式114=-+34 =.故答案为:34.【点睛】本题主要考查了零指数幂和负整数指数幂,熟知二者的计算法则是解题的关键.11.(1)(2)(3)1(4)0【分析】(1)先根据二次根式性质进行化简,然后再进行计算即可;(2)先根据二次根式性质进行化简,然后再按照二次根式乘除运算法则进行计算即可;(3)根据二次根式混合运算法则进行计算即可;(4)根据平方差公式和二次根式性质和负整数指数幂进行运算即可.(1)解:==(2)(⎛⨯- ⎝⎛= ⎝⎭⎛= ⎝⎭= (3))1232=1=(4)解:)11112-⎛⎫ ⎪⎝⎭ 131412=--+22=-+0=【点睛】本题主要考查了二次根式的混合运算和实数混合运算,熟练掌握二次根式的性质和混合运算法则,是解题的关键.12.(1)-124(2)6【分析】(1)直接利用立方根性质化简以及有理数加减运算法则计算即可;(2)直接利用算术平方根性质以及绝对值的性质分别化简计算即可.(1)=2-3-54 =-124(2)|1-1=6【点睛】此题主要考查了实数运算,正确化简各数是解题关键.13.2.【分析】结合题意,根据二次根式的非负性得到2020b b -≥⎧⎨-≥⎩,解得2b =,代入1a =得到a ,又因为1x =是20ax bx c ++=的根,则可得1c =-,再将a ,b ,c 的值代入2013abc 计算,即可得到答案.【详解】①1a =,①2020b b -≥⎧⎨-≥⎩,即22b b ≥⎧⎨≤⎩,①2b =. 代入得1a =-.又①1x =是20ax bx c ++=的根,①211210c -⨯+⨯+=,①1c =-.①()20132013121abc =-⨯⨯-()1212=-⨯⨯-=.【点睛】本题考查二次根式的非负性、指数幂的运算,解题的关键是掌握二次根式的非负性、指数幂的运算.14.(1)225;(2)221(1)4n n +;(3)①1190700,①422n n -;(4)见解析 【分析】(1)(2)直接根据题意给出的规律即可求解.(3)①先按积的乘方分出27,提公因式27,再按给出的规律即可求解,①需先添偶次项,][333333331232[2462()()]n n +++⋅⋅⋅+-+++⋅⋅⋅+,前面括号中直接][333333331232[()()2462]n n =+++⋅⋅⋅+-+++⋅⋅⋅+,后变括号利用积的乘方分出8,提公因式8,再按给出的规律计算,提公因式整理结果集(4)利用和立方公式展开,求出平方和公式,再利用和四次方公式展开,利用错位相减法求出立方和即可【详解】解:(1)22()1234552251=++++=,故答案为:225;(2)原式()2222111231(1)(1)24++n n n n n n ⎡⎤=++-+=+=+⎡⎤⎣⎦⎢⎥⎣⎦, 故答案为:221(1)4n n +; (3)①原式33333132333()()()20()=⨯+⨯+⨯+⋅⋅⋅+⨯,33332712722732720=⨯+⨯+⨯+⋅⋅⋅+⨯,33332712320()=+++⋅⋅⋅+,227123(20)++++=,2212720214=⨯⨯⨯, 2744100=⨯,1190700=;①原式][333333331232[()()2462]n n =+++⋅⋅⋅+-+++⋅⋅⋅+,23333333322232[123212]n +++n =-++⨯+⋅⋅⋅⎤⎡+⨯⎣⨯⨯⎦, 22333312218(12(4))()3n n n =⋅⋅+⋅-+++, 2222()114218144()n n n n =⨯+-⨯⨯⨯+, 2222()()2121n n n n =+-+,,221(2)n n =-,422n n =-;(4)①33213(1)3n n n n +=+++,①33213(1)3n n n n +-=++,①332()(131)()311n n n n --=-+-+,…①3323232321-=⨯+⨯+,①3322131311-=⨯+⨯+,上述n 个等式相加,得,3322211312()()(312)n n n n +-=++⋅⋅⋅++++⋅⋅⋅++,①222331211()()(12)3n n n n ++⋅⋅⋅+=+--++⋅⋅⋅+-,3(1)(1)3(1)2n n n n +=+-⨯-+, 23(1)(1)12n n n ⎡⎤=++--⎢⎥⎣⎦, 21(1)2n n n ⎛⎫=++ ⎪⎝⎭, ①222112(1)(21)6n n n n ++⋅⋅⋅+=++, ①44321464()1n n n n n +=++++,①44321464()1n n n n n +-=+++,①44321416()()(1411)()n n n n n --=-+-+-+,…4432324262421-=⨯+⨯+⨯+,4432214161411-=⨯+⨯+⨯+,上述n 个等式相加,得,44333222141261()2412()()()n n n n n n +-=++⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++,①33342224121161()()()()2412n n n n n ++⋅⋅⋅+=+--++⋅⋅⋅+-++⋅⋅⋅+-,41(1)(1)6(1)(21)4(1)62n n n n n n n +=+-⨯++-⨯-+,3()[()()121]121n n n n n =++-+--,32()(1)n n n =++, ①33322112(1)4n n n ++⋅⋅⋅+=+. 【点睛】本题考查自然数立方和公式推导及应用,掌握自然数列和公式,自然数平方和公式,自然数立方和推导过程,规律型:数字的变化类、因式分解的应用是解题关键.。

专题10 零指数幂和负指数幂(含答案)

专题10 零指数幂和负指数幂(含答案)

专题10 零指数幂和负指数幂知识解读1.零指数幂:任何不等于0的数的0次幂都等于1,即a0=1(a≠0).2.关于负指数幂的几个常用结论:(1)a-n与a n互为倒数;(2)n na bb a-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(3)n mm na bb a--=.3.科学记数法(1)确定a,a是只有一位整数的数;(2)确定n:方法一:当原数的绝对值大于等于10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值小于1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零);方法二:绝对值大于等于10的数,小数点向左移到第一位数字后,看小数点移动了几位,n的值就是几,表达式中的n应为正整数;绝对值小于1的数,小数点向右移到第一位不为零的数后,看小数点移动了几位,n的值就是几,表达式中的n应为负整数.培优学案典例示范一、零指数幂和负指数幂例1计算:(1)(-5)0;(2)(π-3.14)0;(3)(-6)-2;(4)325-⎛⎫-⎪⎝⎭.【提示】(1)(2)中底数都不是0,所以这两个零次幂都等于1;(3)(4)先把负整数指数化为正整数指数.【解答】【技巧点评】对于零指数幂的运算,要弄清底数是否为0,只有当底数不为0时,这个零次幂才等于1;解负整数指数幂时,应先把负整数指数幂化为正整数指数幂,然后按照幂的运算性质计算.1.计算:)11201520152015-⎛⎫--- ⎪⎝⎭.二、科学记数法表示绝对值小于1的正数例2 PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A .2.5×10-7 B .2.5×10-6 C .25×10-7 D .0.25×10-5【提示】科学记数法的形式为a ×10n ,科学记数法的过程就是确定a 和n 的过程.【技巧点评】此类题目中的易错点:①a 的值和符号,如本题易把a 的值当作25;②n 的符号及n 的值. 特别注意:指数的负号与a 中的负号意义不同,不可以“负负得正”.跟踪训练22.一种微粒的半径是0.00004米,这个数据用科学记数法表示为( ) A .4×106 B .4×10-6 C .4×10-5 D .4×105 三、负指数幂和零指数幂参与的计算 例3 计算下列各式:1、(1)()()()2221323232363xy x y x y x y ---•- ; (2)()22334536a b a b a b ------.【提示】负指数幂的法则,结合幂的乘方和同底数幂的法则运算. 思路1:将负指数先化成正指数后,再运算; 思路2:分子与分子、分母与分母运算,最后再约分. 【解答】【技巧点评】上面的两种方法不一定要严格界限,可以相互配合使用.3.计算下列各式: (1)0112343632--⎛⎫⎛⎫-•-• ⎪ ⎪⎝⎭⎝⎭; (2)()23123236a b a b a b ------.例4 计算下列各式:(1)()22221111a b a b a b -------⎛⎫-•+ ⎪-⎝⎭; (2)152x xy x y x x x y x --⎛⎫⎛⎫+-÷• ⎪ ⎪-⎝⎭⎝⎭.【提示】平方差公式仍然适用,如a -2-b -2=(a -1-b -1)(a -1+b -1). 思路1:将负指数先化成正指数后,再运算;思路2:利用负指数幂的性质将分式运算化成类似于整式的运算. 【解答】【技巧点评】乘法公式在这里同样适用,如a -2-b -2=(a -1+b -1)(a -1-b -1),(a -1±b -1)2=a -2±2a -1b -1+b -2.跟踪训练44.已知x+x -1=a ,求x 2+x -2和x 4+x -4的值. 拓展延伸 例5 若a =5513-⎛⎫⎪⎝⎭,b =4414-⎛⎫ ⎪⎝⎭,c =3315-⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是 .【提示】把这三个幂的指数化为正数,然后都化成指数为11的幂,然后比较底数大小.跟踪训练55.已知x =1+2p ,y =1+2-p ,则用x 表示y 的结果是( ) A .11x x +- B .21x x ++ C .1xx - D .2-x竞赛连接例6 (浙江初中数学竞赛试题)已知x+y=x -1+y -1≠0,则xy 的值为( ) A .-1 B .0 C .1 D .2 【提示】x+y=x -1+y -1可化为x+y=1x +1y,适当变形.跟踪训练66.阅读下列解题过程:(-3m 2n -2)-3·(-2m -3n 4)-2 =(-3)-3m -6n 6·(-2)-2m 6n -8 A =127-m -6n 6·(14-m 6n -8) B =21108nC 上述解题过程中,从 开始出错,应改正为 .培优训练直击中考1.★下列运算正确的是( )A .a 2·(a 3)2=a 7B .-0.005=5×10-3C .(a -2)2=a 2-4D .()111212-⎛⎫+--- ⎪⎝⎭=22.★若102x =25,则10-x =( ) A .15- B .15 C .150 D .16253.★(x -1+y -1)-1=( ) A .x=y B .1x y + C .xy x y + D .x yxy+ 4.★计算:-22+(-2)2- (12-)-1= .5.★计算:(-2-1)-2= . 6.★已知1232723832x x --⎛⎫⎛⎫•=⎪⎪⎝⎭⎝⎭,则x = . 7.★计算下列各式,并且把结果化为只含有正整数指数形式:(1)()2225523a ba b --•; (2)()23421x y x y y --⎛⎫•÷ ⎪⎝⎭(3)222233(2)4a b ab a b ----;(4)122232(2)()2mn m n m ------÷.8.★已知14a a -+=,求22a a -+的值.9.★计算:(1)223(3)x y --; (2)3123(2)a b xy ----;(3)132415()()28p q p q ----÷-;(4)22333(3)3m n m n --; (5)132321163()(2)4a b c a b c ----;(6)3443431(2)()4x y yx ---;(7)231232(3)6a b a b a b ------;(8)322232132a b c x y ----⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (9)(111(2)()ab a b a b ----+-.知战竞赛1. ★★已知12a a-+=,则1a a -+=( )A.4B.2C.6D.82. ★★计算:2331123(2)2a b a b a b -------= . 3. ★★★求满足91016()()()28915ab c=的一切整数a ,b ,c 的值。

负整数指数幂专项练习讲课讲稿

负整数指数幂专项练习讲课讲稿

负整数指数幂专项练习收集于网络,如有侵权请联系管理员删除零指数幂与负整指数幂练习一、填空题1、用小数表示 2.61×10-5=__________,0)14.3(.2、(3x -2)0=1成立的条件是_________.3、用科学记数法表示0.000695并保留两个有效数字为_______.4、计算(-3-2)3的结果是_________.5、若x 2+x -2=5,则x 4+x-4的值为_________. 7、计算(-2a -5)2的结果是_________.8、若,152k 则k 的值是 .9、用正整数指数幂表示215a bc. 10、若2010a ,1510b 求b a239的值二、选择题11、化简11)(y x为()A 、y x 1B 、y x 1 C.、1xy yD 、1xy x12、下列计算正确的是()A 、1221 B 、x x x 214243 C 、6326)2(x x D 、222743x x x13、已知21a a ,则22a a 等于()A 、4B 、C 、 6D 、8收集于网络,如有侵权请联系管理员删除14、化简111))((y xy x 的结果是()A 、xy B 、xy 1C 、221y xD 、221y x 17、002x 成立的条件是()A 、x 为大于2的整数B 、x 为小于2的整数C 、x 为不等于2的整数D 、x 这不大于2的整数18、n 正整数,且n n 2)2(则n 是()A 、偶数B 、奇数C 、正偶数D 、负奇数19、1642m n 等于()A 、12n m B 、122n m C 、1232n m D 、1242n m 20、若23.0a ,23b ,21()3c ,0)31(d ,则()A 、a <b <c <d B 、b <a <d <c C 、a <d <c <b D 、c <a <d <b三、解答题:21、(1)1203122006(2)2313(2)a b a b (3)2313()()a bc (4))()2(2422222b a b a b a (5)aa a a a )()2(122收集于网络,如有侵权请联系管理员删除(6)322224)2(3b a ab b a (7)2322212)()2(m n m mn (8)20072007024)25.0()51(31)51()5131(22、已知a 、b 互为相反数,c 、d 互为倒数,12x ,2y,求22007)(y cd x b a 的值。

负整数指数幂的专题训练(附答案及解析)

负整数指数幂的专题训练(附答案及解析)
2、下列运算结果为负数的是( )
A、(﹣2008)﹣1B、(﹣1)2008
C、(﹣1)×(﹣2008)D、﹣1﹣(﹣2008)
考点:正数和负数;有理数的乘方;负整数指数幂。
专题:常规题型。
分析:首先审清题意,对各选项计算后再进行判断.
解答:解:A、(﹣2008)﹣1=﹣ ,是负数,故本选项正确;
B、(﹣1)2008=1,是正数,故本选项错误;
解答:解:∵ , ,
∴0,1是整数, 是分数,故是有理数;
,2.45678…,﹣π是无理数.
故选A.
点评:此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
12、(2009•常德)设a=2°,b=(﹣3)2,c= ,d=( )﹣1,则a,b,c,d按由小到大的顺序排列正确的是( )
12、(2009•常德)设a=2°,b=(﹣3)2,c= ,d=( )﹣1,则a,b,c,d按由小到大的顺序排列正确的是( )
A、c<a<d<bB、b<d<a<c
C、a<c<d<bD、b<c<a<d
13、将 ,(﹣3)0,(﹣4)2这三个数按从小到大的顺序排列,正确的结果是( )
A、 B、
C、 D、
14、设 ,b=(﹣3)2, , ,则a,b,c,d按由小到大的顺序排列正确的是( )
A、c<a<d<bB、b<d<a<c
C、a<c<d<bD、b<c<a<d
15、若 ,则a,b,c,d的大小关系是( )
A、a>b>c>dB、c>d>a>b
C、c>d>b>aD、d>a>b>c
16、已知a=2﹣2,b=3°,c=(﹣1)3,则a、b、c的大小关系是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.6 零指数幂与负整数指数幂练习题
【典型例题】
例1. 若式子0
(21)x -有意义,求x 的取值范围。

分析:由零指数幂的意义可知.只要底数不等于零即可。

解:由2x -1≠0,得
12x ≠
即,当12x ≠时,0
(21)x -有意义
例2. 计算:(1)32
031110(
)(5)(3)0.31230π--+⨯---⨯+-;
(2)
42310
[()()](0)a a a a -⋅-÷≠。

分析:按照有关法则进行运算即可,注意运算顺序。

解:(1)320311
10()(5)(3)0.312
30π--+⨯---⨯+-
=213
100030127()12
10-+⨯+⨯+ =10
10009002712
3++⨯+
=2002
(2)
4231046101010
[()()][()]1a a a a a a a a -⋅-÷=⋅-÷=-÷=-
例3. 计算下列各式,并把结果化为只含有正整数指数幂的形式.
(1)1322
(3)m n ---- (2) 22123[2()()][()()]x y x y x y x y -----+⋅-⋅+⋅- 分析:正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算。

解:(1)
41322123222264
6
9(3)(3)()()(3)n m n m n m n m ----------=-=-=; 或者:3224
1
322
23322326
2222
11(3)9(3)()()3()()3(3)m n n m n m m n m m n n -----=-====
(2)
22123
[2()()][()()]x y x y x y x y -----+⋅-⋅+⋅- =
22221323
(2)[()]()[()][()]x y x y x y x y --------⋅+⋅-⋅+⋅- =4236
2
1()()()()(2)x y x y x y x y --⋅+⋅-⋅+⋅-- =4326
1
()()4x y x y -+-+⋅+-
=4
()4()x y x y -+.
例4. 用科学记数法表示下列各数. (1) (2) (3)-309200 (4)-
分析:用科学记数法表示数时,关键是确定a 和n 的值
(1)=×710 (2)+×5
10- (3)-309200=-×5
10
(4)-=-×6
10-.
例5. 用小数表示下列各数.
(1)5
6.2310--⨯ (2)38
(2)10--⨯
分析:本题对科学记数法进行了逆向考查,同样,关键是弄清楚n 的值与小数点的之间的变化关系。

解:(1)5
6.2310--⨯=-;
(2)38(2)10--⨯=-8×810-=-。

例6. 已知1x x a -+=,求22
x x -+的值.
分析:本例考查的是负整数指数幂及完全平方公式的灵活运用,显然,由
1x x a -+=,我们很难求出x ,但可根据负整数指数幂的意义,把1x x -+及22
x x -+化为分数形式,观察、比较两式的特点,运用完全平方公式即可求解。

解:∵1
x x a -+=,∴1x a x +=,∴2222211()2x a x a x x +=++=即
∴2222221
22
x a x x a x -+=-+=-即
点拨:理解和运用负整数指数幂的定义,合理根据已知条件变形,将22
x x
-+写成
22
1x x +,然后求出22x x -+的值。

例7. (1)原子弹的原料——铀,每克含有21
2.5610⨯个原子核,一个原子核
裂变时能放出11
3.210J -⨯的热量,那么每克铀全部裂变时能放出多少热量? (2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学计数法表示)
分析:第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,
即1m=1000mm=310mm ,1 m 2=6
10mm 2,再根据题意计算。

解:(1)由题意得21112111
2.5610
3.210 2.56 3.21010--⨯⨯⨯=⨯⨯⨯=()10
8.19210
J ⨯
答:每克铀全部裂变时能放出的热量
()10
8.19210J ⨯的热量。

(2)92972900
9001091010910()
1000000000mm ---=⨯=⨯⨯=⨯; 7676
1391010910
910----⨯÷=⨯=⨯(2m ) 答:每一个这样的元件约占7910-⨯mm 2;约13
910-⨯m 2。

【模拟试题】(答题时间:40分钟) 一. 选择题:
1. 下列算式中正确的是( )
A. 0
(0.0001)01=- B. 4
100.0001-=
C. ()
10251-⨯=
D. ()
2
0.010.01-=
2. 下列计算正确的是( )
A. 35
5410m m m a a a ---÷= B. 4322
x x x x ÷÷=
C. ()
10251-⨯=
D. 001.010
4
=-
3. 下面的数或式:104
525÷,
()2
2
1117,4,,4--⎛⎫
-- ⎪⎝⎭为负数的个数是( ) A. 1个 B. 2个 C. 3个 D. 0个
4. 下面是一名同学所做6道练习题:①()
31-=,②336a a a +=,③
()()5
3
2
a a
a
-÷-=-,④22144m m -=
,⑤()3236
xy x y =
2
=,他做对的题的个数是( ) A. 0
B. 1
C. 2
D. 3
5. 若
2
22110.3,3,,33a b c d --⎛⎫⎛⎫
=-=-=-=- ⎪ ⎪
⎝⎭⎝⎭,则a 、b 、c 、d 的大小关系是( ).
A. a<b<c<d
B. b<a<d<c
C. a<d<c<b
D. c<a<d<b
6. 纳米是一种长度单位,1nm=9
10m -,已知某种植物花粉的直径约为35000nm ,那么用科学记数法表示该种花粉直径为( )
A. 43.510m ⨯
B. 4
3.510m -⨯
C. 53.510m -⨯
D. 9
3.510m -⨯
7. 小明和小刚在课外阅读过程中看到这样一条信息:“肥皂泡厚度约为0.0000007m.”小明说:“小刚,我用科学计数法来表示肥皂泡的厚度,你能选出正确的一项吗?”小刚给出的答案中正确的是( )
A. 60.710-⨯
B. 7
0.710-⨯ C. 7
710-⨯
D. 6
710-⨯
二. 填空题:
8. (
)35210
6100.02
--⨯-⨯÷= 。

9.
2
4
1133--⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭= 。

10. (
)()
2
3
1
2342
x y x y --÷= 。

11. ()()
---+-




⎪⨯-
-
2
1
2
1
4
13
3
2
= 。

三. 解答题:
12. 计算下列各式,并且把结果化为只含有正整数指数幂的形式:
(1)()()
32
43
a ab-
-
;(2)
()()
21
232
3a b a b
--
--
13. 一个大正方体的边长为0.2m。

(1)这个大立方体的体积为多少3
m?(用科学记数法表示)(2)如果有一种小立方体的边长为2×2
10-m,需要多少个这样的小立方体才能摆成边长为0.2m的一个大立方体?
【试题答案】 一. 选择题。

1. B
2. A
3. D
4. D 提示:做对的有①,⑤,⑥.
5. B
6. C
7. C
二. 填空题。

8.
9. 19 提示:
2
4
111
981339--⎛⎫⎛⎫-÷=÷=
⎪ ⎪⎝⎭⎝⎭
10. 6
8y 提示:()()2312322336
684288x y x y x y y y ------÷===
11. 17
2 提示:
(
)(2
31111
21816172422-⎛⎫---+-⨯-=--
+⨯= ⎪⎝⎭
三. 解答题。

12. (1)146
1a b
(2)1
9a
13. (1)3
810-⨯
(2)3
10。

相关文档
最新文档