考研数学概率论公式背诵
考研数学概率论备考重点公式与解题思路整理

考研数学概率论备考重点公式与解题思路整理概率论是考研数学中的一大重点,掌握好概率论的基本公式和解题思路对于备考考研数学非常重要。
本文将对考研数学概率论的备考重点公式和解题思路进行整理,帮助考生更好地备考概率论。
一、基本概率公式1.1 事件的概率公式对于一个随机试验,其所有样本点组成的样本空间为S,一个事件A是样本空间S的一个子集。
那么,事件A发生的概率P(A)定义为: P(A) = n(A) / n(S)其中,n(A)表示事件A包含的样本点的个数,n(S)表示样本空间S 中所有样本点的个数。
1.2 事件的互斥与独立若两个事件A和B满足以下条件之一,则称事件A和事件B是互斥的:- 事件A和事件B不可能同时发生,即A∩B = ∅- 事件A和事件B的概率相加等于1,即P(A∪B) = P(A) + P(B)若两个事件A和B满足以下条件之一,则称事件A和事件B是独立的:- 事件A和事件B发生的概率等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) * P(B)二、常用的概率公式2.1 全概率公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到全概率公式:P(B) = P(A₁) * P(B|A₁) + P(A₂) * P(B|A₂) + ... + P(An) * P(B|An)其中,P(Ai)表示事件Ai发生的概率,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率。
2.2 贝叶斯公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到贝叶斯公式:P(Ai|B) = P(Ai) * P(B|Ai) / (P(A₁) * P(B|A₁) + P(A₂) *P(B|A₂) + ... + P(An) * P(B|An))其中,P(Ai|B)表示在事件B发生的条件下事件Ai发生的概率。
考研概率论与数理统计公式大全

考研概率论与数理统计公式大全1.概率公式:-概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-概率的乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)-全概率公式:P(B)=P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)-贝叶斯公式:P(Ai,B)=P(B,Ai)P(Ai)/(P(B,A1)P(A1)+P(B,A2)P(A2)+...+P(B,An)P(An))2.随机变量与分布:- 期望:E(X) = ∑(xP(X=x))或E(X) = ∫(xf(x)dx)- 方差:Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2- 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]- 标准差:SD(X) = sqrt(Var(X))-二项分布:P(X=k)=C(n,k)p^k(1-p)^(n-k)- 泊松分布:P(X = k) = (lambda^k)e^(-lambda) / k!- 正态分布:P(X = x) = (1 / (sqrt(2*pi)*sigma)) * e^(-(x-mu)^2 / (2*sigma^2))3.估计与检验:-极大似然估计:L(θ)=∏(f(x_i;θ))-似然比检验:λ=L(θ)/L(θ0)- 估计的无偏性:E(θ_hat) = θ- 估计的有效性:Var(θ_hat) ≤ Var(θ)- 中心极限定理:对于均值为μ、方差为σ^2的随机变量X,若样本容量n趋于无穷大,则样本均值X_bar的极限分布服从正态分布4.相关与回归:- 相关系数:r = Cov(X, Y) / (SD(X) * SD(Y))-简单线性回归方程:Y=β0+β1X+ε- 最小二乘估计:β1 = Cov(X, Y) / Var(X)- 线性回归预测:Y_hat = β0 + β1X5.抽样分布:- 样本均值分布:X_bar ~ N(μ, σ^2 / n)- 样本比例分布:p_hat ~ N(p, p(1-p) / n)-卡方分布:X^2~χ^2(k)-t分布:T~t(n)-F分布:F~F(m,n)以上是一些概率论与数理统计中常见的公式,希望对你的学习有所帮助。
数学考研复习资料概率论重点公式整理

数学考研复习资料概率论重点公式整理概率论是数学考研中的重要考点之一,掌握概率论的基本概念和公式对于考生来说至关重要。
在本文中,将对数学考研概率论部分的重点公式进行整理,以便考生能够更好地复习和应对考试。
请注意,以下公式仅供参考,考生在复习过程中应结合教材和习题进行深入理解和练习。
一、基本概念在进一步讨论公式之前,首先了解一些概率论中的基本概念是必要的。
1. 事件与样本空间事件是指随机试验中可以观察到的结果,样本空间是指随机试验中所有可能结果的集合。
2. 概率的定义概率是对一个事件发生的可能性的度量,通常用一个介于0和1之间的实数表示。
3. 事件的互斥与独立互斥事件是指两个事件不能同时发生,独立事件是指两个事件的发生与否互不影响。
二、概率公式了解了基本概念后,我们来看一些重要的概率公式。
1. 加法定理加法定理用于计算两个事件的并的概率。
如果事件A和事件B是两个事件,那么它们的并的概率可以表示为:P(A∪B) = P(A) + P(B) -P(A∩B)2. 乘法定理乘法定理用于计算两个事件的交的概率。
如果事件A和事件B是两个事件,那么它们的交的概率可以表示为:P(A∩B) = P(A) × P(B|A)3. 全概率公式全概率公式用于计算一个事件的概率。
如果事件A可以被划分为有限个互斥事件B₁、B₂、...,那么事件A的概率可以表示为:P(A) =P(A∩B₁) + P(A∩B₂) + ...4. 贝叶斯定理贝叶斯定理用于计算已知某个事件发生的条件下,另一个事件发生的概率。
如果事件A和事件B是两个事件,那么在已知事件B发生的条件下,事件A发生的概率可以表示为:P(A|B) = (P(B|A)×P(A)) / P(B)三、重要概率分布公式除了上述基本的概率公式外,还需要掌握一些重要的概率分布公式,以便解决具体的问题。
1. 二项分布二项分布用于描述重复进行n次伯努利试验,且每次试验的结果只有两种可能的情况下,成功的次数的概率分布。
高数考研概率论公式口诀

口诀第1章随机事件互斥对立加减功,条件独立乘除清;全概逆概百分比,二项分布是核心;必然事件随便用,选择先试不可能。
第2、3章一维、二维随机变量1)离散问模型,分布列表清,边缘用加乘,条件概率定联合,独立试矩阵2)连续必分段,草图仔细看,积分是关键,密度微分算3)离散先列表,连续后求导;分布要分段,积分画图算第5、6章数理统计、参数估计正态方和卡方出,卡方相除变F,若想得到t分布,一正n卡再相除。
样本总体相互换,矩法估计很方便;似然函数分开算,对数求导得零蛋;区间估计有点难,样本函数选在前;分位维数惹人嫌,导出置信U方甜。
第7章假设检验检验均值用U-T,分位对称别大意;方差检验有卡方,左窄右宽不稀奇;不论卡方或U-T,维数减一要牢记;代入比较临界值,拒绝必在否定域!1.2 样本空间?1.3 概率和频率?1.4 等可能概型(古典概型)?1.5 条件概率?1.6 独立性概率论与数理统计2010-2-71概率论与数理统计是研究随机现象概率论与数理统计是研究随机现象数量规律的一门学科。
数量规律的一门学科。
2 第一章概率论的基本概念?1.1 随机试验?第二章随机变量及其分布?2.1 随机变量3?2.1 随机变量?2.2 离散型随机变量及其分布?2.3 随机变量的分布函数?2.4 连续型随机变量及其概率密度?2.5 随机变量的函数的分布第三章多维随机变量及其分布?3.1 二维随机变量?3.2 边缘分布?3.3 条件分布?3.4 相互独立的随机变量 第四章随机变量的数字特征?4.1 数学期望?4.2 方差?4.3 协方差及相关系数?4.4 矩、协方差矩阵第五章大数定律和中心极限定理?5.1 大数定律?5.2 中心极限定理4?5.2 中心极限定理 第六章数理统计的基本概念?6.1 总体和样本?6.2 常用的分布 第七章参数估计?7.1 参数的点估计?7.2 估计量的评选标准?7.3 区间估计第八章假设检验?8.1 假设检验?8.2 正态总体均值的假设检验?8.3 正态总体方差的假设检验?8.4 置信区间与假设检验之间的关系5?8.4 置信区间与假设检验之间的关系?8.5 样本容量的选取?8.6 分布拟合检验?8.7 秩和检验第九章方差分析及回归分析?9.1 单因素试验的方差分析?9.2 双因素试验的方差分析?9.3 一元线性回归?9.4 多元线性回归 第十章随机过程及其统计描述?10.1 随机过程的概念?10.2 随机过程的统计描述?10.3 泊松过程及维纳过程第十一章马尔可夫链?11.1 马尔可夫过程及其概率分布?11.2 多步转移概率的确定?11.3 遍历性6?11.3 遍历性 第十二章平稳随机过程?12.1 平稳随机过程的概念?12.2 各态历经性?12.3 相关函数的性质?12.4 平稳过程的功率谱密度概概率率论论7关键词:样本空间随机事件频率和概率条件概率第一章概率论的基本概念8条件概率事件的独立性§1 随机试验 确定性现象:结果确定不确定性现象:结果不确定确定性现象不确定性现象自然界与社会生活中的两类现象9 不确定性现象。
概率论公式大全

一. 随机事件和概率 1、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P Υ常称为可列(完全)可加性。
则称P(A)为事件A 的概率。
(2)古典概型(等可能概型)1° {}n ωωωΛ21,=Ω,2° nP P P n 1)()()(21===ωωωΛ。
设任一事件A ,它是由m ωωωΛ21,组成的,则有P(A)={})()()(21m ωωωΥΛΥΥ=)()()(21m P P P ωωω+++Λn m =基本事件总数所包含的基本事件数A = 2、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式 P(A-B)=P(A)-P(AB)当B ⊂A 时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B )=1- P(B)(3)条件概率和乘法公式定义 设A、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
(4)全概公式设事件n B B B ,,,21Λ满足 1°nB B B ,,,21Λ两两互不相容,),,2,1(0)(n i B P i Λ=>,2°Υni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++=Λ。
考研数学——概率公式(最全)

概率公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=ni i ni i A A 11===ni i ni i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i nj i j ini ini i A A A P A A A P A AP AP A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A BP A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i ik k B AP B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P kn kkn ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f xλλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xtd 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X XYX0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X XYY )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X XY =)(x y f XY)(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征 数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()lkY E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ简单整理了一下,中心极限定理及数理统计部分多概念少公式故未详细列出,有问题可以给我来信,希望能与大家多交流。
考研数学概率论重点公式速记

考研数学概率论重点公式速记概率论是数学中的一个重要分支,广泛应用于各个领域。
对于考研数学概率论的学习来说,熟悉并掌握相关的重点公式是非常必要的。
本文将为大家提供一些概率论中的重点公式,帮助大家更好地进行复习和备考。
一、基本概念1. 概率的加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)2. 概率的乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A)P(B|A) = P(B)P(A|B),其中P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。
3. 全概率公式:若{B1, B2, ..., Bn}为样本空间的一个划分,即满足Bi与Bj互不相容且它们的并集为样本空间,同时假设P(Bi) > 0,那么对于任意一个事件A,有:P(A) = P(A∩B1) + P(A∩B2) + ... + P(A∩Bn) = P(B1)P(A|B1) +P(B2)P(A|B2) + ... + P(Bn)P(A|Bn)二、常用概率分布1. 二项分布:设试验成功的概率为p,则n次试验中成功次数的概率为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中C(n,k)为组合数,表示从n个元素中取出k个元素的组合数。
2. 泊松分布:设单位时间(或单位面积)内某事件发生的次数的平均值为λ,则单位时间(或单位面积)内某事件发生k次的概率为:P(X=k) = (e^(-λ) * λ^k) / k!其中e为自然对数的底数(约等于2.71828)。
3. 正态分布:对于服从正态分布N(μ,σ^2)的随机变量X,其概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2 / (2σ^2)))三、常用性质1. 期望:对于离散随机变量X,其期望值E(X)为:E(X) = Σ(x * P(X=x))对于连续随机变量X,其期望值E(X)为:E(X) = ∫(x * f(x)) dx,其中f(x)为概率密度函数。
概率论重要公式大全必看

概率论重要公式大全必看概率论是数学的一个分支,研究随机事件的概率性质和随机现象的数学模型。
在概率论中有许多重要的公式,下面是一些概率论中常用的重要公式的介绍。
1.加法法则加法法则是计算两个事件一起发生的概率的公式。
P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法法则乘法法则是计算两个事件同时发生的概率的公式。
P(A∩B)=P(A)×P(B,A)=P(B)×P(A,B)其中P(B,A)表示已知事件A发生下事件B发生的概率。
3.全概率公式全概率公式是计算一个事件的概率的公式,通过将事件分解为若干个互斥事件并计算其概率,然后加权求和得到事件的概率。
P(A)=ΣP(A∩Bi)=ΣP(Bi)×P(A,Bi)其中Bi为一组互斥事件,且它们的并集为样本空间。
4.贝叶斯定理贝叶斯定理是根据条件概率的定义,计算事件的后验概率的公式。
P(A,B)=P(B,A)×P(A)/P(B)其中P(A,B)为已知事件B发生下事件A发生的概率。
5.随机变量与概率分布随机变量是用来描述随机现象结果的变量。
概率分布则是随机变量取不同值的概率的分布情况。
6.期望和方差期望是描述随机变量平均值的概念,可以通过加权平均的方式计算。
E(X)=Σx×P(X=x)方差是描述随机变量离散程度的概念,用来衡量随机变量取值与其期望值之间的偏差。
Var(X) = E((X - E(X))^2) = Σ (x - E(X))^2 × P(X=x)7.二项分布二项分布是描述重复进行n次独立实验中成功次数的概率分布。
P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中C(n,k)表示组合数,p为单次实验的成功概率,n为实验次数,k为成功次数。
8.泊松分布泊松分布是描述事件在一定时间或空间范围内发生的次数的概率分布。
P(X=k)=(λ^k/k!)×e^(-λ)其中λ为单位时间或单位空间范围内事件发生的平均次数,k为事件发生的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论公式背诵
离散型随机变量: ⑴0-1 分布
pk p x k pkq1k (k 0,1)
EX p
DX pq
⑵二项分布 B(n, p)
pk p x k Cnk pkqnk (k 0,1, n)
EX np
DX npq
⑶泊本介分布 p()
pk
p x k ke (k 0,1,2,
k!
n)
EX
DX
连续型随机变量
⑴均匀分布U (a,b)
⑶正态分布
f (x)
1
e
(
x )2 2 2
2
E(x)
D(x) 2
⑷ 2 分布 x1 xn N(0,1)
2 x12 xn2
EX n DX 2n
正态分布【特殊】
若 X N(, 2)
一维
Z (X ) N(0,1)
F (x) px
p
x
(
)
f
(
x)
b
1
a
x
(a,b)
0
其他
b
EX x f (x)dx x
1
dx b a
a ba
2
DX b x2 1 dx (b a )2 b2 ab a2 b2 2ab a2 (b a )2
a ba
2
3
4
12
⑵指数分布
f
(
x)
e
x
0
x0 其他
EX
1
DX
1 2
二维正态分布
(X ,Y ) N(1, 2;12,22; ) ① X 、Y 独立 X ~ N(1,12)
0
Y
~
N
(2
,
2 2
)
(X ,Y ) N(1, 2;12,22;0)
② aX bY 仍服从正态分布
若 XY 0 X 与Y 不相关(只有在正态条件下,才能推独立)
Cov(X ,Y ) 0
EXY EXEY D(X Y ) DX DY
常用公式:
E(X Y ) EX EY EXY =EXEY DX =EX 2 (EX )2
X、Y独立
D(X Y ) DX DY 2Cov(X ,Y )
D(X C) DX
Cov(X ,Y ) EXY EXEY
Cov(X ,C) 0
Cov(aX ,bY ) abCov(X ,Y )
Cov(X Y , Z) Cov(X , Z) Cov(Y, Z)
XY
Cov(X ,Y ) DX DY
1/2
数理论统计基本统计量
方法论总结:
X
1 n
n i1
xi
S 2
1 n 1
n i1
( xi
x)2
当 x1, x2, xn 独立同分布, EX , DX 2
① Z g(X ,Y ) 的分布函数 Fz ( ) 或 fz ( ) 1) X 和Y 都是随机变量(离散型) 先求出 Z g(X ,Y ) 全部可能取值
再求 PZ X Y k PX Y k
EX i 则 E X
, DXi , D X
2 12
n
ES 2 2
2) X 和Y 都是连续型随机变量
两个方法: 分卷布积函公数式法法::Fz ( ) pz
2分布:平方和 t分布:平正方态和
f
分布:平方和 平方和
正态总体抽样分布
3) X 离散,Y 连续 全集分解
Fz ( ) pz
x1 xn 为 X N(, 2) 的样本
则
X
N (, 2 ) ( X ) n
n
N (0,1)
X与S 2相互独立☆
n
(xi )2
i1
2
2(n)
2
(n)与
2 (n
1)
:
1
n
1
n i1
( xi
(n
1) 2
S
2
)2 2(n
S 2 1)
(x ) n
(x ) n
T分布:
(n 1)S 2 2
(n 1)
(x ) n
S
S
t(n 1)
2/2
。