(整理)常微分方程(含解答)

合集下载

常微分方程第三版习题答案

常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。

在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。

本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。

1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。

将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

常微分方程计算题及答案

常微分方程计算题及答案

计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。

2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。

7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。

(完整版)常微分方程基本概念习题及解答

(完整版)常微分方程基本概念习题及解答

(完整版)常微分方程基本概念习题及解答§1.2 常微分方程基本概念习题及解答1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =y e y 2e x 32 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx du u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1)y(1+x 2y 2)dx=xdy2)y x dx dy =2222x -2 y x 2y+ 证明:令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1)1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。

常微分方程2.1习题参考解答

常微分方程2.1习题参考解答

常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y xx yx yxyyxyc c c c x dxx dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy yydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dxdy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dx xx du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u xyxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程第四版课后练习题含答案

常微分方程第四版课后练习题含答案

常微分方程第四版课后练习题含答案第一章:常微分方程基本概念和初值问题1.2 课后练习题1.2.1(1)y′=2y+3,y(0)=1,求解y(t);(2)y′+ty=1,y(0)=0,求解y(t)。

解答:(1)该微分方程为一阶线性常微分方程,其通解为$$y(t)=Ce^{2t}-\\frac{3}{2}$$代入初始条件y(0)=1,可得$$C=\\frac{5}{2}$$所以$$y(t)=\\frac{5}{2}e^{2t}-\\frac{3}{2}$$(2)首先设$u(t)=e^{\\frac{t^2}{2}}y(t)$,则$u'(t)=e^{\\frac{t^2}{2}}(y'+ty)$。

代入原方程可得$$u'(t)=e^{\\frac{t^2}{2}}$$对其积分得$$u(t)=\\int e^{\\frac{t^2}{2}} dt +C=\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}+C$$其中$erf(x)=\\frac{2}{\\sqrt{\\pi}}\\int_0^x e^{-t^2} dt$称为误差函数。

进一步解得$$y(t)=e^{-\\frac{t^2}{2}}u(t)-ue^{-\\frac{t^2}{2}}=-\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}e^{-\\frac{t^2}{2}}$$ 代入初始条件y(0)=0即可得到最终解答。

第二章:一阶线性微分方程2.2 课后练习题2.2.1求下列方程的通解:(1)(2x+1)y′+y=1;(2)(x−1)y′−y=2x;(3)$(2+\\cos x)y'-y=2-x\\cos x$。

解答:(1)该微分方程为一阶线性常微分方程,设方程的通解为$y=Ce^{-\\int \\frac{1}{2x+1} dx}+\\frac{1}{2x+1}$。

常微分方程课后习题答案

常微分方程课后习题答案

常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。

通过解答习题,我们可以更好地理解和应用所学的概念和方法。

下面是一些常见的常微分方程习题及其答案,供大家参考。

一、一阶常微分方程1. 求解方程:dy/dx = 2x。

解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解方程:dy/dx = x^2 - 1。

解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。

3. 求解方程:dy/dx = 3x^2 + 2。

解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。

二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。

解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。

因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。

2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。

解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。

因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。

3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。

解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。

因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。

三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。

求物体的速度随时间的变化情况。

解:这是一个一阶线性常微分方程。

将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。

(完整版)常微分方程习题及解答

(完整版)常微分方程习题及解答

常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。

常微分方程,自变量的个数只有一个。

偏微分方程,自变量的个数为两个或两个以上。

常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。

2.举例阐述常数变易法的基本思想。

答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。

例:求()()dyP x y Q x dx=+的通解。

首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。

第四章常微分方程参考答案(1)

第四章常微分方程参考答案(1)

爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 常微分方程【教学要求】一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。

二、熟练掌握一阶可分离变量微分方程的解法。

三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+'的解法——常数变易法和公式法。

四、理解线性微分方程解的性质和解的结构。

五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。

会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。

六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'')(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。

所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。

关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。

【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。

【典型例题】。

的阶数是微分方程例)(e )(12x y y y =-'+''2.1.B A 4.3.D C 解:B。

的特解形式是微分方程例)(e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++x x c b ax D cx b ax C e ).(e ).(++++解:C是一阶线性微分方程。

下列方程中例)(,3 x x y y x B y A yx cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0.解:B ⎩⎨⎧=='++1)1(0)1(4y y x y y 求解初值问题例 ⎰⎰-=+x x y y y d )1(d 解:由变量可分离法得c x y y ln ln 1ln+-=+∴ 代入上式得通解为由21ln ln 1)1(=⇒=c yx y y 211=+ 的特解。

满足求解微分方程例1)0(e 252==-'y x y y x解:由公式法得]d e e 2[e d 12d 1c x x y x x x +⎰⋅⎰=---⎰]d e e 2[e 2c x x x x x +⋅=-⎰)e 2e 2(e c x x x x +-=31)0(=⇒=c y 由x x x y e 3e )1(22+-=所求特解为 的通解。

求微分方程例046=+''y y042=+λ解:特征方程为i 22,1±=λ特征根为x c x c y 2sin 2cos 21+=通解为的特解。

满足求例1)0(,0)0(e 2657=='=+'-''y y y y y x0652=+-λλ解:特征方程为特征根为3,221=λ=λ ∴x x c c y 3221e e +=对应齐次方程的通解为x A y e *=设原方程的一个特解为1=A 由待定系数法得∴x x x c c y y y e e e *3221++=+=原方程的通解为1,11)0(,0)0(21-===='c c y y 得由x x x y e e e 32+-=所以所求特解为 考试题型 试题分为填空题、单项选择题和计算题(包括应用题),其中填空题和单项选择题的分数占总分数的30%左右,此类题目主要考查课程中所学的概念、公式、性质等知识,并配有一些经过简单计算就能得出结果的小计算题;试卷中计算题(包括应用题)的分数占总分数的70%左右,主要考查学生对课程中所学过的基本计算方法和技能的掌握情况。

总之,同学们要在认真完成平时作业的基础上,对照考核说明有的放矢地重点复习。

另外,考虑到成人和开放教育的特点,本课程是半开卷考试,同学们要认真整理和利用好A4备考纸,最后祝同学们考出好成绩。

第二部分 综合练习一、填空题(每小题2分,共12分)1.若='-=))((,13)(2x f f x x f 则 。

2.=→x x x x sin 1sinlim 20 。

3.函数f (x )=x x e 在点____________处取得极小值。

4.若⎰⎰-+=x x f c x F x x f d )32(,)(d )(则= 。

5.=⎰+∞e 2)(ln d x x x。

收敛的必要条件。

是级数∑∞=1___________.6n n a 二、单选题(每小题2分,共12分) 1.1)1(2-+=x x x y 在( )时为无穷小量。

∞→-→→→x D x C x B x A .1.0.1.. 2.若f (x )在x =0x 处连续,则有( )。

处可微在00)(.)()(lim .0x x x f B x f A x f A x x =≠=→ 点可导在00)(.)()(lim .0x x x f D x f x f C x x ==→ 3.曲线。

内是在区间)(),4()6(2+∞-=x x yA .单调增加且凸的B .单调增加且凹的C .单调减少且凸的D .单调减少且凹的4.设。

则)()(,d cos )(3='=⎰x g t t x g x ax x D x C x B x x A cos 3.cos .cos .cos 3.2332 5.以下命题正确的是( )。

∑∞=∞→⇒=10lim .n n n n a a A 收敛 B . 收敛级数∑∞=1n n a 部分和∑==n k k n a s 1有极限C .p 级数∑∞=11n p n 当p <1时收敛D .级数∑∞=1n n a 与级数∑∞=1n n b 发散,则级数)(1n n n b a +∑∞=发散6.下列微分方程中,( )是可分离变量的微分方程。

x y y B xy y x y A -=+'+++='e .1.22y y x x y D y x y C d )(d .ln ln 1.2-=++=' 三、计算题(本题6分)求幂级数∑∞=+113n n n x n 的收敛区间。

四、计算题(每小题6分,共18分))ln 11(lim .11x x x x --→y x a y x '-=-求),3ln(.2。

3.由方程x y x y y y x xy d d ),(0e 2求确定==-+。

五、计算题(每小题6分,共18分) 1.⎰xx d sin 2.⎰⋅-⋅x x xx d 32532 3.xx x d e )2(202⎰+六、计算题(每小题8分,共16分)1.求y x y -='2e 满足1)0(=y 的特解。

2.求x y y y e 232=-'+''的通解。

七、应用题(每小题9分,共18分)1.求内接于抛物线22x y -=与X 轴所围区域内的矩形的最大面积。

2.求由曲线22y x x y =-=与所围成平面图形的面积。

【参考答案】一、填空题(每小题2分,共12分) 1.12742-x 2. 0 3.1-=x 4.c x F +-)32(215.16.0lim =∞→n n a二、单选题(每小题2分,共12分)1.B2. C3. B4. A5. B6. A三、计算题(每小题6分,共18分) 1.x x x x x x ln )1(ln lim 21-+-=→原式x x x x x x 1ln 121lim 1-++-=→ 11ln 14lim 1+++-=→x x x23-= 2.)1(31)3ln(ln )1(-⋅-⋅+-⋅⋅-⋅='--x a x a a y x xx x a x a a y xxd )3)3ln(ln (d -+-⋅⋅-=∴-- 3.021)(e ='⋅-+'+y y y x y xy xy xyx y y x y e 2e 1d d -+= 四、计算题(每小题6分,共18分) 1.⎰⋅==t t t t x d 2sin 令原式c t t t ++-=sin 2cos 2c x x x ++-=sin 2cos 22.x x d ))32(52(⎰-=原式c x x+-=32ln )32(52 3.⎰+=302de )2(2x x 原式⎰-+=3022d e 203e )2(2x x x x23e 6=五、计算题(每小题8分,共16分)1.x y x y d e d e 2=c x y +=∴2e 21e21e 1)0(-=⇒=c y 由21e e 21e 2-+=∴x y2.对应齐次方程的通解为:x x c c y e e231+=- 设原方程的一个特解为21,e *==A Ax y x 由待定系数法得 故原方程的一个特解为x x y e 21*=因此原方程的通解为:x x x x c c y e 21e e 231++=- 六、计算题(本题6分))31,31(3lim 1-∴=+∞→收敛区间为n n n a a Θ七、应用题(每小题9分,共18分)1.设矩形与抛物线在第一象限的交点为(x ,y )则所求面积S = 2xy =324x x -914,32,0==⇒='y x S 由 因此最大矩形面积为2756914322=⨯⨯=S 2.所围面积x x x S d ))((102---=⎰31=。

相关文档
最新文档