空间几何体的直观图-PPT课件
合集下载
高中数学人教版必修2课件:1.2空间几何体的三视图和直观图

有什么不同?
(1)
(2)
(3)
图(1)的投影线交于一点 图(2)(3)的投影线平行
问题4 什么是中心投影?什么是平行投影?
光由一点向外散射形成的投影叫中心投影,其 投影线交于一点 把在一束平行光线照射下形成的投影叫平行投影, 其投影线互相平行
问题5 图(2)(3)同是平行投影,它们有什么区分呢?
图(2)的投影线与投影面垂直,称这种投影为正投影 图(3)的投影线与投影面不垂直,称这种投影为斜投 影
出来的空间图形。请视察一下中心投影下的直观图 与平行投影下有什么区分和联系?
立体几何中常用平行投影(斜投影)来画空间图 形的直观图,这种画法叫斜二测画法.
投影规律
1.平行性不变,但形状、长 度、夹角会改变; 2.平行直线段或同一直线上 的两条线段的比不变; 3.在太阳光下,平行于地面的 直线在地面上的投影长变
F A
B
y ME
O
D
x
NC
y'
O'
x'
y
F ME
A
O
Dx
B NC
y
x
y
F ME
A
O
Dx
B NC
y
F M E
A
O
D x
B N C
y
F ME
AБайду номын сангаас
O
Dx
B NC
A B
F
C
E
D
用斜二测画法画水平放置的平面图形的直观图 的关键步骤是
例2 用斜二测画法画水平放置的圆的直观图
例2
z
画法见课本P17页
问题1 阅读教材P11的内容,我们常用哪两种图
(1)
(2)
(3)
图(1)的投影线交于一点 图(2)(3)的投影线平行
问题4 什么是中心投影?什么是平行投影?
光由一点向外散射形成的投影叫中心投影,其 投影线交于一点 把在一束平行光线照射下形成的投影叫平行投影, 其投影线互相平行
问题5 图(2)(3)同是平行投影,它们有什么区分呢?
图(2)的投影线与投影面垂直,称这种投影为正投影 图(3)的投影线与投影面不垂直,称这种投影为斜投 影
出来的空间图形。请视察一下中心投影下的直观图 与平行投影下有什么区分和联系?
立体几何中常用平行投影(斜投影)来画空间图 形的直观图,这种画法叫斜二测画法.
投影规律
1.平行性不变,但形状、长 度、夹角会改变; 2.平行直线段或同一直线上 的两条线段的比不变; 3.在太阳光下,平行于地面的 直线在地面上的投影长变
F A
B
y ME
O
D
x
NC
y'
O'
x'
y
F ME
A
O
Dx
B NC
y
x
y
F ME
A
O
Dx
B NC
y
F M E
A
O
D x
B N C
y
F ME
AБайду номын сангаас
O
Dx
B NC
A B
F
C
E
D
用斜二测画法画水平放置的平面图形的直观图 的关键步骤是
例2 用斜二测画法画水平放置的圆的直观图
例2
z
画法见课本P17页
问题1 阅读教材P11的内容,我们常用哪两种图
人教A版高中数学必修二课件1.2.3 空间几何体的直观图3

x′轴的平行线 l,在 l 上沿 x′轴正方向取点 C′使得 D′C′=DC.连接 B′C′,如图②. (3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.
方法技能
在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键, 一般要使平面多边形尽可能多的顶点在坐标轴上,以便于画点.原图 中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来完成.
(2)画底面.作水平放置的三角形(俯视图)的直观图△ABC. (3)画侧棱.过A,B,C各点分别作z轴的平行线,并在这些平行线上分别截 取线段AA′,BB′,CC′,且AA′=BB′=CC′.(侧视图中矩形的高) (4)成图,顺次连接A′,B′,C′,并加以整理(擦去辅助线,将遮挡部分用虚线 表示),得到的图形就是所求的几何体的直观图.
即时训练1-1:用斜二测画法画如图所示边长为4 cm的水平放置的正三角 形的直观图.
解:(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在 的直线为y轴.建立平面直角坐标系.
解:(2)画对应的 x′轴、y′轴, 使∠x′O′y′=45°. 在 x′轴上截取 O′B′=O′C′=OB=OC=2 cm,
(2)画底面.按x′轴、y′轴画正五边形的直观图ABCDE. (3)画侧棱.过点A,B,C,D,E分别作z′轴的平行线,并在这些平行线上分别 截取AA′,BB′,CC′,DD′,EE′都等于正视图的高. (4)成图.顺次连接A′,B′,C′,D′,E′,去掉辅助线,改被挡部分为虚线,如图② 所示.
方法技能
(3)原图的面积 S 与直观图的面积 S′之间的关系为 S=2 2 S′.
即时训练 3-1:等腰梯形 ABCD 中,上底 CD=1,腰 AD=CB= 2 ,下底 AB=3,以下 底所在直线为 x 轴,则由斜二测画法画出的直观图 A′B′C′D′的面积
方法技能
在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键, 一般要使平面多边形尽可能多的顶点在坐标轴上,以便于画点.原图 中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来完成.
(2)画底面.作水平放置的三角形(俯视图)的直观图△ABC. (3)画侧棱.过A,B,C各点分别作z轴的平行线,并在这些平行线上分别截 取线段AA′,BB′,CC′,且AA′=BB′=CC′.(侧视图中矩形的高) (4)成图,顺次连接A′,B′,C′,并加以整理(擦去辅助线,将遮挡部分用虚线 表示),得到的图形就是所求的几何体的直观图.
即时训练1-1:用斜二测画法画如图所示边长为4 cm的水平放置的正三角 形的直观图.
解:(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在 的直线为y轴.建立平面直角坐标系.
解:(2)画对应的 x′轴、y′轴, 使∠x′O′y′=45°. 在 x′轴上截取 O′B′=O′C′=OB=OC=2 cm,
(2)画底面.按x′轴、y′轴画正五边形的直观图ABCDE. (3)画侧棱.过点A,B,C,D,E分别作z′轴的平行线,并在这些平行线上分别 截取AA′,BB′,CC′,DD′,EE′都等于正视图的高. (4)成图.顺次连接A′,B′,C′,D′,E′,去掉辅助线,改被挡部分为虚线,如图② 所示.
方法技能
(3)原图的面积 S 与直观图的面积 S′之间的关系为 S=2 2 S′.
即时训练 3-1:等腰梯形 ABCD 中,上底 CD=1,腰 AD=CB= 2 ,下底 AB=3,以下 底所在直线为 x 轴,则由斜二测画法画出的直观图 A′B′C′D′的面积
空间几何体的直观图 课件

________于x′ 轴、y′ 轴或z′ 轴的线段,并使它们和所画坐标轴的位置关系,与已
平行 知图形中相应线段和原坐标轴的位置关系相同.
不变 ,平 (4)在几何体中平行于 x轴和z轴的线段,在直观图中保持长度 ________ 一半 . 行于y轴的线段,长度为原来的________ (5)擦除作为辅助线的坐标轴,就得到了空间几何体的直观图.
轴,便得到六棱锥P-ABCDEF的直观图P′-A′B′C′D′E′F′(图3).
『规律方法』
简单几何体直观图的画法规则:
(1)画轴:通常以高所在直线为z轴建系. (2)画底面:根据平面图形的直观图画法确定底面. (3)确定顶点:利用与z轴平行或在z轴上的线段确定有关顶点.
(4)连线成图.
〔跟踪练习 2〕 A′B′C′D′的直观图.
[ 解析]
由题意可知,直观图如图所示
分别过 C、D 作 AB 的垂线,E、F 为垂足. ∵CD=1,∴EF=1. 又∵BC=AD=1,∠A=∠B=45° 2 ∴CE=DF=BE=AF= 2 ∴AB= 2+1.
1+ 2+1 2+1 2 S 直观图= ×2= 2 . 2 S直观图 2 又∵ =4 S原图形 2+1 4 ∴S 原形图= × 2 =2+ 2. 2
(2)在已知图形中平行于x轴或y轴的线段,在直观图中分别画成________ 平行 于x′
轴或y′轴的线段. (3)在已知图形中平行于x轴的线段,在直观图中保持原长度________ 不变 ,平行 一半 . 于y轴的线段,长度变为原来的________
[归纳总结]
用斜二测画法画直观图,关键是掌握水平放置的平面图形的直
1 =6 cm;由于平行于 y 轴的线段在直观图中长度变为原来的一半,则 C′D′=2 CD=2 cm.
空间几何体的三视图和直观图-PPT课件

正视图
侧视图
俯视图
正视图
侧视图
俯视图
思考4:如图,桌子上放着一个长方体和 一个圆柱,若把它们看作一个整体,你 能画出它们的三视图吗?
正视图
侧视图
正视 俯视图
知识探究(二):将三视图还原成几何体
一个空间几何体都对应一组三视图, 若已知一个几何体的三视图,我们如何 去想象这个几何体的原形结构,并画出 其示意图呢?
(3)水平线段等长,竖直线段减半.
思考6:斜二测画法可以画任意多边形水 平放置的直观图,如果把一个圆水平放 置,看起来像什么图形?在实际画图时 有什么办法?
思考1:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并画出其示意图.
正视图
侧视图
俯视图
正视图
侧视图
俯视图
思考2:下列两图分别是两个简单组合体 的三视图,想象它们表示的组合体的结 构特征,并作适当描述.
正视图 正视图 侧视图
侧视图
俯视图
俯视图
理论迁移
例1 下面物体的三视图有无错误? 如果有,请指出并改正.
正视图
侧视图
正视 俯视图
例2 将一个长方体挖去两个小长方体 后剩余的部分如图所示,试画出这个组 合体的三视图.
正视图
侧视图
俯视图
例3 说出下面的三视图表示的几何体 的结构特征.
正视图
侧视图
俯视图
知识探究(一):水平放置的平面图形的画法
思考1:把一个矩形水平放置,从适当的 角度观察,给人以平行四边形的感觉, 如图.比较两图,其中哪些线段之间的位 置关系、数量关系发生了变化?哪些没 有发生变化?
c
a
俯视图
b b
空间几何体的结构、三视图、直观图课件

用一个平行于棱锥 底面的平面去截棱 棱台 锥,底面与截面之 间的部分叫作棱台 (1) (1)上下两个底面 互相平行; 互相平行; (2) (2)侧棱的延长线 相交于一点; 相交于一点;
1 V Sh 3
旋转体
圆柱 圆锥 圆台 球
分别以矩形、直角三角形的直角边、 直角梯形垂直于底边的腰所在的直线为旋
柱、锥、台、球的结构特征
空间几何体的结构 识 图 空 间 几 何 体
画 图
简单几何体的结构特征
柱、锥、台、球的三视图 三视图 简单几何体的三视图 平面图形 平行投影 中心投影
直观图
斜二测画法 空间几何体
柱、锥、台、球的表面积与体积
概念 棱柱
多面体
柱 锥 台 球 旋转体
棱锥
性质 侧面积
棱台
体积
圆柱 圆锥 圆台 概念 结构特征 侧面积
在中心投影中,如果改变物体与投射中心或投影面之间 的距离、位置,则其投影的大小也随之改变.
我们把在一束平行光线照射下形成的投影称为平行投影. 斜投影:投 射线倾斜于 投影面
正投影:投 射线垂直于 投影面
正投影能正确的表达物体的真实形状和大小,作图比较方 便,在作图中应用最广泛. 斜投影在实际中用的比较少,其特点是直观性强,在作图 中只是作为一种辅助图样.
(2)画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在 轴上取线段PQ,使PQ= 1.5cm;分别过点M 和N 作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
O
Z
y
Q
x
M
D
O
C
A
N
1 V Sh 3
旋转体
圆柱 圆锥 圆台 球
分别以矩形、直角三角形的直角边、 直角梯形垂直于底边的腰所在的直线为旋
柱、锥、台、球的结构特征
空间几何体的结构 识 图 空 间 几 何 体
画 图
简单几何体的结构特征
柱、锥、台、球的三视图 三视图 简单几何体的三视图 平面图形 平行投影 中心投影
直观图
斜二测画法 空间几何体
柱、锥、台、球的表面积与体积
概念 棱柱
多面体
柱 锥 台 球 旋转体
棱锥
性质 侧面积
棱台
体积
圆柱 圆锥 圆台 概念 结构特征 侧面积
在中心投影中,如果改变物体与投射中心或投影面之间 的距离、位置,则其投影的大小也随之改变.
我们把在一束平行光线照射下形成的投影称为平行投影. 斜投影:投 射线倾斜于 投影面
正投影:投 射线垂直于 投影面
正投影能正确的表达物体的真实形状和大小,作图比较方 便,在作图中应用最广泛. 斜投影在实际中用的比较少,其特点是直观性强,在作图 中只是作为一种辅助图样.
(2)画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在 轴上取线段PQ,使PQ= 1.5cm;分别过点M 和N 作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
O
Z
y
Q
x
M
D
O
C
A
N
高一数学必修2《空间几何体的三视图和直观图》PPT课件

名 茶
&与同伴交流你的看法和具体做法.
(三)归纳总结
1、空间几何体的三视图:正视图、侧视图、俯视图; 2、三视图特点: 一个几何体的侧视图和正视图高度一样, 俯视图和正视图长度一样,侧视图和俯视图宽度一样; 3、三视图的应用及原实物图的相互转化.
(四)分层作业
层次1:教材习题1.2A组1、2
层次2:课外动手操作:
球的三视图
俯视图
还有哪种几何体的三种视图一样呢
比一比看一看
3、简单组合体的三视图
下图是一个蒙古包的照片.小明认为这个蒙古包可以看成如 图所示的几何体,请画出这个几何体的三种视图.你与小明的 做法相同吗? 正视图 侧视图
俯视图
4 、 三 视 图 与 几 何 体 之 间 的 相 互 转 化 . A
3.过程与方法: (1)主要通过学生自己的亲自实践,动手作图,体会三视图的作 用; (2)体会组合体与三视图之间转化关系在现实生活中的应用; (3)培养学生的空间概念,提高学生空间想象力,掌握画三视 图的基本技能. 4.情感目标: (1)提高空间想象能力,培养学生的动手实践能力,在实际 操作中培养学生分析问题、解决问题的能力,体会几何学在其 他学科方面的应用; (2)体会三视图的作用,引发学生学习和使用知识的兴趣, 发展创新精神,培养事实求是、理论与实际相结合的科学态度 和科学道德观.
2、柱、锥、台、球的三视图
(1)三视图的有关概念:
合作探究 用小正方体搭建一个几何体:
从 上 面俯 看视 到图 的 图
“三视图”
你还记得 三视图吗?
侧视图 从左面看到的图 驶向胜利 彼岸
能你能画出这个几何体的三视图
吗?
经过努力我会收获
“三视图”
空间几何体的三视图和直观图课件

C
A
B
y C
M
A
OBx
S
C
A
B
思考3:画棱柱、棱锥的直观图大致可分几个步骤 进行?
画轴 → 画底面 → 画侧棱 → 成图
例3 如图已知几何体的三视图,用斜二测画法画
出它的直观图.
正视图
侧视图
俯视图
分析:由几何体的三视 图知道,这个几何体是 一个简单组合体.它的 下部是一个圆柱,上部 是一个圆锥,并且圆锥 的底面与圆柱的上底面 重合.我们可以先画出 下部的圆柱,再画出上 部的圆锥.
(难点)
探究点1 中心投影与平行投影
由于光的照射,在不透明物体后面的屏幕上可 以留下这个物体的影子,这种现象叫做投影.其中, 我们把光线叫做投影线,把留下物体影子的屏幕叫 做投影面.
观察下列投影图,并将它们进行比较.
B′
中心投影 我们把光由一点向外散射形成的投影,叫做中心
投影.中心投影的投影线交于一点.
遮挡住的线用虚线表示.
例1 画出如图所示物体的正视图. 【解析】该物体可以看作是 从长方体中切掉一部分后, 再挖去一个三棱柱得到的组 合体.
正视图
【变式练习】 改一改:某同学画的下图物体的三视图,对吗?若 有错,请指出并改正.
俯视
侧视 正视
正视图 对 侧视图 错
俯视图 错
【提升总结】 三视图的作图步骤
斜二测画法
(二) 空间几何体的直观图的画法
思考1:对于柱、锥、台等几何体的直观图,可用斜 二测画法或椭圆模板画出一个底面,我们能否再用 一个坐标确定底面外的点的位置?
y
o
x
例2 用斜二测画法画长、宽、高分别是4 cm、3 cm、 2 cm的长方体ABCD-A′B′C′D′的直观图.
空间几何体的三视图和直观图 公开课课件

1、中心投影:我们把光由一点向外散射 形成的投影,叫做中心投影。 注意:投射线交于一点.
A B C B’ C’ D’ D
2:平行投影
平行投影:我们把一束平行光线照射下形成的 投影叫做平行投影,投影线正对着投影面时叫正 投影,否则叫斜投影。 →平行光线
斜投影
正投影
思考
太阳光线(假定太阳光线 是平行的)把一个长方形形状 的窗框投射到地板上,变成了 什么图形? 窗框的投影图形与原 窗框图比较,哪些几何关 系或几何量发生了变化? 哪些没有发生变化?
主视图 高 长 宽 俯视图
左视图
宽
柱、锥、台、球的三视图
思考 4
圆柱、圆锥、圆台的三视图分别是什么?
圆柱
正视图 侧视图
俯视图
柱、锥、台、球的三视图
圆锥
正视图
侧视图
.
俯视图
柱、锥、台、球的三视图
圆台
正视图
侧视图
俯视图
棱柱的三视图
俯
侧
六棱柱
棱锥的三视图
俯
侧
正三棱锥
棱锥的三视图
俯
侧
正四棱锥
棱台的三视图
俯
侧
正四棱台
柱、锥、台、球的三视图
思考 5
球的三视图是什么? 下列三视图表示一个什么几何体?
正视图
侧视图
俯视图
柱、锥、台、球的三视图
例 如图是一个倒置的四棱柱的两种摆放,试 分别画出其三视图,并比较它们的异同.
正视
正视
柱、锥、台、球的三视图
正视图
侧视图
正视
俯视图
柱、锥、台、球的三视图
正视图
侧视图
思考:先观察一个正方形,如何把它画
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCD水平放置的直观图,
试把它还原成原四边形
ABCD.
思路点拨: 建立直角坐标系 →
找准A′,B′,C′,D′相 对应的点A,B,C,D
→
连线得原图
解:画法:∵D′C′∥x′轴, ∴DC∥x 轴,即 DC∥AB. ∵A′D′∥y′轴, ∴AD⊥AB. ∴四边形 ABCD 是直角梯形. 其中∠BAD=∠ADC=90°, AB=4,DC=2,AD=6,原四边形 ABCD 如图所示.
• 3.如图,△A′B′C′是水平放置的平面 图形的斜二测直观图,将其恢复成 原解图:画形法.:(1)画直角坐标系 xOy,在 x 轴上取 OA=O′A′,
即 CA=C′A′.
(2)在图①中,过 B′作 B′D′∥y′轴,交 x′轴于 D′, 在 x 轴上取 OD=O′D′,过 D 作 DB∥y 轴,并使 DB= 2D′B′.
平行x轴的线段平行于x’ 轴 平行y轴的线段平行于y’ 轴
(3)确定线段长度.
平行x轴的线段的长度保持不变. 平行y轴的线段的长度变为原来的一半.
பைடு நூலகம்
练习1.画水平放置的一个直角三角 形的直观图;
A
A`
B
C
B`
C`
常用的一些空间图形的平面画法
3. 怎样画立体图形的直观图?
例2:画棱长为2cm的正方体的直观图.
(2)两条相交直线的直观图可能平行. (×)
(3)互相垂直的两条直线的直观图仍然互相垂直.
(×)
(4)等腰三角形的水平放置的直观图仍是等腰
三角形.
(×)
(5)水平放置的正三角形的直观图是一个底边长
不变,高为原三角形高的一半的三角形. (×)
由直观图还原平面图形
•
如图,梯形
A′B′C′D′是一个四边形
y
.....
y’
. . . . o.
x . . . . o’.
x’
例1:画水平放置的正六边形的直观图.
F A
B
y ME
0 D x A1 B1
NC
y1
F1 M1 E1
01 N1 C1
D1 x1
轴画轴、平行性、长度.
3.斜二测画法的步骤
y
(1)画轴.
o
x
y’ o’ ( 450或1350 ) x’
(2)确定平行线段.
(3)连接 AB,BC,则△ABC 即为△A′B′C′原来的图形, 如图②.
学.科.网
1.认识几何体的直观图
直观图: 表示空间图形的平面图形, 叫做空间图形的直观图. 我们常用斜二测画法画空间图形的 直观图.
2. 平面图形的直观图的画法:
①取轴并建立∠x’o’y’=45°的坐标系 ② 平行于轴的线段在斜二测坐标系中仍平行于x’、y’轴 ③与轴平的线段横向长度不变,纵向长度减半
D/ A/
z/
B/
C/ y/
D/ A/
C/ B/
D
o
A
B
C x/
D
A
C B
用斜二测画立体图形的步骤:
画轴、画底面、画侧棱、成图.
小结
1. 平面图形的斜二测画法的关键与步骤; 2. 简单几何体的斜二测画法; 3. 简单组合体的斜二测画法.
练习1:下列说法是否正确? (1)水平放置的正方形的直观图可能是梯形. (×)