分频器设置规则(校对版)
电子分频器要注意的几点问题及故障排除

电子分频器要注意的几点问题及故障排除网络摘编电子分频器:电子分频器的主要功能当然就是给不同的音箱分配好不同的工作频率了,当然还有保护音箱的功能,下面说下调整电子分频器时需要注意的几点问题及故障排除:1、分频点:在一个2分频的音响系统中,一般情况下分频点放在130Hz附近比较合适,但很多情况下,对分频点的调整实际上不是取决于低音音箱,而是要看中高音或全频音箱。
因为低音音箱在300Hz以下工作都可以,但有些中高音和全频音箱由于扬声器口径太小,动态范围不够大,必须在200Hz以上工作才能保证它们的安全,如果此时分频点分在130Hz附近,那么这些中高音音箱工作起来就很危险了,因此在效果和安全当中还是要找一个平衡点。
我觉得双15寸的全频主音箱最好不要经过电子分频器;单15寸的主音箱可灵活运用;而单12寸以下的主音箱最好要通过电子分频器,至少在180Hz以上工作才安全。
2、音量控制:不管是输入电平还是输出电平,调整的时候都要有一个度,不要开的太大。
如果是电子分频器上的各个音量旋钮都开到很大了,系统的声压还不够,那就要调整电子分频器前面设备的信号电平或者调整电子分频器下面功放的电平和音量开关了。
3、×10按钮:有一些电子分频器上有一个:×10的按钮,大家注意不要轻易按下它。
例如我们的分频点调整在200Hz的话,按下此按钮200×10就变成2000Hz 了,因此除非是需要,否则一般不要按下此按钮。
4、低音模式:有些电子分频器后面板有一个低音模式的选择,它可以把2路立体声信号混合成1路单声道信号,这样可以减少低音音箱之间的声干涉。
大家可以适当利用下。
当然要是低音分频点分的较高,那么低音音箱发出的声音就会有一定的指向性了,此时还是要在2路立体声信号的状态下工作较好。
5、立体声工作模式和单声道工作模式:目前我们使用的大多数电子分频器都是2分频的居多,考虑到灵活性和多功能性,这些电子分频器的后面板一般会有一个立体声和单声道的工作模式转换开关,如果把此开关放在单声道工作模式下,那么此时这台电子分频器就从一台双通道2分频的电子分频器变成了一台单通道3分频的电子分频器了。
百灵达CX2310分频器中文说明书

(4) 若产品序列号被涂改或去除, 则该产品 不享有保修服务。
4 SUPER-X PRO CX2310 使用说明书
(5) 保修服务不包含免费的检查和保养 / 维修工作, 尤其是因用户使用不当而引起的 故障。 产品的自然损耗, 尤其是推子、 交叉 推子、 电位计、 按键 / 按钮、 吉它弦、 指示 灯及其它类似部件的自然损耗也不在保修 范围压, 有触电危险。
此标志提醒您查阅所附的重要 的使用及维修说明。 请阅读有 关手册。 小心 为避免触电危险, 请勿打开机 顶盖 (或背面挡板)。 设备内没 有可供用户维修使用的部件。 请将维修事 项交由合格的专业人员进行。 小心 为避免着火或触电危险, 请勿 将此设备置于雨淋或潮湿中。 此设备也不可受液体滴溅, 盛有液体的容 器也不可置于其上, 如花瓶等。 小心 维修说明仅是给合格的专业维 修人员使用的。 为避免触电危 险, 除了使用说明书提到的以外, 请勿进行 任何其它维修。 所有维修均须由合格的专 业人员进行。
§ 3 返修物料许可
(1) 如需保修服务, 请联系出售产品的销售 商。 若您邻近地区没有 MUSIC Group 销售商, 请直接联系您所在国家的 MUSIC Group 销售 商, 他们的名单列于我们的网站 的 Support 栏下。 若您所在国家的销售商 未列出, 请查看产品故障是否可借助于我 们的 Online Support 解决, 它设于我们的网站 的 Support 栏下。 或者, 在退回您 的产品之前在 网站上发送您 的网上维修申请。 任何查询均需附上故障 描述及产品序列号。 经验证确认产品保修 有效的, MUSIC Group 将给予一个返修物料许 可 (RMA)。
音箱分频器最实用的业余调整方法

音箱分频器最实用的业余调整方法音箱分频器最实用的业余调整方法一一经典呀音箱的"灵魂”----分音器的调整.2]分音器的交*频率的调整.注:音箱,分音器已定型,分频点已基本符合单元要求,不然就不叫调整成设计了.(分音器有两种设计方法:a)固定阻抗设计.b)分频点阻抗设计.)现在把高低音喇叭和分音器卸下来,分音器上有阻抗补偿的把它卸掉,按正常接法搭棚焊接,接入功放,音量与第一部分测试相同,保持原先是几点钟方位,因为此时音箱以不要,低音声短路,听觉已不准.这可方便,一堆垃圾.万用表接谁都顺手.万用表接入低音喇叭接线端子,测量低音喇叭分到的实际电压值,放1KH音频信号,微调音量电位器,使其为一整数.(此时为方便说明要假设一下:比如说万用表指示为3V.分音器交*频率比如说是3.15K---雨果正好有一频点是 3.15K.)好,放500H---12KH的信号,方格纸上描点做图,这是低通曲线.万用表接入高音喇叭接线端子,其它千万别改变!放1KH---20KH音频信号,如法炮制,这是高通曲线.这时我们就可以直观的看到分频点.就是两条曲线的交*点.我们现在只调交*点,其余一概不管.啊啊,它是在我们分频器的分音点上吗?它是按我们设计的滚落点交*吗?现在可有办法对症下药了.我瞪着你呢.我们原先假设输出为3V,3V的半功率点是:3*0.707=2.12V,我们只调电容值,(当然假设电感量基本符合)先让低通的3.15K点正好落在2.2V上.再调高通电容,让它2.2V时和这个点正好交*.这样分频点就调好了.必要的交代:之所以不加任何数学证明是为了可操作性.繁琐的数学推导总让人有:你不说我还明白,你越说我越糊涂.但简要的还是要交代一下:0.707是矢量,两单元都各分0.707倍的电压,合成后的功率正好等于原输入功率.以后测频响合成曲线时读者将会发现它们是平坦的.详细的数学推导留给聪明的读者去完成.也许两条曲线很难看,不要紧,啊啊,下一步就是我们的第3步,Q值的调整.3]分音器(低通和高通)的Q值的调整.由于叙述的困难,画了一张草图帮助说明:图中,蓝色的线是理想的分频曲线,相当于分音器的Q 值=0.707,也就是最佳阻尼,这是我们调试的基准线.我们要使实际的分频曲线逼近它.(调整之前除了绿色线,其它的线要先画出来).[1]现在把低通的RC串联补偿接入低音扬声器端子.注:RC的取值:——我们有个前题,就是假定原来设计基本符合要求.(a)用额定扬声器阻抗设计的,比如说8欧,就接入一个8.2欧1W-5W的电阻.(b)用分频点阻抗设计的,就接入分频点扬声器实际阻抗值电阻.(c)感到茫然的初哥,就用扬声器的标称阻抗值接相应的电阻值.(d)C暂取15UF无极电容,耐压值大于功放输出电压值.现在,我们老一套,放500H---12KH的信号,方格纸上描点做图,这是低通曲线,描出的曲线高于蓝色基准线的,加大电容值,低于基准线的减少电容值.(注意,此时设计正确的分音器,原先调好的交叉点是不变的,交叉点变了的,设计就有问题.)[2]把高通的RC串联补偿接入高音扬声器端子.(a)电阻取值如低通.(b)C暂取1UF.放1KH---20KH音频信号,如法炮制,这是高通曲线,调整方法如低通.反复调整,直到与图示的绿色线相似----交叉点不变,高低通曲线从下方逼近理想的分频线.此时分音器阻尼适当,失真最小.方波响应较为理想,交叉点的相位差大约是75度左右.也许你两条曲线不一样高,不要紧,一般是高音单元灵敏度高,曲线也高,可能还高不少,这时就要加衰减电阻来平衡灵敏度,用0.5----1.5串入,让高通曲线比低通曲线低上0.1-0.3V,因为高音太亮听感不好,最后统调时按自己的爱好定.现在,三个部分的粗调就算结束了,把我们的零碎一股脑的装入箱内吧。
经验之谈汽车音响三分频调音需要注意的七大事项

经验之谈汽车音响三分频调音需要注意的七大事项汽车音响三分频的调音是较二分频更需要注意的技术。
最近就发现了一篇某位大师写的三分频调音注意事项,一起看看,欢迎发表一下意见:三分频调音注意事项1、中高音喇叭的安装位置问题。
这个很好理解,就是将尽量将中音和高音做在一条轴线上。
比如echo的车,比如小吉的车。
现在10指、MK的车经过一系列的工艺改进,也有8、9成做到这一点了。
这样做的好处,是避免在分频点附近产生过多的串扰,从而产生无法消除的凸起或者凹陷2、斜率的选择。
就算安装位置搞好,选择斜率是第二个头疼的问题:-6dB对于中高频相距较近的喇叭来说,依然会导致大量的串扰,造成声音的干涉现象;-24dB或更高的斜率,需要更加精细的滚降频率控制,主流的CD机均无法满足;可以满足的机器包括H701、H800、H900、DSP8、bit one(后两者精确到1Hz)等数字处理器,而且,高斜率显然对喇叭的质素要求极高,特别是中音,为什么单拿342一直很难玩?就是因为那个中音素质很差,声音硬到离谱,而高音的下端也并不优秀。
这样一来,可以选择的频率,通常就是-12dB了。
至于中音是否反相,当看各自的中音的素质、听感来确定,不是一概而论的。
3、中音单体的素质。
这个直接决定了前门三分频的声音的下限!为什么?因为中音如果好,就可以使得玩家有更宽的频宽可以选择。
单拿声学的高端监听M3,其高音就是用T330D的,硕大的高音,是否将频点拉下来?no!其分频点就是500-550、4k,在车上是否现实呢?当然不!1、如果需要3寸中音下到500Hz且保持一定的质量,必须要设计独立的、经过计算的箱体,这个目前店家几乎都不能满足,或者说,做出来的箱体很可能一边大一边小,声音反而更坏;2、如果中音上限上到4k,又装在仪表台或A柱上,则经过玻璃对于4kHz频率96%的反射率的反射,声压几乎会增大一倍,出来的声音当然又硬又粗又刺耳且没有延伸(将高音的声音完全覆盖)了;但如果降低整个喇叭的level 或者增益,则中音下端可能又会缺失;如果通过EQ,大量的削减该频率附近的level,可以做一部分修正,但也势必会影响到高音下端的表现——所以,中音的频率一个不可能像家用或者监听那样承担非常宽阔的频响,再者需要非常精确的level控制,还需要其素质过硬,比如MK的那只劲浪中音,虽然听起来总觉得软绵绵,但起码比起342的中音,不硬、不刺耳,耐听度高。
电子分频器要注意的几点问题及故障排除

电子分频器要注意的几点问题及故障排除来源:网络摘编电子分频器:电子分频器的主要功能当然就是给不同的音箱分配好不同的工作频率了,当然还有保护音箱的功能,下面说下调整电子分频器时需要注意的几点问题及故障排除:1、分频点:在一个2分频的音响系统中,一般情况下分频点放在130Hz附近比较合适,但很多情况下,对分频点的调整实际上不是取决于低音音箱,而是要看中高音或全频音箱。
因为低音音箱在300Hz以下工作都可以,但有些中高音和全频音箱由于扬声器口径太小,动态范围不够大,必须在200Hz以上工作才能保证它们的安全,如果此时分频点分在130Hz附近,那么这些中高音音箱工作起来就很危险了,因此在效果和安全当中还是要找一个平衡点。
我觉得双15寸的全频主音箱最好不要经过电子分频器;单15寸的主音箱可灵活运用;而单12寸以下的主音箱最好要通过电子分频器,至少在180Hz以上工作才安全。
2、音量控制:不管是输入电平还是输出电平,调整的时候都要有一个度,不要开的太大。
如果是电子分频器上的各个音量旋钮都开到很大了,系统的声压还不够,那就要调整电子分频器前面设备的信号电平或者调整电子分频器下面功放的电平和音量开关了。
3、×10按钮:有一些电子分频器上有一个:×10的按钮,大家注意不要轻易按下它。
例如我们的分频点调整在200Hz的话,按下此按钮200×10就变成2000Hz了,因此除非是需要,否则一般不要按下此按钮。
4、低音模式:有些电子分频器后面板有一个低音模式的选择,它可以把2路立体声信号混合成1路单声道信号,这样可以减少低音音箱之间的声干涉。
大家可以适当利用下。
当然要是低音分频点分的较高,那么低音音箱发出的声音就会有一定的指向性了,此时还是要在2路立体声信号的状态下工作较好。
5、立体声工作模式和单声道工作模式:目前我们使用的大多数电子分频器都是2分频的居多,考虑到灵活性和多功能性,这些电子分频器的后面板一般会有一个立体声和单声道的工作模式转换开关,如果把此开关放在单声道工作模式下,那么此时这台电子分频器就从一台双通道2分频的电子分频器变成了一台单通道3分频的电子分频器了。
分频器的主要参数

分频器的主要参数什么是分频器分频器是指将不同频段的声音信号区分开来,分别给于放大,然后送到相应频段的扬声器中再进行重放。
在高质量声音重放时,需要进行电子分频处理。
分频器是音箱内的一种电路装置,用以将输入的模拟音频信号分离成高音、中音、低音等不同部分,然后分别送入相应的高、中、低音喇叭单元中重放。
之所以这样做,是因为任何单一的喇叭都不可能完美的将声音的各个频段完整的重放出来。
分频器是音箱中的“大脑”,对音质的好坏至关重要。
功放输出的音乐讯号必须经过分频器中的过滤波元件处理,让各单元特定频率的讯号通过。
要科学、合理、严谨地设计好音箱之分频器,才能有效地修饰喇叭单元的不同特性,优化组合,使得各单元扬长避短,淋漓尽致地发挥出各自应有的潜能,使各频段的频响变得平滑、声像相位准确,才能使高、中、低音播放出来的音乐层次分明、合拍、明朗、舒适、宽广、自然的音质效果。
在一个扬声器系统里,人们把箱体、分频电路、扬声器单元称为扬声器系统的三大件,而分频器是音箱中的“大脑”,分频电路对扬声器系统能否高质量地还原电声信号起着极其重要的作用。
尤其在中、高频部分,分频电路所起到的作用就更为明显。
总的来说可将分频器可定义为:将输入的电信号分离成两路单独的信号,且使每一路信号的带宽均小于原始信号的带宽,这种由一对或多对滤波器构成的装置就称为分频器。
也可称为“频率分配网络”。
分频器通常由高通(低切)滤波器(简称为HPF)和低通(高切)滤波器(简称为LPF)组成。
滤波器是一种频率选择器件,可以通过被选择的频率而阻碍其他的频率通过。
滤波器通常有以下三个参数:截止频率,网络类型,斜率。
截止频率是指滤波器的响应在低于它的最大电平时跌落到某点的频率,通常为最大电平的0.707倍或0.5倍,或下降3dB或6dB时的频率。
一般来说,分频器包括三个基本参数:分频点、路和阶。
下面详细介绍一下各参数的意义。
分频点分频点指分频器高通、带通和低通滤波器之间的分界点,常用频率来表示,单位为赫兹。
一文详解分频器的计算和调整方法

一文详解分频器的计算和调整方法您是否知道音箱之所以有这么出色的低音高音的音质效果完全得力于一个音箱设备中的音响分频器,如果没有这个小小的音箱分频器,音箱根本就不可能有出色的音质效果。
本文主要带领大家来了解一下分频器的计算和调整,首先来了解一下分频器原理及是分频点,其次详细了解分频器计算的顺序以及调整方法。
分频器简介分频器是指将不同频段的声音信号区分开来,分别给于放大,然后送到相应频段的扬声器中再进行重放。
在高质量声音重放时,需要进行电子分频处理。
分频器是音箱内的一种电路装置,用以将输入的模拟音频信号分离成高音、中音、低音等不同部分,然后分别送入相应的高、中、低音喇叭单元中重放。
之所以这样做,是因为任何单一的喇叭都不可能完美的将声音的各个频段完整的重放出来。
分频器是音箱中的“大脑”,对音质的好坏至关重要。
功放输出的音乐讯号必须经过分频器中的过滤波元件处理,让各单元特定频率的讯号通过。
要科学、合理、严谨地设计好音箱之分频器,才能有效地修饰喇叭单元的不同特性,优化组合,使得各单元扬长避短,淋漓尽致地发挥出各自应有的潜能,使各频段的频响变得平滑、声像相位准确,才能使高、中、低音播放出来的音乐层次分明、合拍、明朗、舒适、宽广、自然的音质效果。
在一个扬声器系统里,人们把箱体、分频电路、扬声器单元称为扬声器系统的三大件,而分频器是音箱中的“大脑”,分频电路对扬声器系统能否高质量地还原电声信号起着极其重要的作用。
尤其在中、高频部分,分频电路所起到的作用就更为明显。
分频器原理从电路结构来看,分频器本质上是由电容器和电感线圈构成的LC 滤波网络,高音通道是高通滤波器,它只让高频信号通过而阻止低频信号;低音通道正好相反,它只让低音通过而阻止高频信号;中音通道则是一个带通滤波器,除了一低一高两个分频点之间的频率可以通过,高频成份和低频成份都将被阻止。
在实际的分频器中,有时为了平衡高、低音单元之间的灵敏度差异,还要加入衰减电阻;另外,有些分频器中还加入了由电阻、电容构成的阻抗补偿网络,其目的是使音箱的阻抗曲线心理平坦一些,以便于功放驱动。
什么是分频器、激励器、均衡器、压缩限幅器

什么是分频器、激励器、均衡器、压缩限幅器什么是分频器分频器是指将不同频段的声音信号区分开来,分别给于放大,然后送到相应频段的扬声器中再进行重放。
在高质量声音重放时,需要进行电子分频处理。
它可分为两种:(1)功率分频器:位于功率放大器之后,设置在音箱内,通过LC滤波网络,将功率放大器输出的功率音频信号分为低音,中音和高音,分别送至各自扬声器。
连接简单,使用方便,但消耗功率,出现音频谷点,产生交*失真,它的参数与扬声器阻抗有的直接关系,而扬声器的阻抗又是频率的函数,与标称值偏离较大,因此误差也较大,不利于调整。
(2)电子分频器:将音频弱信号进行分频的设备,位于功率放大器前,分频后再用各自独立的功率放大器,把每一个音频频段信号给予放大,然后分别送到相应的扬声器单元。
因电流较小故可用较小功率的电子有源滤波器实现,调整较容易,减少功率损耗,及扬声器单元之间的干扰。
使得信号损失小,音质好。
但此方式每路要用独立的功率放大器,成本高,电路结构复杂,运用于专业扩声系统。
(摘自av_world)什么是激励器激励器是一种谐波发生器,利用人的心理声学特性,对声音信号进行修饰和美化的声处理设备。
通过给声音增加高频谐波成分等多种方法,可以改善音质、音色、提高声音的穿透力,增加声音的空间感。
现代激励器不仅可以创造出高频谐波,而且还具有低频扩展和音乐风格等功能,使低音效果更加完美、音乐更具表现力。
使用激励器提高声音的清晰度,可懂性和表现力。
使声音更加悦耳动听,降低听音疲劳,增加响度。
虽然激励器只给声音增加了0.5dB 左右的谐波成分,但实际听起来,音量好像增加了10dB左右。
使声音的听觉响度明显增加,声音图像的立体感,以及声音的分离度的增加;改善了声音的定位和层次感,还可以提高重放声音的音质,磁带的复制率。
因为声信号在传送和录制过程中会损失高频谐波成分,出现高频噪声。
此时前者用激励器先对信号进行补偿,后者可用滤波器将高频噪声滤掉后,再营造出高音成分,保证重放音质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理器设置规则(什么是分频点?)Processor Setting Fundamentals-or- What Is the Crossover Point?内森.巴特尔曾山、骆明刚译自/APP/papers.htmlTechnical Papers-DSP Setting Fundamentals长期以来,人们对分频器有一些错误的认识,不知道分频器是什么?不知道分频器在多功放扩声系统中怎么使用?过去,只有专业设计人员才能更改处理器的设置,而今天,可设置的DSP处理器则允许普通用户调整其参数。
可不幸的是,在音响系统中,仅对厂家的推荐设置做微小的改变,就可能对其系统性能产生巨大的影响。
这篇文章试图解释一些分频器的细节并指出一些严重影响音质的常见操作错误。
一.什么是分频器?分频器可定义为:将输入的电信号分离成两路单独的信号,且使每一路信号的带宽均小于原始信号的带宽,这种由一对或多对滤波器构成的装置就称为分频器。
也可称为“频率分配网络”。
分频器通常由高通(低切)滤波器(简称为HPF)和低通(高切)滤波器(简称为LPF)组成。
滤波器是一种频率选择器件,可以通过被选择的频率而阻碍其他的频率通过。
滤波器通常有以下三个参数:截止频率,网络类型,斜率。
截止频率是指滤波器的响应在低于它的最大电平时跌落到某点的频率,通常为最大电平的0.707倍或0.5倍,或下降3dB或6dB时的频率。
网络类型是指滤波器的频率响应曲线在截止频率附近的形状,近些年来,人们设计了很多种类型的滤波器,常见的滤波器类型有:巴特沃夫,林克威兹,贝塞尔等,图一为各种滤波器的的频率响应曲线,斜率定义为滤波器的频率响应曲线中下降到截止频率时的倾斜程度,单位为dB/倍频程,通常斜率为每倍频程6,12,18和24dB。
也可以称为‘滤波器斜率’或‘滤波器阶数’,滤波器阶数每增加一阶,则其斜率增加6dB/倍频程,也就是,一阶滤波器有6dB/倍频程的斜率,二阶滤波器则有12dB/倍频程的斜率。
那么,24dB/倍频程的巴特沃夫滤波器就相当于4阶的巴特沃夫滤波器。
图1:红色-2KHz 24dB林克威兹–瑞利高通滤波器,橙色-2KHz 24dB巴特沃夫高通滤波器,棕色-2KHz 24dB贝塞尔高通滤波器,绿色-“-3dB”,蓝色-“-6dB”由于喇叭单元不会有相同的声级、全频带的输出,分频器必须用于全频范围的扬声器系统。
低频单元用来再现低频信号,高频单元用来再现高频信号,分频器将适当的频率信号传输到适当的喇叭单元。
通常分频器分为主动式和从动式,总体上说:从动式分频器分离功放后的音频信号(扬声器电平),常被做在扬声器内部。
而主动式的分频器,则分离放大器放大之前的音频信号(线路电平),通常是独立的电子装置,位于信号源与放大器之间。
信号经过分频器最终流入对应的喇叭单元,喇叭单元用来再现声音频谱的适当部分。
当分频器被设计好后,各个喇叭单元的信号可以叠加,并能精确的再现原始的输入信号。
分频器还将影响一些其他的参数,如:功率,带宽,这些都必须在设计时加以考虑。
二.相位----一个简单的说明在某个特定的频率处,如果两个信号的频率响应有相似的幅值和斜率,信号将会加在一起,形成一个新的信号。
我们可以通过相位响应来解释两个信号在相位的不同或时间上的不同。
如果两个滤波器的相位响应相似,他们输出的信号将会相加;反之,则会相互削减。
我们在上面讨论的不同类型和斜率的滤波器都有其独特的相位响应曲线,如图1所示。
以下的示例图片是一些在扬声器系统中常见的相位变化图,这种测量方式在声学测量系统中有广泛应用,例如SIA Smaart。
观察图2中两个滤波器的相位响应曲线,特别是下降部分曲线,图2:两个同样的滤波器。
橙色-正常,蓝色-极性反转。
尽管这两个滤波器在幅值响应上是相同的,但他们在相位响应上有着明显的区别。
仔细观察就会发现他们在斜率是相同的,相位上相差180度,刚好是倒相的关系。
对一个简单的180度相移,这应该不会感到困惑,并可以在一个单个的频率上出现,在图3中作为一个例子。
图3:两个同样的滤波器。
橙色-被延时,蓝色-正常。
斜率和相位的差异并不是固定的,而是随着频率的变化而改变的。
这个时间上偏移或延迟的特性可以用来指示两个设备之间的不同,这个偏移量可以通过下面这个公式计算:这个等式表明时间的偏移量等于在某个频率处的相位差的绝对值除以对应频率与360之积。
假定取频率为500Hz ,根据图形显示,在500Hz处,蓝色曲线的相位为-90,橙色曲线的为-180,两者之间的相位差为90,根据公式可得,两个信号之间的时间差为:Ts=90/(360*500Hz) = 0.5ms 。
这个计算公式可以使用于任何频率,其结果都是相同的。
通常我们需要注意的是相位曲线外面的包络线。
曲线中Y轴的范围从-270到90度,一般的相位曲线都在360度的范围内,像0~360,—180~180等范围。
你不可以直观的看出相位曲线是一直下降或是上升的,图中橙色曲线在2KHz处居然是-630,(第一次在包络线处为700,从700到2居然又降了360度)这些相位值必须代入上面公式才能得出正确的结果。
三.分频点分频点通常定义为两个分频器的响应(一般由一个LPF和一个HPF组成)互相交叉处的频率,可能是两个电子分频器(从动或主动式)电学特性上的分频点,或者是两个声学滤波器上的分频点。
任何喇叭单元实质上都是一个滤波器,每一个都有他们内部所固有的高通和低通滤波器,以及固有的截止频率,斜率,网络类型。
人们经常会问:“对某个系统来说分频点是什么?”其实他们想知道的是对这个系统来说总体声学分频点在哪里?一个系统的总体声学分频点取决于这个系统中电子滤波器与喇叭单元频率响应的数学组合,当一个电子滤波器添加到一个声学滤波器系统时,他们的频率响应将叠加,形成一个全新的响应曲线。
如图4中例子所示。
图4:红色-高频单元响应,棕色-电子高通滤波器,橙色-合成响应。
这个问题通常被看作什么是系统的分频设置,但一个系统的分频设置不只是分频点而已,就像上面所说的,一个分频器是一个高通滤波器和一个低通滤波器的组合,他们每一个都可以用三个参数完整的描述。
四.系统举例看下面这个例子,图5所示曲线为安装在箱体内的一个高频器件和一个低频器件的实际频率响应:图5:两个单元的原始声学响应。
红色-低频,棕色-高频,分频点在大约613Hz。
两个不同单元之间的声级/灵敏度差异,及高频器件的相位滞后都是显而易见的。
高频部分很可能被固定在一个长喉管的号筒上,因此产生相对于低频扬声器的延迟,为了更好地使系统重现信号,最新发展的分频器要求能够平滑频率响应曲线。
按图6所示的处理后得到图7所示的结果。
图6:电子分频器的响应。
绿色-低频,橙色-高频。
分频点在大约1.8KHz图7:加上分频器的系统的总体声学响应。
粉红色-低频,蓝色-高频,红色-总体。
分频点在大约1.3KHz 我们可以注意到在整个频率响应曲线中,平坦的部分是从50Hz到20kHz(-3dB),高频部分和低频部分的相位响应在分频点附近有相似的斜率,且相位差不超过90度。
这是通过给低频部分的延时使它校准于高频部分。
我们应该意识到这仅仅是一种可行的分频方案,还有很多其他的方案也同样可行。
可以看到在图7中1.3kHz的声学分频点和在低频部分的截止频率为944Hz的低通滤波器,及高频部分的截止频率为2053Hz的高通滤波器没有任何相关性。
此外,它也不对应于原始状态下单元的分频点(图5),也不对应于电子滤波器的分频点(图7)。
五.为什么使用不对称的滤波器?我们注意到在上面的例子中,把12dB的巴特沃夫滤波器用在在高频部分,把24dbB的贝塞尔滤波器用在低频部分,像这样使用斜率和类型都不对称的滤波器是十分常见的,这是因为几乎没有喇叭单元拥有和分频器相同的斜率和网络类型。
我们再回到图5中,可以发现高频部分和低频部分所固有的斜率和网络类型是不相同的,系统全频声学响应取决于分频器的电学响应与变频器的声学响应的组合。
若要使电子滤波器的特性对称,则必须使喇叭单元的特性也对称,但这是无法实现的,因此我们用不对称的电子滤波器来完善变频器的不对称特性。
不幸的是只有极少数昂贵的电子分频器允许使用不对称的斜率或网络类型,许多便宜的分频器有一个简单的标有频率的旋钮,允许拨一个合适的频率值。
尽管在这些单元中只有一个参数可调,但这很可能是分频点的所在。
通常这些器件会采用对称的24dB林克威兹–瑞利高通或低通滤波器,它们在给定的频率处有高的截止斜率和相同的相位响应。
就如图8所示。
图8:24dB林克威兹–瑞利高通和低通滤波器,在1.3KHz。
注意相位响应的重合,所以蓝色相位图不可见我们可以看到用了这些分频器件后的效果,以图5中所描述的系统为例,效果如图9中所示。
图8:用1.3KHz 24dB林克威兹–瑞利高通和低通滤波器代替图6中的高通和低通滤波器处理后的图示,粉红色-低频,蓝色-高频,红色-总体。
注意相位响应的不同。
图中曲线显示了和图6做一样处理的系统全频响应,唯一不同的是这里将高通和低通滤波器替换为对称的分频点在1.3kHz的24dB林克威兹–瑞利滤波器。
1.3kHz是图7中所描述的系统的分频点,所以这里采用1.3kHz作为分频点。
我们下面再来看一下其他两种可能,其一为消除在前一个例子中所说的设置中的延时,因为一些廉价的分频器不具有延时的调整,或无法做0.5ms的精确调整,图10展示了系统没有延时的效果。
图10:系统描述在图9中,没有延时另一种值得考虑的方案是把对称的24dB林克威兹–瑞里滤波器的分频点设置在1.8kHz,这与图4中的电子滤波器的分频点是相同的,这将产生0.5ms的延时,结果如图11所示。
图11:系统显示在图10中,加上分频点设置到1.3KHz。
红色-加0.5ms延时,绿色-没有延时。
最后,我们考虑在图9中使用对称的24dB林克威兹–瑞里滤波器的原例,这个系统需要固定一个外部的参数或图形均衡器,我们来具体研究怎样才能使系统的响应曲线变得平坦。
图9中相位响应显示在分频点附近的相位差可以达到180度,就像前面所规定的一样,是可计算的极性倒置。
图12中展示了高频信号极性倒置后对系统的影响,然后使用了一个附加的在1.49KHZ的均衡器。
此外,现有的均衡器需要精细的调节使之得到平坦响应的结果,但这种调节不能靠直觉,在没有使用合适的测量设备情况下,用户很难做出精确的调节。
若采用ISO标准频率的图形均衡器,在1.49kHz处实现低Q值是很困难的,也是毫无意义的。
同样令人遗憾的是均衡器需要被用来削减在分频点处过多的叠加,在高通滤波器和低通滤波器频率分开时或许可能(降低低通滤波器的截止频率并且升高高通滤波器的截止频率)。
此外,我们还不知道这些改变将会对系统的其他参数造成什么样的影响,像承受功率,偏轴响应,波束宽度等等。