第二章 知识表示方法
知识表示方法

知识的特性
相对正确性:所有的知识只在一定的范围内有 效性; 不确定性:现实生活中的信息具有模糊性; 可表示性:可以将知识数据化用于存储和处理; 可利用性:知识是可以利用的;
知识的分类
以知识的作用范围划分:常识性知识和领域性 知识; 以知识的作用及表示来划分:事实性知识;规 则性知识;控制性知识;元知识; 以知识的确定性划分:确定性知识和不确定性 知识; 按照人类的思维及认识方法划分:逻辑性知识 和形象性知识;
一阶谓词逻辑表示举例
谓词比命题更加细致地刻画知识:
– 表达能力强
• 如:北京是个城市, City(x) 把城市这个概念分割出来。把“城市” 与“北京” 两个概念连接在一起,而且说明“北京”是“城市” 的子概念。
– 谓词可以精确的表示逻辑结果
• 如:City(间建立联系:使用联结词,进 而组成公式表示事实性知识和规则性知识:
过程描述
AT(robot,c) EMPTY(robot) GOTO(x,y) TABLE(a) {c/x a/y} TABLE(b) ON(box,a) AT(robot,a) AT(robot,a) EMPTY(robot) PICK_UP(x) TABLE(a) TABLE(a) TABLE(b) {a/x} TABLE(b) HOLDS(robot,box) ON(box,a)
过程描述
AT(monkey,a) GOTO(x,y) EMPTY(monkey) BOX(c) {a/x c/y} AT(banana,b)
GOTO(x,y) {c/x b/y}
AT(monkey,c) PICK_UP(x) AT(monkey,c) EMPTY(monkey) HOLDS(monkey,box) BOX(c) {c/x} AT(banana,b) AT(banana,b) AT(monkey,b) AT(monkey,b) SET_DOWN(x) AT(box,b) HOLDS(monkey,box) EMPTY(monkey) AT(banana,b) {b/x} AT(banana,b) AT(monkey,b) AT(box,b) EMPTY(monkey) ON(monkey,bo x)
人工智能第二章知识表示方法

框架的构建与实现
80%
确定框架的结构
根据实际需求和领域知识,确定 框架的槽和属性,以及它们之间 的关系。
100%
填充框架的实例
根据实际数据和信息,为框架的 各个槽和属性填充具体的实例值 。
80%
实现框架的推理
通过逻辑推理和规则匹配,实现 基于框架的知识推理和应用。
框架表示法的应用场景
自然语言处理
模块化
面向对象的知识表示方法可以将 知识划分为独立的模块,方便管 理和维护。
面向对象表示法的优缺点
• 可扩展性:面向对象的知识表示方法可以通过继承和多态实现知识的扩展和复用。
面向对象表示法的优缺点
复杂性
面向对象的知识表示方法需要建立复 杂的类和对象关系,可能导致知识表 示的复杂性增加。
冗余性
面向对象的知识表示方法可能导致知 识表示的冗余,尤其是在处理不相关 或弱相关的事实时。
人工智能第二章知识表示方法
目
CONTENCT
录
• 知识表示方法概述 • 逻辑表示法 • 语义网络表示法 • 框架表示法 • 面向对象的知识表示法
01
知识表示方法概述
知识表示的定义
知识表示是人工智能领域中用于描述和表示知识的符号系统。它 是一种将知识编码成计算机可理解的形式,以便进行推理、学习 、解释和利用的过程。
知识表示方法通常包括概念、关系、规则、框架等元素,用于描 述现实世界中的实体、事件和状态。
知识表示的重要性
知识表示是人工智能的核心问题之一,它决定了知 识的可理解性、可利用性和可扩展性。
良好的知识表示方法能够提高知识的精度、可靠性 和一致性,有助于提高人工智能系统的智能水平和 应用效果。
知识表示方法的发展对于推动人工智能技术的进步 和应用领域的拓展具有重要意义。
第2章 知识表示方法

图2.1 猴子和香蕉问题
状态空间表示: 用四元组(W,x,Y,z) 其中: W-猴子的水平位置; x-当猴子在箱子顶上时取x=1; 否则取x=0; Y-箱子的水平位置; z-当猴子摘到香蕉时取z=1; 否则取z=0。
操作符 :
(1) goto(U)猴子走到水平位置U,或者用产生式规则表示为
goto (U ) (W ,0, Y , Z ) (U ,0, Y , z)
从问题的初始状态集S出发,经过一系列的 算符运算,到达目标状态。由初始状态到目标 状态所用的算符的序列就构成了问题的一个解。 由上可知,对一个问题的状态描述,必须确 定3件事: (1) 该状态描述方式,特别是初始状态描述; (2) 操作符集合及其对状态描述的作用; (3) 目标状态描述的特性。
2、状态空间表示详释
第2章 知识表示方法
传统的人工智能主要运用知识进行问题求解,从实用的观点 看,人工智能是一门知识工程学:以知识为对象,研究知识的表 示方法,知识的运用和知识获取。 知识作为机器智能的一部分,就必须能够让机器知道什么是 知识,那就涉及到了知识的表示问题,这个问题就象人记录某一 事实有不同的方法一样,知识表示的方法很多,有图示法和公式 法,结构化方法,陈述式表示和过程式表示等。 图示法:状态空间法、问题归约法等。 公式法:谓词逻辑法等。 陈述式表示:语义网络表示法、框架表示法、剧本表示法等。 过程式表示:过程表示。
2
目标状态
问题的解答就是某个合适的棋子走步序列。 三数码的任何一种摆法即为一个状态。所有的 摆法构成状态集,共有4!个状态,即24个状态。 状态之间的变化可通过算符来实现。 算符: (1)定义为棋子走动:3个数码×4种方向=12种 (2)定义为空格移动:4种,即F=[f1, f2, f3, f4]T,
第2章 知识表示方法

梵塔问题归约图
(111) (333)
(111) (122)
(122) (322)
(322) (333)
(111) (113)
(113) (123)
(123) (122) (322) (321) (321) (331)
(331) (333)
2.3 谓词逻辑法
好的开始是成功的一半, 好的表示方法是成功的一半
第二章 知识表示方法
2.1 2.2 2.3 2.4 2.5 2.6 状态空间法 问题归约法 谓词逻辑法 语义网络法 其他方法 小结
2.1 状态空间法(State Space Representation)
问题求解技术主要是两个方面: –问题的表示 –求解的方法 状态空间法
2.6 小结(Summary)
• 本章所讨论的知识表示问题是人工智能研究的核心问 题之一。 • 知识表示方法很多,本章介绍了其中的7种,有图示法 和公式法,陈述式表示和过程式表示等。
2.6 小结(Summary)
• 知识表示方法间的关系
方法
状态空间法 归约法 谓词逻辑法 语义网络法
初始问题
状态 结点 合适公式 结点
– 状态(state) – 算Biblioteka (operator) – 状态空间方法
2.1.1 问题状态描述
定义 – 状态:描述某类不同事物间的差别而引入的一 组最少变量q0,q1,…,qn的有序集合。 – 算符:使问题从一种状态变化为另一种状态的 手段称为操作符或算符。 – 问题的状态空间:是一个表示该问题全部可能 状态及其关系的图,它包含三种说明的集合, 即三元状态(S,F,G)。
2.1.3 状态空间表示举例
第2章 知识表示方法

CISIC
6
状态空间表示概念详释
Original State
…
Middle State
…
Goal State
状态空间法:从某个初始状态开始,每次加一个 操作符,递增地建立起操作符的实验序列,直至 达到目标状态止。 例如下棋、迷宫及各种游戏。
CISIC
7
3 Puzzle Problem(3数码难问题)
CISIC
34
示例—分子结构识别问题 (DENDRAL系统)
把分子式重写为原子数较少的分子式和原子间结 合关系的混合结构,例如:
H
C5H12
C2H5
C
H
C2H5
CISIC
35
将混合结构的识别再分解为子识别问题,直至不出现分 子式为至,每个子问题只是单一分子式或原子间结合关系 的表示。 H
C2H5 H C
V=c,climbbox (c,1,c,0) grasp
(c,1,c,1) 目标状态
goto(U)
(U,0,V,0)
goto(U)
初始状态变换为目标状态的操作序列为: {goto(b), pushbox(c), climbbox, grasp} 猴子和香蕉问题的状态空间图
CISIC
17
猴子和香蕉问题自动演示:
climbbox :猴子爬上箱顶
(W,0,W,z)
climbbox
(W,1,W,z)
应用算符climbbox的先决条件是什么?
CISIC
15
初始状态 (a,0,b,0)
goto(U)
pushbox(V) U=b
goto(U) (U,0,b,0)
U=b,climbbox (b,1,b,0) U=V
第02章知识表示方法

1. 状态空间法(11)
作业:用状态空间搜索法求解农夫、狼、 羊、菜问题。
A farmer with his goat, wolf and cabbage come to a river that they wish to cross. There is a boat, but it only has room for two, and the farmer is the only one that can row. If the goat and cabbage get in the boat at the same time, the cabbage gets eaten. Similarly, if the wolf and goat are together without the farmer, the goat is eaten. Devise a series of crossings of the river so that all concerned make it across safely.
概 述
知识的特性
1、相对正确性 2、不确定性 3、可表示性 4、可利用性
概 述
知识的分类
1、知识的作用范围:常识知识和领域知识 2、知识的作用及表示: 事实知识:有关领域内的概念、事实、 客观事物的属性、状态及其关系的描述。 规则知识:事物的行动、动作相联系的 因果关系知识。 3、知识的确定性:确定和不确定 4、思维和认识方法:逻辑和形象
2)综合数据库 又称为事实数据库,用于存放输入的事 实、中间的运行结果和最后结果的工作区。 当规则库中的某条产生式前提与综合数据 库的某些已知事实匹配时,该产生式就被 激活,推理出结论放入综合数据库中,作 为后面推理的已知事实。显然综合数据库 是动态变化的。
第二章 知识的表示

动物识别系统
规则1 规则2 规则3 3 规则4 如果 那么 如果 那么 如果 那么 如果 那么 该动物有毛发 它是哺乳动物 该动物能产乳 它是哺乳动物 该动物有羽毛 它是鸟类动物 该动物能飞行 它能生蛋 它是鸟类动物
规则5
如果 那么 如果
规则6
规则7
那么 如果 那么 如果
规则8
该动物是哺乳动物 它吃肉 它是食肉动物 该动物是哺乳动物 它长有爪子 它长有利齿 它眼睛前视 它是食肉动物 该动物是哺乳动物 它长有蹄 它是有蹄动物 该动物是哺乳动物 它反刍 那么 它是有蹄动物,并且是偶蹄动物
3. Set_Down(x) 条件:At(robot,x) ∧Table(x) ∧Holds(robot,box) 动作:删除 Holds(robot,box) 增加 On(box,x) ∧ Empty(robot)
注:在执行动作前先要检查条件是否满足
At(robot,c) Empty(robot) On(box,a) Table(a) Table(b) Goto(x,y)---c/x,a/y At(robot,a) Empty(robot) On(box,a) Table(a) Table(b) Pick_Up(x)---a/x
r1不匹配 r2匹配——该动物是哺乳动物,加入综合数 据库
该动物身上有深色斑点,有长勃子,有长腿, 产乳,有蹄,,加入综合数据库 该动物身上有深色斑点,有长勃子,有长腿, 产乳,有蹄,是哺乳动物,有蹄动物 r11匹配——该动物是长颈鹿
2.3 框架表示法
规则13
如果
规则14
那么 如果
规则15
那么 如果 那么
该动物是鸟类 它不会飞 它有长颈 它有长腿 它的颜色是黑色和白色相杂 它是鸵鸟 该动物是鸟类 它不能飞行 它能游水 它的颜色是黑色和白色 它是企鹅 该动物是鸟类 它善于飞行 它是海燕
第2章 知识表示方法

例2.2 设个体域D={1,2},给出公式 R=( x )(P(x )→Q(f(x )量B指派D中的一个元素为 B=1,对函数f (x)指派到D的映射为: f (1)=2,f (2)=1 设对谓词指派的真值为: P(1)=F,P(2)=T,Q(1,1)=T,Q(2,1)=F 由于已对个体常量B指派B=1,所以Q(1,2)与 Q(2,2)不可能出现,故没有给它们指派真值。
人工智能与专家系统(第二版)中国水利水电出版社
可见:谓词公式的真值是针对某一 个解释而言的,它可能在某一个解释下 的真值为T,在另一个解释下的真值为F。
人工智能与专家系统(第二版)中国水利水电出版社
5 谓词公式的永真性、可满足性、不可满 足性 定义2.2: 如果谓词公式P对个体域D上 的任何一个解释都取得真值T,则称公式P 在域D上是永真的。如果P在每个非空个体 域上均永真,则称P是永真的。 可见:为了判定某个公式永真,必须 对每个个体域上的每一个解释逐一判定公 式的真值。
人工智能与专家系统(第二版)中国水利水电出版社
(5)双重否定律 ﹁ ﹁ P P (6)吸收律 P∨(P∧Q) P P∧(P∨Q) P (7)补余律 P ∨ ﹁ P T P ∧ ﹁ P F
人工智能与专家系统(第二版)中国水利水电出版社
(8)连词化归律 P→Q ﹁P∨Q (9)量词转换律 ﹁( x)P ( x ) (﹁P) ﹁( x)P ( x ) (﹁P) (10) 量词分配律 ( x )(P∧Q) ( x )P∧( x ) Q ( x )(P∨Q) ( x )P∨( x )Q
人工智能与专家系统(第二版)中国水利水电出版社
例2.3 用谓词公式表示下列知识: • 王林是计算机系的学生,但他不喜欢 编程序。 • 人人爱劳动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章知识表示方法教学内容智能系统问题求解所采用的几种主要的知识表示方法(状态空间法.问题归约法.谓词逻辑法.语义网络法)以及基于不同表示法的问题求解方法。
教学重点1. 状态空间表示法中问题的状态描述.改变状态的操作和问题目标状态的搜索;2. 问题规约的一般步骤.规约的与或图表示;3. 谓词逻辑的语法和语义.量词的辖域.谓词公式的置换与合一;4. 语义网络的构成.语义基元的选择.语义网络的推理等。
教学难点状态描述与状态空间图示.问题归约机制.置换与合一。
教学方法课堂教学为主,同时结合《离散数学》等已学的内容实时提问.收集学生学习情况,充分利用网络课程中的多媒体素材来表示抽象概念。
教学要求1. 重点掌握用状态空间法.问题归约法.谓词逻辑法.语义网络法来描述问题.解决问题;2. 掌握这些表示方法之间的差别;并对其它表示方法有一般了解2.1 状态空间法教学内容本节讨论基于解答空间的问题表示和求解方法,即状态空间法,它以状态和操作符为基础来表示和求解问题。
教学重点问题的状态描述,操作符。
教学难点选择一个好的状态描述与状态空间表示方案。
教学方法以课堂教学为主;充分利用网络课程中的多媒体素材来阐述抽象概念。
教学要求重点掌握对某个问题的状态空间描述,学会组织状态空间图.用搜索图来求解问题。
2.1.1 问题状态描述1.基本概念状态(state)它是为描述某类不同事物间的差别而引入的一组最少变量q0,q1,…,qn的有序集合,其矢量形式如下:Q=[q0,q1,…,qn]' (2.1)式中每个元素qi(i=0,1,…,n)为集合的分量,称为状态变量。
给定每个分量的一组值就得到一个具体的状态,如Qk=[q0k,q1k,…,qnk]' (2.2)操作符(operator)称使问题从一种状态变化到另一种状态的手段为操作符或算符。
状态空间(state space)它是表示一个问题全部可能状态及其关系的图,它包含所有可能的问题初始状态集合S、操作符集合F以及目标状态集合G。
因此,状态空间记为三元状态(S,F,G)。
提问 1.列举已经学习过的“状态”概念,并比较之。
2.列举操作符。
2.状态空间描述要完成一个问题的状态描述,必须确定3件事:(1) 状态描述方式,特别是初始状态描述;(2) 操作符集合及其对状态描述的作用;(3) 目标状态描述的特性。
举例列举几个日常生活中状态与操作符的例子,如:棋局。
讲解初始状态、操作符、中间状态与目标状态之间的关系;讲解三数码难题的状态变化过程。
讨论每走一步后,棋局都变化了,以此来理解问题的状态空间。
2.1.2 状态图示法图的基本概念图是一个包含节点(不一定是有限的节点)和节点间弧线的集合。
若图中每条弧线均标有方向,则称这种图为有向图(directed graph)。
代价(cost)是给各弧线指定数值以表示加在相应操作符上的代价。
图的显式说明是指各节点及其具有代价的弧线由一张表明确给出。
图的隐式说明:是指各节点及其具有代价的弧线不能由一张表明确给出。
提问举已经学习过的“有向图”、“路径”及“代价”等的概念。
举例针对三数码难题的状态变化过程讲解图的几个基本概念2.2 问题规约法教学内容知识表示的归约法,即已知问题的描述,通过一系列变换把此问题最终变为一个子问题集合;这些子问题的解可以直接得到,从而解决了初始问题的方法。
教学重点问题归约的基本思想,问题描述,问题变换的操作符,与或图表示。
教学难点如何把初始问题变换为子问题,与或图表示方法。
教学方法课堂教学为主,充分利用网络课程中的相关多媒体素材来表示抽象概念。
教学要求通过梵塔难题重点掌握问题归约法的机理和问题归约描述方法。
学会用与或图表示归约问题。
2.2.1 问题归约描述1.问题归约法的概念问题归约是将初始问题变为一个本原问题集合。
2.问题归约法的组成部分(1) 一个初始问题描述;(2) 一套把问题变换为子问题的操作符;(3) 一套本原问题描述。
3.示例:梵塔难题问题有3个柱子(1,2,3)和3个不同尺寸的圆盘(A,B,C)。
在每个圆盘的中心有个孔,所以圆盘可以堆叠在柱子上。
最初,全部3个圆盘都堆在柱子1上:最大的圆盘C在底部,最小的圆盘A 在顶部。
要求把所有圆盘都移到柱子3上,每次只许移动一个,而且只能先搬动柱子顶部的圆盘,还不许把尺寸较大的圆盘堆放在尺寸较小的圆盘上。
归约过程(1) 移动圆盘A和B至柱子2的双圆盘难题;(2) 移动圆盘C至柱子3的单圆盘难题;(3) 移动圆盘A和B至柱子3的双圆盘难题。
讲述梵塔问题的来源。
提问一圆盘问题要走几步?两圆盘问题要走几步?三个.四个...等?2.2.2 与或图1.与或图的概念用一个类似图的结构来表示把问题归约为后继问题的替换集合,画出归约问题图。
2.与或图的有关术语父节点是一个初始问题或是可分解为子问题的问题节点;子节点是一个初始问题或是子问题分解的子问题节点;或节点只要解决某个问题就可解决其父辈问题的节点集合;与节点只有解决所有子问题,才能解决其父辈问题的节点集合;终叶节点是对应于原问题的本原节点。
提问对于一个与或图,指出图中的父节点、子节点、或节点、与节点、弧线和终叶节点。
可解节点与或图中一个可解节点的一般定义可以归纳如下:(1) 终叶节点是可解节点(因为它们与本原问题相关连)。
(2) 如果某个非终叶节点含有或后继节点,那么只有当其后继节点至少有一个是可解的时,此非终叶节点才是可解的。
(3) 如果某个非终叶节点含有与后继节点,那么只要当其后继节点全部为可解时,此非终叶节点才是可解的。
不可解节点不可解节点的一般定义归纳于下:(1) 没有后裔的非终叶节点为不可解节点。
(2) 如果某个非终叶节点含有或后继节点,那么只有当其全部后裔为不可解时,此非终叶节点才是不可解的。
(3) 如果某个非终叶节点含有与后继节点,那么只要当其后裔至少有一个为不可解时,此非终叶节点才是不可解的。
提问对于一个与或图,指出图中的终叶节点、可解节点、不可解节点。
3.与或图构图规则(1) 与或图中的每个节点代表一个要解决的单一问题或问题集合。
图中起始节点对应原始问题。
(2) 对应于本原问题的节点,叫做终叶节点。
(3) 有向弧线自A指向后继节点,表示所求得的子问题集合。
(4) 一般对于代表两个或两个以上子问题集合的每个节点,有向弧线从此节点指向集合中的各个节点。
(5) 在特殊情况下,当只有一个算符可应用于问题A,而且这个算符产生具有一个以上子问题的某个集合时,由上述规则(3)和规则(4)所产生的图可以得到简化。
提问对于三圆盘梵塔难题根据构图规则画出其归约图,并指出图中的终叶节点、可解节点、不可解节点2.3 谓词逻辑法教学内容本节主要讲述问题的谓词逻辑表示的基本方法。
教学重点谓词逻辑、谓词公式、谓词演算、置换与合一。
教学难点如何选择谓词,问题的谓词逻辑表示及运算。
教学方法课堂教学为主,充分利用网络课程中的示例程序。
教学要求重点掌握谓词逻辑表示的语言与方法,掌握谓词公式的性质及谓词演算,学会谓词公式的置换与合一。
2.3.1 谓词演算1.语法和语义谓词逻辑的基本组成部分是谓词、变量、函数和常量,并用圆括弧、方括弧、花括弧和逗号隔开。
2.连词和量词连词有∧(与)、∨(或),全称量词(),存在量词()。
3.几个有关定义用连词∧把几个公式连接起来而构成的公式叫做合取,而此合取式的每个组成部分叫做合取项。
一些合适公式所构成的任一合取也是一个合适公式。
用连词∨把几个公式连接起来所构成的公式叫做析取,而此析取式的每一组成部分叫做析取项。
一些合适公式所构成的任一析取也是一个合适公式。
用连词=>连接两个公式所构成的公式叫做蕴涵。
称蕴涵的左式为前项,右式为后项。
如果前项和后项都是合适公式,那么蕴涵也是合适公式前面具有符号~的公式叫做否定。
一个合适公式的否定也是合适公式。
如果一个合适公式中某个变量是经过量化的,则称这个变量为约束变量,否则为自由变量。
称所有变量都是受约束的合适公式为句子。
2.3.2 谓词公式1.谓词合适公式的定义在谓词演算中合适公式的递归定义如下:(1) 原子谓词公式是合适公式。
(2) 若A为合适公式,则~A也是一个合适公式。
(3) 若A和B都是合适公式,则(A∧B),(A∨B),(A=>B)和(A←→B)也都是合适公式。
(4) 若A是合适公式,x为A中的自由变元,则(x)A和(x)A都是合适公式。
(5) 只有按上述规则(1)至(4)求得的那些公式,才是合适公式。
举例试把下列命题表示为谓词公式:任何整数或者为正或者为负。
提问指出此例题谓词公式中的量词.连词及蕴涵符号。
2.3.3 置换与合一1.置换一个表达式的置换就是在该表达式中用置换项置换变量。
一般说来,置换是可结合的,但置换是不可交换的。
2.合一寻找项对变量的置换,以使两表达式一致,叫做合一(unification)。
如果一个置换s作用于表达式集{Ei}的每个元素,则用{Ei}s来表示置换例的集。
称表达式集{Ei}是可合一的举例表达式P[x,f(y),B]的一个置换为s1={z/x,w/y}则:P[x,f(y),B]s1=P[z,f(w),B]2.4 语义网络法教学内容本节主要讲述知识的语义网络表示法。
教学重点语义网络表示的词法、结构、过程、语义。
教学难点如何选择节点和弧线来构成语义网络。
教学方法课堂教学教学要求重点掌握语义网络的结构,掌握二元语义网络表示方法,了解语义网络的特点。
2.4.1 二元语义网络的表示1.语义网络的基本概念语义网络是知识的一种结构化图解表示,它由节点和弧线或链线组成。
节点用于表示实体、概念和情况等,弧线用于表示节点间的关系。
语义网络表示由下列4个相关部分组成:(1) 词法部分决定表示词汇表中允许有哪些符号,它涉及各个节点和弧线。
(2) 结构部分叙述符号排列的约束条件,指定各弧线连接的节点对。
(3) 过程部分说明访问过程,这些过程能用来建立和修正描述,以及回答相关问题。
(4) 语义部分确定与描述相关的(联想)意义的方法即确定有关节点的排列及其占有物和对应弧线。
2.二元语义网络的表示用两个节点和一条弧线可以表示一个简单的事实,对于表示占有关系的语义网络,是通过允许节点既可以表示一个物体或一组物体,也可以表示情况和动作。
每一情况节点可以有一组向外的弧(事例弧),称为事例框,用以说明与该事例有关的各种变量。
在选择节点时,首先要弄清节点是用于表示基本的物体或概念的,或是用于多种目的的。
否则,如果语义网络只被用来表示一个特定的物体或概念,那么当有更多的实例时就需要更多的语义网络。
选择语义基元就是试图用一组基元来表示知识。
这些基元描述基本知识,并以图解表示的形式相互联系。
举例用二元语义网络表示:小燕是一只燕子,燕子是鸟;巢-1是小燕的巢,巢-1是巢中的一个。