高考导数压轴题零点问题

合集下载

微专题10 导数解答题之零点问题(解析版)

微专题10 导数解答题之零点问题(解析版)

微专题10导数解答题之零点问题秒杀总结1.函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围. 求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数.例1.(第21讲零点问题之一个零点-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()sin cos ,[,]2f x x x x ax x ππ=++∈-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0a =时,求()f x 的单调区间;(3)当0a >时,()f x 在区间[,]2ππ有一个零点,求a 的取值范围. 【答案】(1)1y =(2)单调递增区间为(,)2ππ--,(0,)2π,单调递减区间为(2π-,0),(2π,)π. (3)(0,22]π 【解析】 【分析】(1)求出函数在0x =处的导数值,即切线斜率,求出(0)1f =,即可求出切线方程; (2)求出函数导数并判断正负即可得出单调区间; (3)转化为22sin 2cos x x xa x +=-,构造函数,利用导数判断函数单调性即可求出.(1)()sin cos sin cos f x x x x x ax x x ax '=+-+=+,所以()00k f ='=切,又(0)1f =,所以()f x 在(0,(0))f 处的切线方程:10y -=,即1y =. (2)当0a =时,()sin cos f x x x x =+, ()sin cos sin cos f x x x x x x x '=+-=,所以在(,)2ππ--,(0,)2π上,()0f x '>,()f x 单调递增, 在(2π-,0),(2π,)π上,()0f x '<,()f x 单调递减,所以()f x 单调递增区间为(,)2ππ--,(0,)2π,单调递减区间为(2π-,0),(2π,)π. (3)当0a >时,令()0f x =,得21sin cos 02x x x ax ++=, 所以22sin 2cos x x xa x +=-,令22sin 2cos ()x x xg x x+=-,[2x π∈,]π,222(2sin 2cos 2sin )()(2sin 2cos )(2)()()x x x x x x x x x g x x +---+-'=-322222222cos 4sin 4cos 2cos (2)4sin ()()x x x x x x x x x x x x x -++-++==--当[2x π∈,]π时,cos 0x <,220x -+<,即()0g x '>, 所以()g x 在[2π,]π上单调递增,又24()24g ππππ==--,2222()g πππ-==-, 若()f x 在区间[,]2ππ有一个零点,则242a ππ-剟, 故a 的取值范围(0,22]π.例2.(吉林省长春市东北师范大学附属中学2021-2022学年高三上学期第三次摸底考试理科数学试题)已知函数ln sin ()(0)x x a eaf x x a =+>,()'f x 为()f x 的导数.(1)若0x =为()'f x 的零点,试讨论()f x 在区间[]0,π的零点的个数; (2)当1a =时,()(0)2cos xf x mx x <>+,求实数m 的取值范围.【答案】(1)两个 (2)1[,)3+∞ 【解析】 【分析】(1)由题意得到()[cos (1)e ]x f x a x x -'=--,先得到(0)0f =,再由(0,π]x ∈时,设()cos (1)e x g x x x -=--,则()(2)e sin x g x x x -'=--,分π(0,]2x ∈、π(,2]2x ∈和(2,π]x ∈三种情况讨论,即可求解; (2)当1a =时,转化为sin 02cos x mx x ->+,令sin ()2cos xG x mx x=-+,利用导数求得函数的单调性与最值,即可求解.(1)解:由题意,函数ln sin ()(0)x x a e a f x x a =+>,可得ln (1)()cos e xa x f x a x -'=+, 因为0x =为()'f x 的零点,所以(0)0f '=,即ln 0a a +=, 从而(1)()cos [cos (1)e ]e xxa x f x a x a x x ---'=+=--, ①因为(0)0f =,所以0是()f x 的零点;②当(0,π]x ∈时,设()cos (1)e x g x x x -=--,则()(2)e sin x g x x x -'=--,(ⅰ)若π(0,]2x ∈,令()()(2)e sin x h x g x x x -'==--,则()(3)e cos 0x h x x x -'=--<,所以()h x 在π(0,]2单调递减,因为π2ππ(0)20,()(2)e 1022h h -=>=--<,所以存在唯一的0π(0,)2x ∈,使得0()0h x =,当0(0,)x x ∈时,()()0h x g x '=>,()g x 在0(0,)x 上单调递增; 当0π(,)2x x ∈时,()()0h x g x '=<,()g x 在0π(,)2x 上单调递减;(ⅰ)若π(,2]2x ∈,令()(2)e x x x ϕ-=-,则()(3)e 0x x x ϕ-=-<',故()ϕx 在π(,2]2上单调递减,所以π2ππ1()()(2)22ex e ϕϕ-<=-<.又π1sin sin 2sin(π2)sin 62x ≥=->=,所以()(2)e sin 0,()x g x x x g x -'=--<在π(,2]2上单调递减;(ⅰ)若(2,π]x ∈,则()(2)e sin 0,()x g x x x g x -'=--<在(2,π]上单调递减. 由(ⅰ)(ⅰ)(ⅰ)可得,()g x 在0(0,)x 上单调递增,在0(,π]x 上单调递减,因为π0()(0)0,(π)(π1)e 10g x g g ->==--<,所以存在唯一10(,π)x x ∈使得1()0g x =.当1(0,)x x ∈时,()()0f x ag x '=>,()f x 在1(0,)x 上单调递增,()(0)0f x f >=, 当1(,π]x x ∈时,()()0f x ag x '=<,()f x 在1(,π]x 上单调递减, 因为1()(0)0,(π)0f x f f >=<,所以()f x 在1(,π]x 上有且只有一个零点. 综上可得,()f x 在[]0,π上有两个零点. (2)(2)当1a =时,()sin f x x =,则不等式化为sin 2cos x mx x <+,即为sin 02cos xmx x->+.令sin ()2cos xG x mx x=-+,则()()2222cos +123111()=+=32cos 2cos 332cos 2cos x G x m m m x x x x ⎛⎫'=---+- ⎪++⎝⎭++当13m ≥时,()0G x '>,()G x 在()0+∞,单调递增,且(0)=0G ,故13m ≥时满足题意; 当103m <<时,令()sin 3H x x mx =-,则()cos 3H x x m '=-在()0+∞,有无数零点 所以存在最小的一个()00,x x ∈,使()0H x '>,则()H x 在()0+∞,单调递增, 所以()(0)0H x H >=,即sin 3x mx >,所以()00,x x ∃∈,使sin sin 2cos 3x xmx x >>+,所以sin 02cos x mx x -<+,故103m <<不满足题意,舍去.当0m ≤时,因为0x >,所以0mx ≤,令()sin 2cos x n x x=+,πsin π12=0π222cos 2n ⎛⎫=> ⎪⎝⎭+,不满足题意,舍去. 综上可得,13m ≥,即实数m 的取值范围是1[,)3+∞.例3.(湖南省长沙市雅礼中学2021-2022学年高三上学期月考(四)数学试题)已知函数()()sin ln 1f x x x =-+.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)证明:()f x 有且仅有2个零点. 【答案】(1)0y = (2)证明见解析 【解析】 【分析】(1)、求出()f x ',将0x =代入即可求出切线斜率,再确定切点,然后利用点斜式即可求出切线方程; (2)、先求出()f x ',令()()g x f x '=,确定()g x 的单调性和正负,确定()f x 的单调性及正负,从而得出()f x 零点个数. (1)()()sin ln 1f x x x =-+,()1cos 1f x x x'∴=-+,()0cos 010x f x ='∴=-=,又()00f =,()y f x ∴=在点()0,0处的切线斜率为0.∴曲线()yf x =在点()()0,0f 处的切线有程为0y =.(2)()()sin ln 1f x x x =-+,()1cos 1f x x x'∴=-+, 令()()1cos 1g x f x x x'==-+,()()()21sin 11g x x x x '∴=-+>-+,①、当(]1,0x ∈-时,sin 0x ->,()()21sin 01g x x x '∴=-+>+,()g x ∴在(]1,0-上单调递增,又()()000g f '==,(]1,0x ∴∈-时()0g x ≤,(]1,0x ∴∈-时()0f x '≤,()fx ∴在(]1,0-上单调递减,又()00f =,0x ∴=是()f x 在(]1,0-上的唯一零点;②、当0,2x π⎛⎤∈ ⎥⎝⎦时,()()21sin 1g x x x '=-++,()()32cos 01g x x x ''∴=--<+,()g x '∴在0,2x π⎛⎤∈ ⎥⎝⎦上单调递减, 又()()210sin 0010g '=-+>+,21sin 02212g πππ⎛⎫'=-+< ⎪⎝⎭⎛⎫+ ⎪⎝⎭,()g x '∴在0,2x π⎛⎤∈ ⎥⎝⎦上有唯一零点m ,其中02m π<<, 当()0,x m ∈时,()0g x '>,()g x ∴在()0,x m ∈上单调递增; 当2x m π⎛⎫∈ ⎪⎝⎭,时,()0g x '<,()g x ∴在2x m π⎛⎫∈ ⎪⎝⎭,上单调递减;而()()000g f '==,1cos 022212g f ππππ⎛⎫⎛⎫'==-< ⎪ ⎪⎝⎭⎝⎭+,,2n m π⎛⎫∴∃∈ ⎪⎝⎭使()0f n '=,当(),x m n ∈时,()0g x >,()0f x '∴>,()f x ∴在(),x m n ∈上单调递增; 当2x m π⎛⎫∈ ⎪⎝⎭,时,()0g x <,()0f x '∴<,()f x ∴在2x m π⎛⎫∈ ⎪⎝⎭,上单调递减;而()00f =,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,0,2x π⎛⎤∴∈ ⎥⎝⎦时,()0f x >,()f x ∴在0,2x π⎛⎤∈ ⎥⎝⎦上无零点;③、当,2x ππ⎛⎤∈ ⎥⎝⎦时,1sin 0x -<-≤,()()21sin 01g x x x '∴=-+<+,()g x '∴在,2x ππ⎛⎤∈ ⎥⎝⎦上单调递减, 02g π⎛⎫'< ⎪⎝⎭,()g x ∴在,2x ππ⎛⎤∈ ⎥⎝⎦上单调递减;又02g π⎛⎫< ⎪⎝⎭,,2x ππ⎛⎤∴∈ ⎥⎝⎦时()0f x '<,()f x ∴在,2x ππ⎛⎤∈ ⎥⎝⎦上单调递减;而()002f f ππ⎛⎫>< ⎪⎝⎭,,()f x ∴在,2x ππ⎛⎤∈ ⎥⎝⎦上有一个零点;④、当()x π∈+∞,时,1sin 1x -≤≤,()ln 11x +>, ()()sin ln 10f x x x ∴=-+<,()f x ∴在()x π∈+∞,上无零点; 综上所述:()f x 有且仅有2个零点.例4.(黑龙江省哈尔滨市呼兰区第一中学校2021-2022学年高三上学期第二次校内检测数学(理)试题)已知()()1e 0xf a x x x -->=,1x =是()f x 的极值点(其中e 是自然对数的底数).(1)求a 的值;(2)讨论函数()()sin h x f x x =-在()0,π的零点个数. (参考数据:12e 1.77π-≈). 【答案】(1)1; (2)2个﹒ 【解析】 【分析】(1)求导得1()e x f x a -'=-,易知f '(1)0=,从而求得a 的值.(2)1()e sin (0)x h x x x x π-=--<<,1()e 1cos x h x x -'=--,第一次构造函数()()H x h x '=,易证()H x 在(0,)π上单调递增,由于(0)0H <,()02H π>,故0(0,)2x π∃∈,使得0()0H x =,且可推出()h x 在(0,)π上的单调性,从而得0()()min h x h x =;第二次构造函数()1cos sin g x x x x =+--,(0,)2x π∈,再次借助导数和隐零点的思维,证明()0<g x 即()0min h x <在(0,)2π上成立,进而确定函数()h x 的零点个数. (1)1()e (0)x f x ax x -=->,1()e x f x a -'∴=-,1x =是()f x 的极值点,f '∴(1)0e 0a =-=,解得1a =.(2)由(1)知,1()()sin e sin (0)x h x f x x x x x π-=-=--<<,1()e 1cos x h x x -'∴=--,令1()()e 1cos x H x h x x -'==--,则1()e sin 0x H x x -'=+>在(0,)x π∈上恒成立, ()H x ∴在(0,)π上单调递增.又1(0)e 20H -=-<,12()e 102H ππ-=->,0(0,)2x π∴∃∈,使得0()0H x =,即010e 1cos 0x x ---=,当00x x <<时,()0H x <,即()0h x '<,()h x 单调递减; 当0x x π<<时,()0H x >,即()0h x '>,()h x 单调递增.01000000()()e sin 1cos sin x min h x h x x x x x x -∴==--=+--.令()1cos sin g x x x x =+--,(0,)2x π∈,则()cos 1cos 0g x x x '=---<恒成立, ()g x ∴在(0,)2π上单调递减,又(0)1120g =+=>,()11022g ππ=--<,1(0,)2x π∴∃∈,使得当1(x x ∈,)2π时,()0<g x ,即()0min h x <成立.1(0)e 0h -=>,1()e 0h πππ-=->,故()h x 在(0,)π上有2个零点. 【点睛】本题考查利用导数研究函数的单调性和零点问题,需要多次构造函数,且涉及隐零点的思维,考查学生的转化思想、逻辑推理能力和运算能力,属于难题.过关测试1.(江苏省南通市如皋、镇江市2021-2022学年高三上学期期末联考数学试题)设f (x )=x e x -mx 2,m ∈R . (1)设g (x )=f (x )-2mx ,讨论函数y =g (x )的单调性;(2)若函数y =f (x )在(0,+∞)有两个零点x 1,x 2,证明:x 1+x 2>2. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求出()()()1e 2'=+-xg x x m ,分0m ≤、102m e<<、12>m e 、12m e =讨论()g x 的单调性即可;(2)令()2e 0=-=xf x x mx 得e =x mx ,代入12,x x 两式相除得,1212x x x e x -=,设21x x >,令21t x x =-求出11t t x e x +=,反解出11t t x e =-,则122e 1+=+-tt x x t ,即证221t t t e +>-,等价于证明:()()22e 10+--tt t >,构造函数()()()()22e 10=+--th t t t t >,利用导数求出单调性可得答案.(1)()()2e 2=--∈x g x x mx mx x R ,()()()1e 2'=+-x g x x m ,0m ≤时,20x e m ->,当1x >-时()0g x '>,()g x 是单调递增函数,当1x <-时()0g x '<,()g x 是单调递减函数;0m >时,令()0g x '=,得()121,ln 2=-=xx m ,当()1ln 2->m 即102m e<<时,1x >-或()ln 2<x m 时()0g x '>,()g x 是单调增函数,()ln 21<<-m x 时()0g x '<,()g x 是单调递减函数,当()1ln 2-<m 即12>m e时,1x <-或()ln 2>x m 时()0g x '>,()g x 是单调增函数,()1ln 2-<<x m 时()0g x '<,()g x 是单调递减函数,当()1ln 2-=m 即12m e=时,()0g x '>,()g x 在x ∈R 上是单调增函数, 综上所述0m ≤时,()g x 在()1,-+∞是单调递增函数,在(),1-∞上是单调递减函数;102m e<<时,()g x 在()1,-+∞,()(),ln 2-∞m 上是单调增函数,在()()ln 2,1-m 是单调递减函数, 12>m e时,()g x 在(),1-∞-,()()ln 2,+∞m 上是单调增函数,在()()1,ln 2-m 是单调递减函数, 12m e=时,()g x 在x ∈R 上是单调增函数. (2)令()2e 0=-=xf x x mx ,因为0x >,所以e =x mx ,令()()=e 0->xF x mx x ,()()12=0,=0F x F x ,两式相除得,1212x x x e x -=,① 不妨设21x x >,令21t x x =-,则0t >,21x t x =+,代入①得:11tt x e x +=,反解出:11t t x e =-,则121221ttx x x t t e +=+=+-, 故要证122x x +>即证221ttt e +>-,又因为10t e ->, 等价于证明:()()22e 10+--tt t >, 构造函数()()()()22e 10=+--th t t t t >,则()()1e 1'=-+th t t ,()e 0''=t h t t >,故()h t '在()0+,∞上单调递增,()(0)0h t h ''>=, 从而()h t 在()0+,∞上单调递增,()(0)0h t h >=. 即122x x +>.2.(考点12导数与不等式,函数零点等-2021年新高考数学一轮复习考点扫描)已知函数()ln f x x ax a =-+,2()1g x x =-.(1)当0a =,0x >且1x ≠时,证明:212()()11x f x g x x x +<--; (2)定义,{,},m m nmax m n n m n≥⎧=⎨<⎩,设函数(){(),()}(0)h x max f x g x x =>,试讨论()h x 零点的个数.【答案】(1)证明见解析;(2)答案见解析. 【解析】 【分析】(1)即证:当1x >时,2(1)ln 1x x x ->+;当01x <<时,2(1)ln 1x x x -<+.令2(1)()ln 1x x x x ϕ-=-+,则()ϕx 在(0,1)上单调递增,在(1,)+∞上单调递增.即得解;(2)对x 分三种情况1,1,01x x x >=<<讨论,得1a >时,()h x 有两个零点;1a ≤时,()h x 仅有一个零点. 【详解】(1)当0a =时,()ln f x x =,要证:212()()11x f x g x x x +<-- 即转化为:1[(1)ln 2(1)]01x x x x+--<-,即12(1)ln 011x x x x -⎡⎤-<⎢⎥-+⎣⎦ 即证:当1x >时,2(1)ln 1x x x ->+;当01x <<时,2(1)ln 1x x x -<+ 令2(1)()ln 1x x x x ϕ-=-+,则2214(1)()0(1)(1)x x x x x x ϕ'-=-=>++ 则()ϕx 在(0,1)上单调递增,在(1,)+∞上单调递增. 所以当01x <<时,()(1)0x ϕϕ<=,此时12(1)ln 011x x x x -⎡⎤-<⎢⎥-+⎣⎦当1x >时,()(1)0x ϕϕ>=,此时12(1)ln 011x x x x -⎡⎤-<⎢⎥-+⎣⎦故0a =,0x >且1x ≠时,212()()11x f x g x x x +<-- (2)1°当1x >时,()0>g x ,()()0h x g x ≥>,所以()h x 在(1,)+∞无零点; 2°当1x =时,(1)(1)0g f ==,则(1)0h =,所以1x =是()h x 的零点; 3°当01x <<时,()0<g x ,所以()g x 在(0,1)上无零点,()h x 在(0,)+∞上的零点个数即为()f x 在(0,)+∞上的零点个数.因为1()f x a x'=- ①若1a ≤时,1()0f x a x'=->,所以()f x 在(0,1)上单调递增,()(1)0f x f <=,此时()f x 无零点; ②若1a >时,则101a<<,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,1a ⎛⎫⎪⎝⎭上单调递减,由1()1ln max f x f a a a ⎛⎫==-- ⎪⎝⎭,令()1ln a a a ϕ=--,则1()10a aϕ'=->,当1a >时,1()1ln (1)0f a a a a ϕϕ⎛⎫==-->= ⎪⎝⎭,由1ln a a ->,可得1a e a a >+>,则10ae a-<<,又因为()()10a a f e a a e --=-+-<.由零点存在性定理可知,()f x 在(0,1)上存在唯一的零点0x ,且01,a x e a -⎛⎫∈ ⎪⎝⎭.综上:1a >时,()h x 有两个零点;1a ≤时,()h x 仅有一个零点.【点睛】本题主要考查利用导数证明不等式和求函数的最值,考查利用导数研究函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.(湖南省常德市部分重点中学2019-2020学年高三上学期10月联考文科数学试题)已知函数()2,()ln x f x e ax a g x x =--=.(1)讨论()f x 的单调性;(2)用max{,}m n 表示,m n 中的最大值,设函数()max{(),()}(0)h x f x g x x =>,讨论()h x 零点的个数. 【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在区间()(),ln 2a -∞上单调递减,在()()ln 2,a +∞单调递增;(2)当12a e <()h x 在()0,+∞上无零点;当12a e =1a ≥时,()h x 在()0,+∞1ea <<时,()h x 在()0,+∞上有两个零点. 【解析】 【分析】(1)对参数a 进行分类讨论,即可由导数的正负判断函数的单调性;(2)根据()h x 的定义,利用导数分区间讨论()h x 在()()0,1,1,+∞上的零点分布情况. 【详解】(1)()2x f x e ax a =--,故可得()2xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,故此时()f x 在R 上单调递增; 当0a >时,令()0f x '=,解得()ln 2x a =,故容易得()f x 在区间()(),ln 2a -∞上单调递减,在()()ln 2,a +∞单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在区间()(),ln 2a -∞上单调递减,在()()ln 2,a +∞单调递增. (2)①当1x >时,()0g x lnx =>,()()(){}()max ,0h x f x g x g x =≥>, 显然此时()h x 没有零点; ②当1x =时,()13f e a =-, 若3ea ≥,()()(){}()1max 1,110h f g g ===,故1x =是()h x 的零点; 若3ea <,()()(){}()1max 1,110h f g f ==>,故1x =不是()h x 的零点; ③当()0,1x ∈时,()0g x lnx =<,所以()h x 在()0,1上的零点个数, 即为()f x 在()0,1上的零点个数.()f x 在()0,1上的零点个数,等价于21x e a x =+在()0,1上实数根的个数. 令()(),0,121xe m x x x =∈+,故可得()()()221 21xx e m x x '-=+,故容易得()m x 在区间10,?2⎛⎫ ⎪⎝⎭单调递减,在1,12⎛⎫⎪⎝⎭单调递增.且()()1101,,1223e m m e m ⎛⎫=== ⎪⎝⎭. 故当12a e <1a >时,()fx 在()0,1没有零点; 当12a e =13e a ≤<,()fx 在()0,1有一个零点;123ee a <<时,()fx 在()0,1有2个零点.综上所述:当12a e <()h x 在()0,+∞上无零点;当12a e =1a ≥时,()h x 在()0,+∞上有一个零点;1ea <<时,()h x 在()0,+∞上有两个零点. 【点睛】本题考查利用导数研究含参函数的单调性,以及求解函数零点的个数,属综合困难题.4.(广西玉林市2022届高三上学期教学质量监测数学(理)试题)已知函数()2ln 1f x x ax =-+. (1)若()f x 存在零点,求实数a 的取值范围;(2)若0x 是()f x 的零点,求证:00220032e 1x x a x x --≤≤. 【答案】(1)2e ⎛-∞ ⎝⎦; (2)证明见解析. 【解析】 【分析】(1)分离参数得2ln 1x a x +=,构造函数()2ln 1x g x x+=利用导数研究其单调性和值域,结合题意,则问题得解;(2)根据(1)中所求,将所证不等式转化为证明()000022000322ln 1e 10x x x x x x x -+-≤<>,分别构造函数,利用导数研究函数单调性,进而证明不等式恒成立即可. (1)令()2ln 10f x x ax =-+=变形得2ln 1x a x+=, 令()2ln 1x g x x +=,问题转化成y a =与()g x 有交点. 令()212ln 0xg x x -'==,解得e x 则()g x 在(e x ∈上单调递增,在)e,x ∈+∞上单调递减,且()0lim x g x +→=-∞,()lim 0x g x →+∞= 故()(max e eg x g ==所以ea ≤故实数a 的取值范围2e ,e ⎛-∞ ⎝⎦; (2)证明:由题意可得,()0002ln 10f x x ax =-+=,得002ln 1x a x +=, 要证00220032e 1x x a x x --≤<,即证()000022000322ln 1e 10x x x x x x x -+-≤<>. .先证20000322ln 1x x x x -+≤,只需让001ln 1x x +≥, 令()1ln t x x x =+,()21x t x x -'=. 所以()t x 在()0,1∈x 上单调递减,在()1,x ∈+∞上单调递增, 故()()min 11t x t ==,所以()1t x ≥,左边证毕.再证002002ln 1e 1x x x x +-<,即证:000e 12ln 1x x x x x -+-<- 令()2ln 1h x x x =+-,()2xh x x-'=, 所以()h x 在()0,2x ∈上单调递增,在()2,x ∈+∞上单调递减, 故()()max 22ln 21h x h ==-;令()e 1x k x x x -=-,()()()221e 1e e 11x x x x x x k x x x ----+'=-=, 令()e 1xm x x =--,'()m x e 1x =-,令'()m x 0=,解得0x =,故()m x 在()0,+∞单调递增,()()00m x m >=. 即e 10x x -->在()0,+∞恒成立.令()0k x '=,解得1x =,所以()k x 在()0,1∈x 上单调递减,在()1,x ∈+∞上单调递增, 故()()min 1e 2k x k ==-.因为e 22ln21->-,所以()()h x k x <,即e 12ln 1x x x x x-+-<-,故000e 12ln 1x x x -+<,右边证毕. 综上所述:00220032e 1x x a x x --≤≤. 【点睛】本题考察利用导数研究函数单调性和恒成立问题;其中第一问中,对函数进行分离参数是解决问题的关键;第二问中,在证明002002ln 1e 1x x x x +-<时,将其转化为证明000e 12ln 1x x x x x -+-<-,是较好的一种处理手段;本题综合考察学生的计算能力,对导数的综合使用能力,属压轴题.5.(江西省景德镇市2022届高三第二次质检数学(文)试题)已知函数24e ()ln 214e xxf x x =+++.(1)求函数()y f x =在(0,(0))f 处切线的斜率;(2)求证:()y f x =有且只有一个零点0x ,且满足0112e e 2x<<. 参考数据:ln20.693≈ 【答案】(1)1325(2)见解析 【解析】 【分析】(1)求出函数的导函数,再根据导数的几何意义即可得出答案;(2)要证0112e e 2x<<,只需证明011ln ln 24x e <<即可,利用导数判断函数的单调性,再根据零点的存在性定理即可得出结论. (1)解:由24e ()ln 214exxf x x =+++, 得()()()2243222224e 14e 4e e 16e 16e 8e 4e 1()114e148e x x x xx x x x x x f x +--++'++⋅++==,则()16168411302525f -+++'==,即函数()y f x =在(0,(0))f 处切线的斜率为1325; (2)证明:由(1)得:()4322216e 16e 8e 4e 1()14e x x x x x f x -++++'=,令()e ,0x t t =>,()4321616841,(0)g t t t t t t =-+++>, 则()326448164g t t t t '=-++,令()()326448164,0h t t t t t =-++>,则()()2161261h t t t '=-+,因为36480-<,所以212610t t -+>在()0,t ∈+∞上恒成立, 所以()0h t '>,所以函数()h t 在()0,∞+上递增, 所以()()040g t g ''>=>, 所以函数()g t 在()0,∞+上递增, 所以()()010g t g >=>, 即43216e 16e 8e 4e 10x x x x -+++>, 所以()4322216e 16e 8e 4e 1()014e x x x x x f x -++=++'>,所以函数()f x 是R 上的增函数, 又()1ln 2e1ln2e222222e 14e2eeln 2ln 21ln 2101e 1e 1114e11ln ln2e e e2f =⎛⎫=--++--++=-+ +⎪⎝=⎭<+++, 1ln41ln 424e 14ln 2ln 2ln 20111ln ln 454e 4114f ⎝++=-+=- +⎛=⎪+⎫>+⎭, 所以()y f x =有且只有一个零点0x ,且011lnln 24x e <<, 所以()y f x =有且只有一个零点0x ,且满足0112e e2x<<. 【点睛】本题考查了导数的几何意义,考查了利用导数求函数的单调区间,考查了利用导数解决跟零点有关的问题,及不等式的证明问题,考查了数据分析能力,有一定的难度.6.(北京市密云区2022届高三上学期期末考试数学试题)已知函数()e x f x x k =+,R k ∈.(1)求曲线()y f x =在点()()2,2M f 处的切线方程; (2)求函数()f x 的单调区间;(3)若函数()e x f x x k =+有两个不同的零点,记较大的零点为0x ,证明:当()01,2x ∈时,()2201e e 0k x k +->.【答案】(1)()221e e y k x k =+-;(2)答案见解析; (3)证明见解析. 【解析】 【分析】(1)求出()2f 、()2f ',利用导数的几何意义可求得所求切线的方程;(2)求得()1e xf x k '=+,分0k ≥、0k <两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间; (3)分析可得00ex x k =-,将所证不等式等价变形为020e 1x x ->-对任意的()01,2x ∈恒成立,构造函数()2e 1x g x x -=-+,利用导数分析函数()g x 在()1,2上的单调性,可得出()0g x >,即可证得结论成立.(1)解:因为()e x f x x k =+,则()1e x f x k '=+,所以,()222e f k =+,()221e f k '=+,因此,曲线()y f x =在点()()2,2M f 处的切线方程()()()222e 1e2y k k x -+=+-,即()221e e y k x k =+-.(2)解:函数()e x f x x k =+的定义域为R ,且()1e xf x k '=+.当0k ≥时,对任意的R x ∈,()0f x '>,此时函数()f x 的单调递增区间为(),-∞+∞,无递减区间; 当0k <时,由()0f x '=,可得()ln x k =--.当()ln x k <--时,()0f x '>;当()ln x k >--时,()0f x '<.此时,函数()f x 的单调递增区间为()(),ln k -∞--,单调递减区间为()()ln ,k --+∞. 综上所述,当0k ≥时,函数()f x 的单调递增区间为(),-∞+∞,无递减区间;当0k <时,函数()f x 的单调递增区间为()(),ln k -∞--,单调递减区间为()()ln ,k --+∞. (3)证明:由()0e xf x x k =+=可得e xx k =-, 因为函数()e xf x x k =+有两个不同的零点,且较大的零点为0x ,则0e x x k =-, 要证()()()0002220000211e e e 10ex x x k x k x k x x --+-=+-=->对任意的()01,2x ∈恒成立, 即证020e1x x ->-对任意的()01,2x ∈恒成立,构造函数()2e 1x g x x -=-+,其中()1,2x ∈,则()2e 10x g x -'=-<,所以,函数()g x 在()1,2上单调递减,所以,()()20g x g >=, 因为()01,2x ∈,则()()020g x g >=,即020e 1x x ->-,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.7.(辽宁省大连市2021-2022学年高三上学期期末数学试题)已知函数()()e ,ln x f x ax g x ax x =-=-,其中a ∈R .(1)若0x >时,()()0f x g x ⋅>恒成立,求实数a 的取值范围;(2)若函数()()()F x f x g x =+的最小值为m ,试证明:函数()e ln x m G x x -=-有且仅有一个零点. 【答案】(1)1e ea << (2)证明见解析 【解析】 【分析】(1)分析可得e ln x ax x >>,分别求得e x y =与y ax =相切时和ln y x =与y ax =相切时,a 的值,综合分析,即可得答案.(2)利用导数,求得()F x 的单调区间和极值,即可得m 的表达式和范围,()G x 的零点等价于求()e e ln x m H x x =-的零点,利用导数,求得()H x 的单调区间和极值,计算化简,可得000011e ln ln x m x x x =-=+,分析可得101x x =,分析即可得证. (1)由题意得()()e ln 0xax ax x -->,因为当0x >时e ln x x >,所以原不等式等价于e ln x ax x >>, 当e x y =与y ax =相切时,设切点00(,)x y , 则e x y '=,所以切线的斜率0e x k a ==,又00e xy =,00y ax =,联立解得01x =,所以切线斜率e a =,同理当ln y x =与y ax =相切时,可求得切线斜率1ea =, 因为e ln x ax x >>, 所以1e ea << (2)()()()e ln x F x f x g x x =+=-,则1()e x F x x '=-,21()e 0xF x x'+'=>, 所以()F x '在(0,)+∞上为增函数, 又1(1)e 10,e 202F F '⎛⎫=->=< ⎪'⎝⎭,所以()F x '在(0,)+∞上存在唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭,此时0001()e 0x F x x '=-=,即001e xx =,当()00,x x ∈时,()0F x '<,则()F x 为减函数, 当()0,x x ∈+∞时,()0F x '>,则()F x 为增函数,所以()F x 的最小值为000000011()e ln e ln2e x x xx m F x x x ==-=-=+>, 令()eln 0x mG x x -=-=,整理得e e ln 0xm x -=,令()e e ln xmH x x =-,则e ()e mxH x x='-,在(0,)+∞上为增函数,因为2m >,所以e 1(1)e e0,()e e 10m mmm H H m m m ⎛⎫=-=-=- ⎝'⎪⎭',所以()H x '在(0,)+∞上存在唯一零点1x ,且()11,x m ∈,111e ()e 0mx H x x -'==当()10,x x ∈时,()0H x '<,()H x 为减函数, 当()1,x x ∈+∞时,()0H x '>,()H x 为增函数,所以111()e e ln x mH x x =-,因为11e e mx x =,所以11ln x m x =-,即11ln m x x =+,又000011e ln ln x m x x x =-=+,所以110011ln ln x x x x +=+, 又函数ln y x x =+在(0,)+∞上为增函数, 所以101x x =, 所以0000001111111100001111()e e ln e e ln e e ln e e ln x x x x x x x m m H x x x x x x ⎛⎫+ ⎪⎝⎭=-=-=-⋅=-⋅⋅=()0011000000111e ln e ln x x x x x x x x ⎛⎫⋅⋅-=⋅⋅+ ⎪⎝⎭因为00ln 0x x +=,所以1()0H x =,则1()0H x ≥在(0,)+∞上恒成立, 所以()0H x =有且仅有一个根1x x =, 所以函数()e ln x mG x x -=-有且仅有一个零点.【点睛】解题的关键是熟练掌握利用导数求函数单调区间、极(最)值的方法,并灵活应用,难点在于,需将()G x 求零点问题,转化为求()e e ln x m H x x =-的零点问题,进而可求得m 的表达式,考查计算化简,分析求值的能力,属中档题.8.(广东省揭阳市2022届高三上学期期末数学试题)已知函数()e ln .xf x x ax a x a =--+(1)若e a =,判断函数()f x 的单调性,并求出函数()f x 的最值. (2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)在()0,1上单调递减,在()1,+∞上单调递增,最小值为()1e f =,无最大值(2)()2e ,+∞【解析】 【分析】(1)把e a =的值代入函数()f x 的解析式,从而根据导数判断函数的单调性,进而可求函数()f x 的最值; (2)利用导数判断函数的单调性,根据单调性可求函数的最小值;根据题意列出满足条件的a 的不等式,从而求出a 的范围,然后验证即可. (1)易知函数的定义域为()0,∞+,当e a =时,()e e eln e xf x x x x =--+,所以()()()e e 1e e 1e xx f x x x x x ⎛⎫=+--=+- ⎝'⎪⎭, 当()0,1x ∈时,()0f x '<;当()1,x ∈+∞,()0f x '>; 所以()f x 在()0,1上单调递减,在()1,+∞上单调递增;由此可得,()f x 的最小值为()1e e eln1e e f =--+=,无最大值. (2)因为()e ln xf x x ax a x a =--+,所以()()()1e 1e x x a a f x x a x x x ⎛⎫=+--=+- ⎝'⎪⎭. 当0a ≤时,()0f x '>在()0,∞+上恒成立,所以()f x 在()0,∞+上单调递增, 故可得函数()f x 至多只有一个零点,不符合题意;当0a >时,令e 0xax-=,设该方程的解为0x , 则在()00,x 上,()0f x '<;在()0,x +∞上,()0f x '>, 所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增;为了满足()f x 有两个零点,则有()00000e ln 0xf x x ax a x a =--+<①因为0x 是方程e 0xax-=的解,所以00e x x a =,两边取对数可得00ln ln x x a +=②, 将②式代入①式可得()()02ln 0f x a a =-<,所以a 的取值范围为()2e ,a ∞∈+.且当()2e ,a ∞∈+时,由②式得()01,1e e 0xf a a >=-+=>,所以()f x 在()00,x 上仅有1个零点;当x →+∞时,()f x →+∞,故可得()f x 在()0,x +∞上仅有1个零点;综上,若函数()f x 存在两个零点,则实数a 的取值范围是()2e ,+∞.。

专题11 利用导数解决零点问题(解析版)

专题11 利用导数解决零点问题(解析版)

专题11 利用导数解决零点问题1.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2 所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a xf x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <= 故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '> 所以()f x 在(0,)+∞上单调递增,()(0)0f x f >= 故()f x 在(0,)+∞上没有零点,不合题意 3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增 (0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减 当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<= 当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增 1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '= 当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '= 当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减 有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点 即()f x 在(1,0)-上有唯一零点 所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-2.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x < 因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x xx x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增 即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 3.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111xf x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-;(2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1>ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞.4.(2022·全国·模拟预测)已知函数()()ln 13f x a x x =+-.(1)讨论函数()f x 的单调性;(2)证明:当1a =时,方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)先求出函数的定义域,再求出()31af x x '=-+,然后分0a >,0a ≤可得出函数的单调性. (2)设()()ln 1sin g x x x =+-,将问题转化为函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点,又当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,求出其导数,由零点存在原理即可证明. (1)函数()()ln 13f x a x x =+-的定义域是()1,-+∞,()31af x x '=-+. 当0a >时,令()0f x '<,得33a x ->;令()0f x '>,得313a x --<<, 故()f x 在31,3a -⎛⎫- ⎪⎝⎭上单调递增,在3,3a -⎛⎫+∞ ⎪⎝⎭上单调递减;当0a ≤时,()0f x '<恒成立,故()f x 在()1,-+∞上单调递减. (2)当1a =时,方程()sin 3f x x x =-即为()ln 13sin 3x x x x +-=-,即()ln 1sin 0x x +-=. 令()()ln 1sin g x x x =+-,则()1cos 1g x x x '=-+, 则“方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解”等价于“函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点”.当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以()0g x >在()e 1,-+∞上恒成立, 所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点.因为e 1π-<,所以当,e 12x π⎛⎤∈- ⎥⎝⎦时,cos 0x <,101x >+, 所以()0g x '>在,e 12π⎛⎤- ⎥⎝⎦上恒成立.所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上单调递增,又ln 1sin ln 1102222g ππππ⎛⎫⎛⎫⎛⎫=+-=+-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()e 11sin e 1g -=--,所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,即()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.故方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.5.(2022·湖北·大冶市第一中学模拟预测)已知函数()e sin xf x x ax =+,其中e 是自然对数的底数.(1)若1a =时,试判断f (x )在区间(2π-,0)的单调性,并予以证明;(2)从下面两个条件中任意选一个,试求实数a 的取值范围. ①函数()f x 在区间[0,2π]上有且只有2个零点; ①当2,0x π⎡⎤∈⎢⎥⎣⎦时,()2f x x ≥.【答案】(1)f (x )在(π2-,0)上单调递增,证明见解析;(2)选择①:π22e 1πa -≤<-;选择①:1a ≥-.【解析】 【分析】(1)求导,通过判定导函数在(π2-,0)上的正负确定单调性; (2)选择①:易得()00f =,则因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点,求导通过讨论找出符合条件的a 的取值范围;选择①:构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦,此时()00m =,可通过端点效应或隐零点等思路求a的取值范围. (1)当1a =时,()e sin ,(,0)2xf x x ax x π=+∈-()πe sin e cos 1sin 14x x xf x x x x ⎛⎫=++=++ ⎪⎝⎭'.当π,02x ⎛⎫∈- ⎪⎝⎭时,πππ,444x ⎛⎫+∈- ⎪⎝⎭,所以sin 1144x x ππ⎛⎫⎛⎫<+<-+< ⎪ ⎪⎝⎭⎝⎭, 又0e 1x <<,πsin 14xx ⎛⎫+>- ⎪⎝⎭,从而()0f x '>,所以,f (x )在(π2-,0)上单调递增. (2) 选择①,由函数()e sin 0π,2xf x x ax x ⎡⎤=+∈⎢⎥⎣⎦,,可知()00f =因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点.()e sin e cos x x f x x x a +'=+,令()e sin e cos x x h x x x a =++, 则()2e cos 0xh x x '=≥在[0.π2]上恒成立.即()f x '在[0,π2]上单调递增,()2ππ01e 2f a f a ⎛'⎫=+=⎪⎭'+ ⎝,,当1a ≥-时,()()00f x f '≥'≥,f (x )在[0.π2]上单调递增.则f (x )在(0,π2]上无零点,不合题意,舍去,当π2e a ≤-时,()0π2f x f ⎛⎫'≤'≤ ⎪⎝⎭,()f x 在[0,π2]上单调递减,则()f x 在(0,π2]上无零点,不合题意,舍去,当2e 1a π-<<-时,π2(0)10,()e 2π0f a f a '=+<'=+≥则()f x '在(0,π2)上只有1个零点,设为0x .且当0(0,)x x ∈时,()0f x <′;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x >′ 所以当()00x x ∈,时,()f x 在(0,0x )上单调递减,在(x0,π2)上单调递增,又()π200e ππ22f f a ⎛⎫==+ ⎪⎝⎭,因此只需20π22πe f a ⎛⎫=+≥ ⎪⎝⎭即可,即π22e 1πa -≤<-,综上所述:2π2e 1πα-≤<-选择①,构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦此时()2π2e π244π00x m m a ⎛⎫==+- ⎪⎝⎭,则2π()e sin e cos 2(0)π1,(e 2π)xxm x x x a x m a m a'=++-'=+'=-+,易知(1)π)(2m m '>'令()e sin e cos 2,()2e cos 2,(0)0,()2π2x x xt x x x a x t x x t t =++-'=-'='=-令2π()2e cos 2,()2e (cos sin ),(0)2,()2πe 2xxp x x p x x x p p =-=-'='=-', 令()2e (cos sin )x q x x x =-,则()4e sin 0x q x x '=-≤ 所以()2e (cos sin )x q x x x =-在(0,π2)上单调递减.又π20π(0)(0)20,()()2e 22πq p q p ='=>='=-<在(0,π2)上存在唯一实数1x 使得()10q x =,且满足当()10,x x ∈时,()0q x >当1π(,)2x x ∈时.()0q x <即p (x )在(0,x 1)上单调递增,在(x 1,π2)上单调递减.又()()ππ0002022p t p t ⎛⎫⎛⎫==-=-< ⎪'' ⎪⎝⎭⎝⎭,,所以()2e cos 2x p x x =-在1π(,)2x 上存在一实数2x 使得()20p x =,且满足当2(0,)x x ∈时,()0p x >;当2π()2x x ∈⋅时,()0p x <即()()t x m x ='在(0,x2)上单调递增,在(2x ,2π)上单调递减, 当()010m a ='+≥时,即()10a m x ≥-'≥,,函数()2e sin x m x x ax x =+-在[0,π2]上单调递增,又()00m =,因此()2e sin 0x m x x ax x =+-≥恒成立,符合题意,当()010m a '=+<,即1a <-,在π20,x ⎛⎫∈ ⎪⎝⎭上必存在实数3x ,使得当()30,x x ∈时,()0m x '<,又()00m =,因此在()30,x x ∈上存在实数()0m x <,不合题意,舍去 综上所述1a ≥-.6.(2022·浙江湖州·模拟预测)已知函数12()e x f x =(e 为自然对数的底数). (1)令1()||()()g x a x f x f x =--,若不等式()0g x ≤恒成立,求实数a 的取值范围; (2)令3()()x xf x m ϕ=-,若函数()ϕx 有两不同零点()1212,x x x x <. ①求实数m 的取值范围;①证明:21e e 21x x m -<+. 【答案】(1)(,1]-∞;(2)①2,03e m ⎛⎫∈- ⎪⎝⎭;①证明见解析.【解析】 【分析】(1)根据()g x 为偶函数,将问题转化为0x ≥时()0g x ≤恒成立,根据(0)0g =及参变分离求0x >有1122ee x x a x--≤恒成立,求参数范围;(2)①利用导数研究()ϕx 的单调性,及区间值域情况,进而判断()0x ϕ=有两不同解时m 的范围即可;①由(1)知:0x <时1122e e x x x -≥-且120x x <<,应用放缩法有2()e e x x x ϕ≥-,构造2()e e x x F x =-研究极值并判断()F x m =的两根与12,x x 大小关系得到3214e e e e x x x x -<-即可证结论. (1)由题设,1122()||e ex x g x a x -=--,则()()g x g x =-,所以()g x 为偶函数,故只需0x ≥时,()0g x ≤恒成立,而(0)0g =满足, 所以0x >有1122ee x x a x--≤恒成立,令02t x =>,则e e 2t ta t--≤,若()e e 2t t h t t -=--,则()e e 220t t h t -'=+-≥=,仅当0=t 时等号成立, 所以()0h t '>,即()h t 在(0,)+∞上递增,则()(0)0h t h >=,即e e 2t t t -->, 所以,在(0,)+∞上e e 12t tt-->,则1a ≤, 综上:a 的范围为(,1]-∞. (2)①由题设,323()1e 2x x x ϕ⎛⎫=+ ⎪'⎝⎭,若()0x ϕ'>得:23x >-,故()ϕx 在2,3⎛⎫-∞- ⎪⎝⎭单调减,在2,3⎛⎫-+∞ ⎪⎝⎭单调增,且x 趋向负无穷()ϕx 趋向于0,x 趋向正无穷()ϕx 趋向于正无穷,又2233e ϕ⎛⎫-=- ⎪⎝⎭,()00ϕ=,则0x <时,()0x ϕ<;0x >时,()0x ϕ>,要使()0x ϕ=有两个不同解12,x x 且120x x <<,则2,03e m ⎛⎫∈- ⎪⎝⎭;①由(1)知:0x <时1122e ex x x -≥-,则1132222()e e e e e x x x x xx ϕ-⎛⎫≥-=- ⎪⎝⎭;记2()e e x x F x =-且0x <,则(()e e 1)2x x F x '=-,所以(,ln 2)-∞-上()0F x '<,(ln 2,0)-上()0F x '>,故()F x 在(,ln 2)-∞-上递减,(ln 2,0)-上递增,且12()(ln 2),043e F x F ⎛⎫≥-=-∈- ⎪⎝⎭,所以()F x m =也有两根,记为34x x <,又(,0)-∞上)(()x F x ϕ≥,则31240x x x x <<<<, 令e x t =,则34e ,e xx 为20t t m --=的两根,故34e e 1x x +=,34e e x x m =-,所以34e e x x -=3124e e e e x x x x <<<,所以3214(41)1e e e e 212x x x xm m ++-<-==+. 7.(2022·湖北·模拟预测)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性; (2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.【答案】(1)单调性见解析 (2)(][),22,λ∈-∞-+∞【解析】 【分析】(1)求导可得()()()21x a x f x x +-'=,再根据a -与0,1的关系分类讨论即可;(2)由题()ln g x a x x =+,,设()120,1x t x =∈根据零点关系可得21ln x x a t -=,再代入1222x x g λλ+⎛⎫' ⎪+⎝⎭化简可得()()21ln 02t t t λλ+-+<+恒成立,设()()()21ln 2t ht t t λλ+-=++,再求导分析单调性与最值即可(1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x+--+-'=-+-== ①)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x > ①)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立 ①)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a >- 综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增 1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈ ①212112ln ln ln x x x xa x x t--==-()1a g x x'=+ ①122112122221122ln 2x x x x g a x x t x x λλλλλλ+-++⎛⎫'=+=⋅+ ⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,①ln 0t < ①()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t t t λλ+-=++,①()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ ①)24λ≥时,204t λ-<,①()0h t '>,①()h t 在()0,1上单调递增 ①()()10h t h <=恒成立, ①(][),22,λ∈-∞-+∞合题①)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,①()0h t '>,①()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<, ①()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减①2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了双零点与恒成立问题的综合,需要根据题意消去参数a ,令()120,1x t x =∈,再化简所求式关于t 的解析式,再构造函数分析最值.属于难题 8.(2022·浙江绍兴·模拟预测)设a 为实数,函数()e ln 1=++x f x a x x . (1)当1a e=-时,求函数()f x 的单调区间;(2)判断函数()f x 零点的个数.【答案】(1)减区间为()0,∞+,无增区间. (2)当0a ≥,函数()f x 在(0,)+∞上没有零点;当210e a -≤<,函数()f x 在(0,)+∞上有1个零点;当21e a <-,函数()f x 在(0,)+∞上有2个零点. 【解析】 【分析】(1)利用二次求导研究函数()f x 的单调性,进而得出结果; (2)利用分类讨论的思想,根据函数()f x 与()()f x g x x=具有相同的零点,结合导数分别研究当0a ≥、210e a -≤<、21e a <-时()g x 的单调性,利用零点的存在性定理即可判断函数()g x 的零点个数,进而得出结果. (1)函数()f x 的定义域为(0,)+∞, 当1a e=-时,1()e ln 1e xf x x x =-++,则1()e ln 1x f x x -'=-++,且()01f '=, 有1111e ()ex x x f x x x---''=-+=,令()01f x x ''=⇒=, 所以当(0,1)x ∈时()0f x ''>,则()'f x 单调递增, 当(1,)x ∈+∞时()0f x ''<,则()'f x 单调递减, 所以max ()(1)0f x f ''==,即()0f x '≤,则函数()f x 在(0,)+∞上单调递减, 即函数()f x 的减区间为(0,)+∞,无增区间; (2)由(1)知当1a e=-时函数()f x 在(0,)+∞上单调递减,又(1)0f =,此时函数()f x 只有1个零点; 因为函数()f x 的定义域为(0,)+∞,所以()f x 与()f x x具有相同的零点, 令()e 1()ln (0)x f x a g x x x x x x ==++>, 则222(1)e 11(1)(e 1)()x x a x x a g x x x x x --+'=+-=, 当0a ≥时,e 10x a +>,令()01g x x '=⇒=,则函数()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以min ()(1)e 10g x g a ==+>,此时函数()g x 无零点,即函数()f x 无零点;当0a <时,令()01g x x '=⇒=或1ln()x a=-,若10e a -<<,则11ln()a<-,列表如下:当211e ea -≤≤-时,222e 2e 222e 4222e e e (e )2e 2e e 2e 0e ea g ------=++<++=-++<, 当210e a -<<即21e a ->时,131e ()a a->-,1121111()e ln()[e ln()1]aa g a a a a a a a a---=-+--=---+3111[()(1)1]0a a a a a <-----+<,又(1)0g >,此时函数()g x 有1个零点,则函数()f x 有1个零点; 若1e <-a ,则11ln()a>-,列表如下:所以ln()min 1e 111()(ln())ln ln()ln ln()ln1011ln()ln()aa g x g a a a a a -=-=+-+=-<=--, 又(1)0g >,2(e )0g <,则此时函数()g x 有2个零点,即函数()f x 有2个零点; 综上,当0a ≥时,函数()f x 在(0,)+∞上没有零点, 当210ea -≤<时,函数()f x 在(0,)+∞上有1个零点, 当21e a <-时,函数()f x 在(0,)+∞上有2个零点.【点睛】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图像与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图像的交点问题.9.(2022·河南·开封市东信学校模拟预测(理))已知函数()ln 12a af x x x =+-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)讨论函数()f x零点的个数.【答案】(1)当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭(2)当4a ≤,函数()f x 有且仅有一个零点;当4a >时,函数()f x 有且仅有3个零点 【解析】 【分析】(1)求导,再分0a <,04a ≤≤和4a >分类讨论即可;(2)根据单调性及零点存在性定理分析即可. (1)函数()f x 的定义域为(0,)+∞,2221(2)1()(1)(1)a x a x f x x x x x +-+'=-=++,在一元二次方程2(2)10x a x +-+=中,22Δ(2)44(4)a a a a a =--=-=-, ①当0a <时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当04a ≤≤时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当4a >时,一元二次方程2(2)10x a x +-+=有两个不相等的根, 分别记为()1221,x x x x >,有122x x a +=-,1210x x =>,可得210x x >>, 有12x x ==可得此时函数()f x 的增区间为()()120,,,x x +∞减区间为()12,x x , 综上可知,当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭; (2)由(1)可知:①当4a ≤时,函数()f x 单调递增,又由(1)0f =,可得此时函数只有一个零点为1x =; ①当4a >时,由122110,x x x x =>>,可得1201x x <<<,又由(1)0f =,由函数的单调性可知()()12(1)0,(1)0f x f f x f >=<=, 当01x <<且20e ax -<<时,可得2ln ln e ax -<,有ln 02ax +<, 可得()ln ln 022a af x x a x <+-=+<, 当2e ax >时,2()ln ln e 02222aa a a af x x >->-=-=可知此时函数()f x 有且仅有3个零点,由上知,当4a ≤时,函数()f x 有且仅有一个零点; 当4a >时,函数()f x 有且仅有3个零点.10.(2022·贵州·贵阳一中模拟预测(文))已知函数()323.f x ax x a b =-++(1)讨论()f x 的单调性;(2)当()f x 有三个零点时a 的取值范围恰好是()()()3,22,00,1,--⋃-⋃求b 的值. 【答案】(1)答案见解析 (2)3b = 【解析】 【分析】(1)求函数()f x 的导函数()'f x ,讨论a ,并解不等式()0f x '>,()0f x '<可得函数的单调区间;(2)由(1)结合零点存在性定理可求b . (1)()f x 的定义域为R ,()()23632,f x ax x x ax =-=-'若0a =,则()0600f x x x '>⇒->⇒<,()00f x x <⇒>'∴ ()f x 在(),0∞-单调递增,()0,∞+单调递减,若0a >,则()00'>⇒<f x x 或2x a>, ()200f x x a>⇒<<', ()f x ∴在(),0∞-单调递增,20,a ⎛⎫ ⎪⎝⎭单调递减,2,a ⎛⎫+∞ ⎪⎝⎭单调递增,若0a <,则()200f x x a'>⇒<< ()20f x x a>⇒<'或0x >, ()f x ∴在2,a ⎛⎫-∞ ⎪⎝⎭单调递减,2,0a ⎛⎫⎪⎝⎭单调递增,()0,∞+单调递减.(2)可知()f x 要有三个零点,则0a ≠, 且2(0)0f f a ⎛⎫< ⎪⎝⎭由题意也即是()200f f a ⎛⎫< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃,也就是关于a 的不等式()()()32224400a b a ba a b a b a a ++-⎛⎫++-<⇒< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃, 令()()()32240a b a ba h a a+++=<,时()()()()()1114130h b b b b =++-=+-=, 所以有1b =-或3b =, 当3b =时,()()()()()323222233434400a a a a a a a h a aa++-+-+-=<⇒<,()()()2231440a a a a a+-++<的解是()()()3,22,00,1--⋃-⋃,满足条件,当1b =-时,()()()322140a a a h a a---=<,当1a =-时,()1120h -=>,不满足条件, 故1b ≠-,综合上述3b =.11.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数()()e 12()exx xf x a a =+--∈R . (1)若()e ()=⋅x g x f x ,讨论()g x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)答案见解析;(2)()0,1. 【解析】 【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形,根据导数与0的关系可得单调性;(2)函数有两个零点即()e ()=⋅x g x f x 有两个零点,根据(1)中的单调性结合零点存在定理即可得结果. (1)由题意知,()()()e ()e e 12e e 12e e x x x x x xx x g x f x a a x ⎡⎤=⋅=⋅+--=+--⎢⎥⎣⎦,()g x 的定义域为(,)-∞+∞,()e (e 1)e e 2e 1(2e 1)(e 1)x x x x x x x g x a a a '=++⋅--=+-.若0a ≤,则()0g x '<,所以()g x 在(,)-∞+∞上单调递减; 若0a >,令()0g x '=,解得ln x a =-.当(,ln )x a ∈-∞-时,()0g x '<;当(ln ,)x a ∈-+∞时,()0g x '>, 所以()g x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增. (2)因为e 0x >,所以()f x 有两个零点,即()e ()=⋅x g x f x 有两个零点. 若0a ≤,由(1)知,()g x 至多有一个零点.若0a >,由(1)知,当ln x a =-时,()g x 取得最小值,最小值为1(ln )1ln g a a a-=-+. ①当1a =时,由于(ln )0g a -=,故()g x 只有一个零点: ①当(1,)∈+∞a 时,由于11ln 0a a-+>,即(ln )0g a ->,故()g x 没有零点; ①当(0,1)a ∈时,11ln 0a a-+<,即(ln )0g a -<. 又2222(2)e (e 1)2e 22e 20g a -----=+-+>-+>,故()g x 在(,ln )a -∞-上有一个零点.存在03ln 1,x a ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭,则0000000000()e (e 1)2e e (e 2)e 0x x x x x xg x a x a a x x =+--=+-->->.又3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()g x 在(ln ,)a -+∞上有一个零点.综上,实数a 的取值范围为(0,1).12.(2022·青海·大通回族土族自治县教学研究室三模(理))已知函数()ln 1f x ax x =++. (1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围; (2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围. 【答案】(1)0a ≥或1a =- (2)(,2]-∞ 【解析】 【分析】(1)求导1()f x a x'=+,0x >,分0a ≥和0a <讨论求解; (2)对任意的0x >,2()e x f x x ≤恒成立,转化为2ln 1e xx a x+≤-在(0,)+∞上恒成立求解. (1)解:1()f x a x'=+,0x >, 当0a ≥时,()0f x '>恒成立,所以()f x 在(0,)+∞上单调递增.又()11ee 11a af a a ----=--+()1e 10a a --=-≤,(1)10f a =+>, 所以此时()f x 在(0,)+∞上仅有一个零点,符合题意; 当0a <时,令()0f x '>,解得10x a <<-;令()0f x '<,解得1x a>-, 所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.要使()f x 在(0,)+∞上仅有一个零点,则必有10f a ⎛⎫-= ⎪⎝⎭,解得1a =-.综上,当0a ≥或1a =-时,()f x 在(0,)+∞上仅有一个零点. (2)因为()ln 1f x ax x =++,所以对任意的0x >,2()e x f x x ≤恒成立,等价于2ln 1e xx a x+≤-在(0,)+∞上恒成立. 令2ln 1()e (0)xx m x x x+=->,则只需min ()a m x ≤即可, 则2222e ln ()+'=x x xm x x ,再令22()2e ln (0)x g x x x x =+>,则()221()4e 0'=++>xg x x x x, 所以()g x 在(0,)+∞上单调递增.因为12ln 204g ⎛⎫=< ⎪⎝⎭,2(1)2e 0g =>,所以()g x 有唯一的零点0x ,且0114x <<, 所以当00x x <<时,()0m x '<,当0x x >时,()0m x '>, 所以()m x 在()00,x 上单调递减,在()0,x +∞上单调递增. 因为022002eln 0x x x +=,所以()()()00002ln 2ln ln ln x x x x +=-+-,设()ln (0)S x x x x =+>,则1()10'=+>S x x, 所以函数()S x 在(0,)+∞上单调递增.因为()()002ln S x S x =-,所以002ln x x =-,即0201ex x =.所以()0()m x m x ≥=02000000ln 1ln 11e 2x x x x x x x +-=--=, 则有2a ≤.所以实数a 的取值范围为(,2]-∞.13.(2022·福建省福州第一中学三模)已知函数()e sin 1x f x a x =--在区间0,2π⎛⎫⎪⎝⎭内有唯一极值点1x .(1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)+∞ (2)证明见解析 【解析】 【分析】(1)先求导,再讨论1a 时,函数单增不合题意,1a >时,由导数的正负确定函数单调性知符合题意; (2)先由导数确定函数()f x 在区间(0,)π上的单调性,再由零点存在定理即可确定在区间(0,)π内有唯一零点;表示出()12f x ,构造函数求导,求得()120f x >,又由()20f x =,结合()f x 在()1,x x π∈上的单调性即可求解. (1)()e cos x f x a x '=-,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos (0,1)x ∈,21e e x π<<,①当1a 时,()0f x '>,()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,没有极值点,不合题意,舍去;①当1a >时,显然()'f x 在0,2π⎛⎫ ⎪⎝⎭上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()'f x 在0,2π⎛⎫ ⎪⎝⎭上有唯一零点1x ,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在0,2π⎛⎫⎪⎝⎭上有唯一极值点,符合题意.综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10<f x ,又因为()e 10f ππ=->,所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x x f x a x a x x =--=--,由(1)知()10f x '=,所以11e cos xa x =,则()112112e 2e sin 1x xf x x =--,构造2()e 2e sin 1,0,2t t p t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t t p t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e cos sin t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】本题关键点在于先表示出()12f x ,构造函数()p t 求导,令导数为新的函数再次求导,进而确定函数()p t 的单调性,从而得到()120f x >,再结合()20f x =以及()f x 在()1,x x π∈上的单调性即可证得结论. 14.(2022·安徽·合肥市第八中学模拟预测(文))已知函数()e (sin cos )sin .x f x x x a x =+-.(1)当1a =时,求函数f (x )在区间[0]2π,上零点的个数; (2)若函数()y f x =在(0,2π)上有唯一的极小值点,求实数a 的取值范围 【答案】(1)2个(2)2]∞-⋃(,3222[2e ,)2e ,2e πππ⎧⎫+∞⋃⎨⎬⎩⎭【解析】 【分析】(1)利用导数判断函数f x ()在[0]2π,上的单调性,结合零点存在性定理确定零点个数;(2)利用导数,通过分类讨论确定函数f x ()的单调性及极值,由此确定a 的取值范围.(1)因为1a =,所以()e (sin cos )sin .x f x x x x =+-()(2e 1)cos x f x x '=-,则当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 又32223(0)10,()e 10,()1e 0,(2)e 022f f f f ππππππ=>=->=-<=>,则f x ()在322ππ⎛⎫ ⎪⎝⎭,,322ππ⎛⎫⎪⎝⎭,上各有一个零点,所以f x ()在区间[0]2π,上共有两个零点, (2)2()(2e )cos ,(02),22e 2e x x f x a x x ππ'=-∈<<,①当2a ≤时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 此时f x ()在32x π=的时候取得极小值,则2a ≤时符合题意: ①当22e a π≥时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在02π⎛⎫⎪⎝⎭,上单调递减,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递增, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,单词递减, 此时f x ()在2x π=的时候取得极小值,则22a e π≥时符合题意①当222e a π<<时,0ln 22a π<<,此时f x ()在0,ln 2a ⎛⎫ ⎪⎝⎭上单调递减,在ln ,22a π⎛⎫ ⎪⎝⎭,上单调递增,在3,22ππ⎛⎫ ⎪⎝⎭上单调递减,在3(,2)2ππ上单调递增,此时有两个极小值点,不符合题意: ①当22e a π=时,ln22a π=,此时f x ()在(0,32π)上单调递减,在3,22ππ⎛⎫ ⎪⎝⎭上单调递增,此时f x ()在32x π=的时候取得极小值,则22e a π=时符合题意;①当3222e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在,ln 22a π⎛⎫ ⎪⎝⎭上单调递增,在3ln 22a π⎛⎫⎪⎝⎭,上单调递减,在3,22ππ⎛⎫⎪⎝⎭上单调递增,此时有两个极小值点,不符合题意; ①当322e a π=时,3ln22a π=,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在22ππ⎛⎫ ⎪⎝⎭,上单调递增,此时f x ()在2x π=的时候取得极小值,则322e a π=时符合题意;①当322e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在322ππ⎛⎫⎪⎝⎭,上单调递增,在3(,ln )22a π上单调递减,在(ln ,2)2aπ上单调递增,此时有两个极小值点,不符合题意;综上所述3222(,22e ,)2 ][e ,2e a πππ⎧⎫∈-∞+∞⎨⎬⎩⎭.【点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同. (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.15.(2022·江西·上高二中模拟预测(理))已知函数()()2ln 0ax af x x a x -=->.(1)讨论()f x 的单调性;(2)设()()2ag x f x x=-+有两个零点12,x x ,若212x x >,证明:3312672e x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导得()2221b ax x af x a x x x -+-=--=',对导函数进行分情况讨论其正负,即可得()f x 的单调性. (2)通过函数有两个零点,转化成1212ln 2ln 2x x a x x ++==,然后根据比例,构造出221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,得到122111,e t x t x t x --==,进而构造函数33313ln ()ln[(1)]ln(1)1t t h t t t t t -=+=++-,利用导数处理单调性,进而可求. (1))()2221b ax x af x a x x x -+-=--=' 令2()F x ax x a =-+- ,则()00F a =-< ,且对称轴102x a=> 而214a ∆=-易知当10,2a ⎛⎫∈ ⎪⎝⎭ 时()f x 在0⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ 单调递减,在⎝⎭单调递增当)12a ∞⎡∈+⎢⎣, 时()f x 在()0+∞,单调递减. (2)()g x 有两个零点12,x x 且0x >,则1212ln 2ln 2ln 2ln 20x x x x ax a a x x x +++-+=⇒=⇒==, 设21x t x =, 212x x >,2t ∴> ∴221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,∴11ln ln 2ln 2t x t x ++=+,所以12111ln ln 2e 1t t x x t t --=-⇒=-, ∴33333631121(1)e (1)t x x t x t t --+=+=+,设33313ln ()ln[(1)]ln(1)1t t h t tt t t -=+=++-,2t >,则222331(1)()[1ln ](1)1t t h t t t t t -'=--+-+, 设2231(1)()1ln 1t t t t t tϕ-=--++,则7437323223211()(441)[(1)4(1)](1)(1)t t t t t t t t t t t t t ϕ--'=+--=-+-++, 当(1,)t ∈+∞时,()0t ϕ'>,所以函数()t ϕ在(1,)t ∈+∞上递增,()()10t ϕϕ∴>=,则()0h t '>,()h t ∴在(1,)+∞递增,又2t >,∴()(2)ln72h t h >=,故3361272e x x -+>. 【点睛】本题考查了含参函数的单调性,最值问题,方程与函数零点的综合问题,利用导数解决单调性的问题,分情况讨论,转化,构造函数证明不等式,二阶求导等综合性的函数知识,在做题时要理清思路,是一道导数的综合题.16.(2022·山东师范大学附中模拟预测)已知函数()()ln h x x a x a =-∈R . (1)若()h x 有两个零点,a 的取值范围;(2)若方程()e ln 0xx a x x -+=有两个实根1x 、2x ,且12x x ≠,证明:12212e ex x x x +>. 【答案】(1)()e,+∞ (2)证明见解析 【解析】 【分析】(1)分析可知0a ≠,由参变量分离法可知直线1y a=与函数()ln xf x x=的图象有两个交点,利用导数分析函数()f x 的单调性与极值,数形结合可求得实数a 的取值范围;(2)令e 0x t x =>,其中0x >,令111e x t x =,222e xt x =,分析可知关于t 的方程ln 0t a t -=也有两个实根1t 、2t ,且12t t ≠,设120t t >>,将所求不等式等价变形为12112221ln 1t t t t t t ⎛⎫- ⎪⎝⎭>+,令121t s t =>,即证()21ln 1s s s ->+,令()()21ln 1s g s s s -=-+,其中1s >,利用导数分析函数()g s 的单调性,即可证得结论成立. (1)解:函数()h x 的定义域为()0,∞+.。

导数压轴题中的找零点问题

导数压轴题中的找零点问题

解题探索 导数压轴题中的找零点问题张 默(江苏省苏州中学,215007) 在近几年的高考的导数压轴题中,“零点的个数”问题是一个热点问题,而如何找零点成为了学生解决此类问题的难点,下面我归纳整理了此类问题的几种常用的方法,供大家参考.在导数问题中,仅仅判断出函数的单调性,还不能说明函数存在零点,因此需要借助零点存在定理,判断某个区间的两个端点处的函数值异号,才能确定函数在开区间内存在零点.一般有以下几种找点的方法:1 观察法例1 函数f(x)=lnx-x+2的零点个数为 .解析:f′(x)=1x-1=1-xx(x>0),则f(x)在(0,1)上单调增,在(1,+∞)上单调减,且f(1)=1>0,因此需在1的左右两侧分别找到函数值小于0的点,通过观察,可以找与e有关的量,目的是消灭指对式,让结果便于判断.可以选择e-2,e2,则有f(e-2)=-e-2<0,f(e2)=4-e2<0,且0<e-2<1,e2>1,所以f(x)在(0,1)和(1,+∞)上各有一个零点,零点个数为2个.点评:能够通过观察直接找点当然是最快捷的方法,观察法找点通常会选取比较特殊的自变量,如0、1、e等,目的是想办法消灭指对式,对于简单函数来说,快速有效.2 部分零点法例2 若方程lnx-2x-a=0有两个不等的实数根,则实数a的取值范围是 .解析:设f(x)=lnx-2x-a(x>0),则f′(x)=1x-2=1-2xx,于是f(x)在0,()12上增,在12,+()∞上减,因为f(x)=0有两个不等实根,则f()12=-1-ln2-a>0,即a<-1-ln2,此时需要在12两侧寻找函数值小于0的点,先找左侧的点,可以采用部分零点法,即使得解析式部分为0,不妨令lnx-a=0,解得x=ea,则f(ea)=-2ea<0,且0<ea<e-1-ln2=12e<12,即f(x)在0,()12存在一个零点.(右侧零点找法见下)点评:部分零点法就是将函数解析式的一部分设为0,求出满足条件的自变量,再研究此时函数值的正负,本质是让函数解析式简化,便于求解.3 放缩法例3 若方程lnx-2x-a=0有两个不等的实数根,则实数a的取值范围是 .解析:上面利用部分零点法已经找到左侧零点,下面来找右侧零点.由图象性质可知,lnx<x,所以lnx-2x-a<x-2x-a=-x-a,令-x-a=0,得x=-a,所以f(-a)=ln(-a)-2(-a)-a<(-a)+2a-a=0,即f(-a)<0,且由a<-1-ln2,可得-a>1+ln2>12,所以f(x)在12,+()∞存在一个零点.所以a<-1-ln2.点评:利用放缩法可以简化函数,比如涉及到指对函数的,可以用“五线图”进行放缩(如图所示),即:ex≥x+1>x>x-1≥lnx,进行指对式与一次式的放缩;也可以进行曲线放缩,如:lnx<12x2,lnx<槡x,ex>x2,ex>槡x等;或有界放缩,如:-1≤sinx≤1,0<e-x<1(x>0),0<1x<1(x>1)等.下面通过两道例题来进一步说明这几种方法的运用.例4 已知函数f(x)=xex-1-ax+1,其中a∈R.(1)当a=0时,证明f(x)>0;(2)当a>0时,讨论f(x)的零点个数.解析:(2)因为x=0显然不是方程f(x)=0的解,所以可转化为ex-1-a+1x=0,令g(x)=ex-1-a+1x,由(1)可知,xex-1+1>0,所以x<0时,ex-1+1x<0,又a>0,所以g(x)=ex-1-a+1x<0,即g(x)在(-∞,0)上无零点,即f(x)在(-∞,0)上无零点.当x>0时,g′(x)=ex-1-1x2,令h(x)=g′(x)=ex-1-1x2,则h′(x)=ex-1+2x3>0,所以g′(x)在(0,+∞)上单调递增,又g′(1)=0,所以当x∈(0,1),g′(x)<0,g(x)单调递减,当x∈(1,+∞),g′(x)>0,g(x)单调递增,所以当x>0时,g(x)≥g(1)=2-a,①当0<a<2时,g(1)>0,g(x)无零点,即f(x)无零点;②当a=2时,g(1)=0,g(x)有一个零点,即f(x)有一个零点;③当a>2时,g(1)<0,(下面进入找点环节,即在1的左右两侧找到函数值大于0的点)(可先在1的左侧找点,用部分零点法:)因为g(x)=ex-1-a+1x,令-a+1x=0,得x=1a<1,所以g1()a=e1a-1>0,可得g(x)在1a,()1上有一个零点;(然后在1的右侧找点,用放缩法:)因为x>0,所以g(x)=ex-1-a+1x>ex-1-a>(x-1)-a,(需证明ex>x)则令x=a+1>1,所以g(a+1)>0,可得g(x)在(1,a+1)上有一个零点.所以,当a>2时,g(x)有两个零点,即f(x)有两个零点.(说明:使用放缩法时,有界放缩只要说明原因,而曲线放缩则需要严格证明.)例5 (2019常州一模)已知函数m(x)=x2,函数n(x)=alnx+1(a∈R).若函数f(x)=m(x)-n(x)有且只有一个零点,求实数a的取值范围.解析:由题意,f(x)=x2-alnx-1,则f′(x)=2x-ax=2x2-ax(x>0),且f(1)=0,(1)若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增,又f(1)=0,所以f(x)在(0,+∞)上有且只有一个零点,满足题意;(2)若a>0,令f′(x)=0,得x=a槡2(负根舍去),则当x∈0,a槡()2,f′(x)<0,f(x)单调递减,当x∈a槡2,+()∞,f′(x)>0,f(x)单调递增,则f(x)的极小值为fa槡()2.①若a槡2>1,即a>2时,此时fa槡()2<f(1)=0.(下面要在a槡2,+()∞内找到一个函数值大于0的点)(放缩法)由f(x)=x2-alnx-1(a>2),则x2-alnx-1>x2-ax-1,令x2-ax-1=0,解得x=a±a2槡+42,取x0=a+a2槡+42,则有x0=a+a2槡+42>a槡2,且f(x0)=x20-alnx0-1>x20-ax0-1=0,所以f(x)在a槡2,x()0上必有一个零点.(需证明lnx<x)又因为x=1为f(x)的另一个零点,不合题意,舍.②若a槡2=1,即a=2,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又f(1)=0,所以f(x)有且只有一个零点,符合题意.③若a槡2<1,即0<a<2,(下面要在0,a槡()2内找一个函数值大于0的点,可以采用部分零点法)因为f(x)=x2-alnx-1,令alnx+1=0,得x=e-1a,且e-1a∈(0,1),所以f(e-1a)=e-2a>0,所以f(x)在(0,1)内有一个零点,又x=1为另一零点,不合题意,舍.综上,实数a的取值范围是(-∞,0]∪{2}.在导数压轴题中,找零点问题由于方法灵活多变,可以考查分类讨论、数形结合、函数与方程等多种数学思想方法,所以将会继续成为高考的热点题型.理清求零点的常用思路和方法,有助于我们找到解决此类问题的关键.。

高考数学导数中的零点问题解决方法

高考数学导数中的零点问题解决方法

导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。

一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。

例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。

解析:22()ln ()22g x x f x e a x ex x x =-⇒=-+,令2ln ()2x h x x ex x=-+,'21ln ()22x h x x e x-=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ —注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。

所以21a e e=+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。

高考导数压轴题中导数零点不可求的三大妙招

高考导数压轴题中导数零点不可求的三大妙招

xlnx ≤1+e-2 <xe+x1(1+e-2).
点 评 第 (Ⅲ) 小 题 中,g(x) = (x2 +
x)f′(x)= xe+x 1(1-x-xlnx),若 求 其 导 数 一 方
面式子较烦,另一方面零 点 不 可 求,从 而 不 能 求 得
其单调区间.但将g(x)<1+e-2 变形为1-x- xlnx <xe+x1(1+e-2),则很容易求导得到两边函
而使问题得到 解 决.但 有 时 会 碰 到 导 数 式 是 超 越 式,导数的零点不可求,从 而 使 问 题 的 解 决 陷 入 困 境,本文通过 几 道 高 考 题 说 明 这 类 问 题 的 几 种 常
见解决办法. 一 、直 觉 求 根 ,二 次 求 导 验 证
例1 (2013年 陕 西 卷 文 科 第21题 )已 知 函 数 f(x)=ex,x ∈ R.
(1)求 f(x)的 反 函 数 的 图 象 上 点 (1,0)处 的 切线方程;
(2)证 明 :曲 线y
= f(x)与 曲 线y

1x2 2

x +1 有 唯 一 公 共 点 ;
(3)设a<b,比 较f(a2+b)与f(bb)--af(a)的
大 小 ,并 说 明 理 由 .
解 (1)f(x)的反函数 g(x)=lnx,则y =
所以,f(x)在 (- 1,0)上 单 调 递 减,在 (0, + ∞)上单调递增.
(Ⅱ)当m ≤2,x∈ (-m,+∞)时,ln(x+m) ≤ln(x+2).故只需证明:当 m =2时,f(x)>0.
当 m =2时,函数f′(x)=ex -x1+2在(-2,
+ ∞)上单调递增.
又f′(-1)<0,f′(0)> 0,故 f′(x)= 0 在 (-2,+ ∞)上有唯一实根x0,且x0 ∈ (-1,0).

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题专辑含答案纯word版本文介绍了导数压轴题中的隐零点问题,共有13道题目。

1.对于已知函数$f(x)=(aex-a-x)ex$,若$f(x)\geq 0$对于$x\in R$恒成立,求实数$a$的值,并证明$f(x)$存在唯一极大值点$x$,且$f(x)<f(x_0)$,其中$x_0$为$f(x)$的零点。

解答:1) 对于$f(x)=ex(aex-a-x)\geq 0$,因为$ex>0$,所以$aex-a-x\geq 0$恒成立,即$a(ex-1)\geq x$恒成立。

当$x=0$时,显然成立。

当$x>0$时,$ex-1>0$,故只需$a\geq 1$。

令$h(x)=aex-a-x$,则$h'(x)=aex-1$,在$(0,+\infty)$恒成立,故$h(x)$在$(0,+\infty)$递减。

又因为$h(0)=0$,故$a\geq1$。

当$x<0$时,$ex-1<0$,故只需$a\leq 1$。

令$g(x)=aex-a-x$,则$g'(x)=aex-1$,在$(-\infty,0)$恒成立,故$g(x)$在$(-\infty,0)$递增。

又因为$g(0)=0$,故$a\leq 1$。

综上,$a=1$。

2) 由(1)得$f(x)=ex(ex-x-1)$,故$f'(x)=ex(2ex-x-2)$。

令$h(x)=2ex-x-2$,则$h'(x)=2ex-1$,所以$h(x)$在$(-\infty,\ln)$单调递减,在$(\ln,+\infty)$单调递增,$h(0)=0$,$h(\ln)=2e^{\ln}-\ln-2=\ln2-10$,故$h(x)$在$(-2,\ln)$有唯一零点$x_0$。

设$x_0$为$f(x)$的零点,则$2ex_0-x_0-2=0$,从而$h(x)$有两个零点$x_0$和$-x_0-2$,所以$f(x)$在$(-\infty,x_0)$单调递增,在$(x_0,+\infty)$单调递减,在$(-2,x_0)$上单调递增,在$(-\infty,-2)$上单调递减,从而$f(x)$存在唯一的极大值点$x_0$。

导数大题零点问题解题技巧

导数大题零点问题解题技巧

导数大题零点问题解题技巧
导数大题零点问题的解题技巧主要包括以下几个方面:
1. 确定函数的单调性:通过求导数并判断导数的正负,可以确定函数的单调性。

如果函数在某区间内单调递增或递减,那么该区间内函数的值域就是连续的,因此在这个区间内函数最多只有一个零点。

2. 利用零点存在定理:如果函数在区间端点的函数值异号,即 f(a)f(b)<0,则函数在这个区间内至少有一个零点。

3. 构造函数:通过构造函数,可以将问题转化为求函数的最值问题,从而找到函数的零点。

4. 结合图像:通过画出函数的图像,可以直观地观察函数的零点位置和个数。

5. 转化问题:将问题转化为其他形式,例如转化为求函数的最值问题、不等式问题等,从而简化问题。

在解题过程中,要注意以下几点:
1. 确定函数的定义域和值域,确保函数的连续性和可导性。

2. 注意函数的奇偶性和周期性,这些性质可能会影响函数的零点位置和个数。

3. 注意函数的极值点和拐点,这些点可能是函数的零点或拐点。

4. 注意题目中的隐含条件,例如函数在某点的导数值、函数在某区间的单调性等。

5. 注意计算精度和误差控制,避免计算错误导致答案不准确。

微专题 利用导数研究函数的零点问题

微专题 利用导数研究函数的零点问题

利用导数研究函数的零点问题内容概览题型一 利用导数探究函数零点的个数题型二 利用函数零点问题求参数范围题型三 与函数零点有关的证明[命题分析]函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查基本初等函数、三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一 利用导数探究函数零点的个数[典例1](2022·陇南模拟)已知函数f(x)=r1e-a(a∈R),讨论f(x)的零点个数.【解析】令f(x)=r1e-a=0,得a=r1e,设g(x)=r1e,则g'(x)=e−(r1)e(e)2=−e,当x>0时,g'(x)<0,当x<0时,g'(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以g(x)≤g(0)=1,而当x>-1时,g(x)>0,当x<-1时,g(x)<0,g(x)的大致图象如图所示:所以①当a>1时,方程g(x)=a无解,即f(x)没有零点;②当a=1时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;③当0<a<1时,方程g(x)=a有两解,即f(x)有两个零点;④当a≤0时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;综上,当a>1时,f(x)没有零点;当a=1或a≤0时,f(x)有唯一的零点;当0<a<1时,f(x)有两个零点.【方法提炼】利用导数确定函数零点或方程的根的个数的方法:(1)构造函数:构造函数g(x)(要求g'(x)易求,g'(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值(最值),并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)应用定理:利用零点存在定理,先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.【对点训练】(2023·成都模拟)设函数f(x)=ln x+,m∈R.讨论函数g(x)=f'(x)-.3的零点个数【解析】由题设,可知g(x)=f'(x)-3=1-2-3(x>0),令g(x)=0,得m=-13x3+x(x>0),设φ(x)=-13x3+x(x>0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的极大值点,也是φ(x)的最大值点,所以φ(x)的最大值为φ(1)=23,画出y=φ(x)的大致图象(如图),可知①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;)有两个零点.当0<m<2时,函数g(x【加练备选】已知函数f(x)=x e x+e x.(1)求函数f(x)的单调区间和极值;(2)讨论函数g(x)=f(x)-a(a∈R)的零点的个数.【解析】(1)函数f(x)的定义域为R,且f'(x)=(x+2)e x,令f'(x)=0得x=-2,则f'(x),f(x)的变化情况如表所示:x(-∞,-2)-2(-2,+∞)f'(x)-0+f(x)单调递减-12单调递增所以f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞),当x=-2时,f(x)有极小值为f(-2)=-1e2,无极大值;(2)令f(x)=0,得x=-1,当x<-1时,f(x)<0;当x>-1时,f(x)>0,且f(x)的图象经过点(-2,-1e2),(-1,0),(0,1);当x→-∞时,与一次函数相比,指数函数y=e-x增长更快,从而f(x)=r1e−→0;当x→+∞时,f(x)→+∞,f'(x)→+∞,根据以上信息,画出f(x)大致图象如图所示,函数g(x)=f(x)-a(a∈R)的零点的个数为y=f(x)的图象与直线y=a的交点个数,当x=-2时,f(x)有极小值f(-2)=-1e2,所以关于函数g(x)=f(x)-a(a∈R)的零点个数有如下结论:当a<-1e2时,零点的个数为0;当a=-1e2或a≥0时,零点的个数为1;当-1e2<a<0时,零点的个数为2.题型二 利用函数零点问题求参数范围[典例2](2022·全国乙卷)已知函数f(x)=ax-1-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【解析】(1)当a=0时,f(x)=-1-ln x,x>0,则f'(x)=12-1=1−2,当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=-1;(2)f(x)=ax-1-(a+1)ln x,x>0,则f'(x)=a+12-r1=(B−1)(K1)2,当a≤0时,ax-1<0,所以当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=a-1<0,此时函数无零点,不合题意;当0<a<1时,1>1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;又f(1)=a-1<0,由(1)得1+ln x≥1,即ln1≥1-x,所以ln x<x,ln <,ln x<2,当x>1时,f(x)=ax-1-(a+1)ln x>ax-1-2(a+1)>ax-(2a+3),则存在m=(3+2)2>1,使得f(m)>0,所以f(x)仅在(1,+∞)上有唯一零点,符合题意;当a=1时,f'(x)=(K1)22≥0,所以f(x)单调递增,又f(1)=a-1=0,所以f(x)有唯一零点,符合题意;当a>1时,1<1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;此时f(1)=a-1>0,由(1)得当0<x<1时,ln x>1-1,ln >1-1,所以ln x>2(1-1),此时f(x)=ax-1-(a+1)ln x<ax-1-2(a+1) (1-1)<-1+2(r1),存在n=14(r1)2<1,使得f(n)<0,所以f(x)在(0,1)上有一个零点,在(1,+∞)上无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【方法提炼】由函数零点求参数范围的策略(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围;(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法;(3)含参数的函数的零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,得到不含参数的具体函数,作出该函数图象,根据图象特征求参数的范围.【对点训练】(2021·全国甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.【解析】(1)a =2时,f (x )=22,f'(x )=2b2−2ln2·2(2)2=o2−En2)2=ln2· 2ln2−g2,当x ∈ 0,2ln2 时,f'(x )>0,f (x )单调递增;当x ∈2ln2,+∞ 时,f'(x )<0,f (x )单调递减;(2)由题知f (x )=1在(0,+∞)上有两个不等实根,f (x )=1⇔x a =a x ⇔a ln x =x ln a ⇔ln=ln,令g (x )=ln,g'(x )=1−ln 2,g (x )在(0,e)上单调递增,在(e,+∞)上单调递减,又g (e)=1e,g (1)=0,lim m+∞g (x )=0,所以0<ln<1e⇒a >1且a ≠e .所以a 的取值范围为(1,e)∪(e,+∞).【加练备选】 (2020·全国卷Ⅰ)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-x-2,则f'(x)=e x-1.当x<0时,f'(x)<0;当x>0时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)f'(x)=e x-a.当a≤0时,f'(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意;当a>0时,由f'(x)=0可得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).(i)若0<a≤1e,则f(ln a)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意; (ii)若a>1e,则f(ln a)<0.因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)上存在唯一零点.易知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e2·e2-a(x+2)>e ln(2a)·2+2 -a(x+2)=2a>0.故f(x)在(ln a,+∞)上存在唯一零点,从而f(x)在(-∞,+∞)上有两个零点.综上,a的取值范围是1题型三 与函数零点有关的证明[典例3](2022·新高考Ⅰ卷)已知函数f(x)=e x-ax和g(x)=ax-ln x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)f(x)=e x-ax的定义域为R,而f'(x)=e x-a,若a≤0,则f'(x)>0,此时f(x)无最小值,故a>0.g(x)=ax-ln x的定义域为(0,+∞),而g'(x)=a-1=B−1.当x<ln a时,f'(x)<0,故f(x)在(-∞,ln a)上单调递减,当x>ln a时,f'(x)>0,故f(x)在(ln a,+∞)上单调递增,故f(x)min=f(ln a)=a-a ln a.当0<x<1时,g'(x)<0,故g(x)在 0,1上单调递减,当x>1时,g'(x)>0,故g(x)在1,+∞ 上单调递增,故g(x)min=g1=1-ln1.因为f(x)=e x-ax和g(x)=ax-ln x有相同的最小值,故1-ln1=a-a ln a,整理得到K11+=ln a,其中a>0,设t(a)=K11+-ln a,a>0,则t'(a)=2(1+p2-1=−2−1o1+p2<0,故t(a)在(0,+∞)上单调递减,而t(1)=0,故t(a)=0的唯一解为a=1,故K11+=ln a的解为a=1.综上,a=1;(2)由(1)可得f(x)=e x-x和g(x)=x-ln x的最小值为1-ln 1=1-ln11=1.当b>1时,考虑e x-x=b的解的个数,x-ln x=b的解的个数.设S(x)=e x-x-b,S'(x)=e x-1,当x<0时,S'(x)<0,当x>0时,S'(x)>0,故S(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以S(x)min=S(0)=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,其中b>1,则u'(b)=e b-2>0,故u(b)在(1,+∞)上单调递增,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点,即e x-x=b的解的个数为2.设T(x)=x-ln x-b,T'(x)=K1,当0<x<1时,T'(x)<0,当x>1时,T'(x)>0,故T(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以T(x)min=T(1)=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,T(x)=x-ln x-b有两个不同的零点,即x-ln x=b的解的个数为2.当b=1,由(1)讨论可得x-ln x=b,e x-x=b仅有一个零点,当b<1时,由(1)讨论可得x-ln x=b,e x-x=b均无零点,故若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b>1.设h(x)=e x+ln x-2x,其中x>0,故h'(x)=e x+1-2,设s(x)=e x-x-1,x>0,则s'(x)=e x-1>0,故s(x)在(0,+∞)上单调递增,故s(x)>s(0)=0,即e x>x+1,所以h'(x)>x+1-1≥2-1>0,所以h(x)在(0,+∞)上单调递增,而h(1)=e-2>0,h(1e3)=e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,1e3<x0<1且:当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),因此若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,故b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的零点x1,x0(x1<0<x0),此时x-ln x=b有两个不同的零点x0,x4(0<x0<1<x4),故e1-x1=b,e0-x0=b,x4-ln x4-b=0,x0-ln x0-b=0,所以x4-b=ln x4,即e4−=x4,即e4−-(x4-b)-b=0,故x4-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,又e1-x1=b可化为e1=x1+b,即x1-ln(x1+b)=0,即(x1+b)-ln(x1+b)-b=0,故x1+b为方程x-ln x=b的解,同理x0+b也为方程x-ln x=b的解,所以{x1,x0}={x0-b,x4-b},而b>1,故0=4−s1=0−s即x1+x4=2x0.所以x1,x0,x4成等差数列.所以,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法提炼】(1)证明与零点有关的不等式,函数的零点本身就是一个条件,即零点对应的函数值为0;(2)证明的思路一般是对条件进行等价转化,构造合适的新函数,利用导数知识探讨该函数的性质(如单调性、极值情况等),再结合函数图象来解决.【对点训练】 (2019·全国Ⅰ卷)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间 −1,π2上存在唯一极大值点;(2)f(x)有且仅有2个零点.【证明】(1)设g(x)=f'(x),则g(x)=cos x-11+,g'(x)=-sin x+1(1+p2,当x∈ −1,π2时,g'(x)单调递减,而g'(0)>0,g'(π2)<0,可得g'(x)在 −1,π2上有唯一零点,设g'(x)的零点为α.则当x∈(-1,α)时,g'(x)>0;当x∈ sπ2时,g'(x)<0.所以g(x)在(-1,α)上单调递增,在 sπ2上单调递减,故g(x)在 −1,π2上存在唯一极大值点,即f'(x)在 −1,π2上存在唯一极大值点;(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f'(x)在(-1,0)上单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在(-1,0)上单调递减,又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点.②当x∈ 0,π2时,由(1)知,f'(x)在(0,α)上单调递增,在 sπ2上单调递减,而f'(0)=0, f'π2<0,所以存在β∈ sπ2,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x∈ sπ2时,f'(x)<0.故f(x)在(0,β)上单调递增,在 sπ2上单调递减.又f(0)=0,fπ2=1-ln 1+π2>0,所以当x∈ 0,π2时,f(x)>0.所以f(x)在 0,π2上没有零点.③当x∈π2,π 时,f'(x)<0,所以f(x)在π2,π 上单调递减.而fπ2>0,f(π)<0,所以f(x)在π2,π 上有唯一零点.④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.【加练备选】 (2023·菏泽模拟)已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.(1)求证:f'(x)在(0,π)上存在唯一零点;(2)求证:f(x)有且仅有两个不同的零点.【证明】(1)设g(x)=f'(x)=1-1+2cos x,当x∈(0,π)时,g'(x)=-2sin x-12<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π-1+1>0,g(π2)=2π-1<0,所以g(x)在(π3,π2)上有唯一的零点;(2)设f'(x)在(0,π)上的唯一零点为α,由(1)知π3<α<π2.①当x∈(0,π)时,x∈(0,α)时,f'(x)>0,f(x)单调递增;x∈(α,π)时,f'(x)<0,f(x)单调递减;所以f(x)在(0,π)上存在唯一极大值点α.所以f(α)>f(π2)=lnπ2-π2+2>2-π2>0,又因为f(1e2)=-2-1e2+2sin1e2<-2-1e2+2<0,所以f(x)在(0,α)上恰有一个零点.又因为f(π)=ln π-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点.②当x∈[π,2π)时,sin x≤0,f(x)≤ln x-x,设h(x)=ln x-x,h'(x)=1-1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x∈[π,2π)时,f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2.设φ(x)=ln x-x+2,φ'(x)=1-1<0,所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数压轴题之零点问题1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立.(1)求实数a的值;(2)证明:f(x)存在唯一极大值点x0,且.【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立,即a(e x﹣1)≥x恒成立,x=0时,显然成立,x>0时,e x﹣1>0,故只需a≥在(0,+∞)恒成立,令h(x)=,(x>0),h′(x)=<0,故h(x)在(0,+∞)递减,而==1,故a≥1,x<0时,e x﹣1<0,故只需a≤在(﹣∞,0)恒成立,令g(x)=,(x<0),g′(x)=>0,故h(x)在(﹣∞,0)递增,而==1,故a≤1,综上:a=1;(2)证明:由(1)f(x)=e x(e x﹣x﹣1),故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1,所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增,h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0,∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知,方程h(x)=0在(﹣2,ln)有唯一根,设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0,所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,从而f(x)存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=,取等不成立,所以f(x0)<得证,又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证,从而0<f(x0)<成立.2.已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.【解答】解:(1)∵函数f(x)在区间[e,+∞)上为增函数,∴f′(x)=a+lnx+1≥0在区间[e,+∞)上恒成立,∴a≥(﹣lnx﹣1)max=﹣2.∴a≥﹣2.∴a的取值范围是[﹣2,+∞).(2)a=1时,f(x)=x+lnx,k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,∴k<,令g(x)=,则g′(x)=,令h(x)=x﹣lnx﹣2(x>1).则h′(x)=1﹣=>0,∴h(x)在(1,+∞)上单增,∵h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,存在x0∈(3,4),使h(x0)=0.即当1<x<x0时h(x)<0 即g′(x)<0x>x0时h(x)>0 即g′(x)>0g(x)在(1,x0)上单减,在(x0+∞)上单增.令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,g(x)min=g(x0)===x0∈(3,4).k<g(x)min=x0∈(3,4),且k∈Z,∴k max=3.3.函数f(x)=alnx﹣x2+x,g(x)=(x﹣2)e x﹣x2+m(其中e=2.71828…).(1)当a≤0时,讨论函数f(x)的单调性;(2)当a=﹣1,x∈(0,1]时,f(x)>g(x)恒成立,求正整数m的最大值.【解答】解:(1)函数f(x)定义域是(0,+∞),,(i)当时,1+8a≤0,当x∈(0,+∞)时f'(x)≤0,函数f(x)的单调递减区间是(0,+∞);(ⅱ)当,﹣2x2+x+a=0的两根分别是:,,当x∈(0,x1)时f'(x)<0.函数f(x)的单调递减.当x∈(x1,x2)时f'(x)>0,函数f(x)的单调速递增,当x∈(x2,+∞)时f'(x)<0,函数f(x)的单调递减;综上所述,(i)当时f(x)的单调递减区间是(0,+∞),(ⅱ)当时,f(x)的单调递增区间是,单调递减区间是和(2)当a=﹣1,x∈(0,1]时,f(x)>g(x),即m<(﹣x+2)e x﹣lnx+x,设h(x)=(﹣x+2)e x﹣lnx+x,x∈(0,1],∴,∴当0<x≤1时,1﹣x≥0,设,则,∴u(x)在(0,1)递增,又∵u(x)在区间(0,1]上的图象是一条不间断的曲线,且,∴使得u(x0)=0,即,当x∈(0,x0)时,u(x)<0,h'(x)<0;当x∈(x0,1)时,u(x)>0,h'(x)>0;∴函数h(x)在(0,x0]单调递减,在[x0,1)单调递增,∴=,∵在x∈(0,1)递减,∵,∴,∴当m≤3时,不等式m<(﹣x+2)e x﹣lnx+x对任意x∈(0,1]恒成立,∴正整数m的最大值是3.4.已知函数f(x)=e x+a﹣lnx(其中e=2.71828…,是自然对数的底数).(Ⅰ)当a=0时,求函数a=0的图象在(1,f(1))处的切线方程;(Ⅱ)求证:当时,f(x)>e+1.【解答】(Ⅰ)解:∵a=0时,∴,∴f(1)=e,f′(1)=e﹣1,∴函数f(x)的图象在(1,f(1))处的切线方程:y﹣e=(e﹣1)(x﹣1),即(e﹣1)x﹣y+1=0;(Ⅱ)证明:∵,设g(x)=f′(x),则,∴g(x)是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′(x)>0;若0<x<1⇒e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′(x)<0,故f′(x)=0仅有一解,记为x0,则当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增;∴,而,记h(x)=lnx+x,则,⇔﹣a<⇔h(x0)<h(),而h(x)显然是增函数,∴,∴.综上,当时,f(x)>e+1.本资料分享自千人教师QQ群323031380 高中数学资源大全5.已知函数f(x)=axe x﹣(a+1)(2x﹣1).(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程;(2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.【解答】解:(1)若a=1,则f(x)=xe x﹣2(2x﹣1),当x=0时,f(0)=2,f'(x)=xe x+e x﹣4,当x=0时,f'(0)=﹣3,所以所求切线方程为y=﹣3x+2.……(3分)(2)由条件可得,首先f(1)≥0,得,而f'(x)=a(x+1)e x﹣2(a+1),令其为h(x),h'(x)=a(x+2)e x恒为正数,所以h(x)即f'(x)单调递增,而f'(0)=﹣2﹣a<0,f'(1)=2ea﹣2a﹣2≥0,所以f'(x)存在唯一根x0∈(0,1],且函数f(x)在(0,x0)上单调递减,在(x0+∞)上单调递增,所以函数f(x)的最小值为,只需f(x0)≥0即可,又x0满足,代入上式可得,∵x0∈(0,1],∴,即:f(x0)≥0恒成立,所以.……(13分)6.函数f(x)=xe x﹣ax+b的图象在x=0处的切线方程为:y=﹣x+1.(1)求a和b的值;(2)若f(x)满足:当x>0时,f(x)≥lnx﹣x+m,求实数m的取值范围.【解答】解:(1)∵f(x)=xe x﹣ax+b,∴f′(x)=(x+1)e x﹣a,由函数f(x)的图象在x=0处的切线方程为:y=﹣x+1,知:,解得a=2,b=1.(2)∵f(x)满足:当x>0时,f(x)≥lnx﹣x+m,∴m≤xe x﹣x﹣lnx+1,①令g(x)=xe x﹣x﹣lnx+1,x>0,则=,设g′(x0)=0,x0>0,则=,从而lnx0=﹣x0,g′()=3()<0,g′(1)=2(e﹣1)>0,由g′()﹣g′(1)<0,知:,当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0,∴函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.∴g(x)min=g(x0)=﹣x0﹣lnx0=﹣x0﹣lnx0=x0•﹣x0+x0=1.m≤xe x﹣x﹣lnx+1恒成立⇔m≤g(x)min,∴实数m的取值范围是:(﹣∞,1].7.已知函数f(x)=3e x+x2,g(x)=9x﹣1.(1)求函数φ(x)=xe x+4x﹣f(x)的单调区间;(2)比较f(x)与g(x)的大小,并加以证明.【解答】解:(1)φ'(x)=(x﹣2)(e x﹣2),令φ'(x)=0,得x1=ln2,x2=2;令φ'(x)>0,得x<ln2或x>2;令φ'(x)<0,得ln2<x<2.故φ(x)在(﹣∞,ln2)上单调递增,在(ln2,2)上单调递减,在(2,+∞)上单调递增.(2)f(x)>g(x).证明如下:设h(x)=f(x)﹣g(x)=3e x+x2﹣9x+1,∵h'(x)=3e x+2x﹣9为增函数,∴可设h'(x0)=0,∵h'(0)=﹣6<0,h'(1)=3e﹣7>0,∴x0∈(0,1).当x>x0时,h'(x)>0;当x<x0时,h'(x)<0.∴h(x)min=h(x0)=,又,∴,∴==(x0﹣1)(x0﹣10),∵x0∈(0,1),∴(x0﹣1)(x0﹣10)>0,∴h(x)min>0,∴f(x)>g(x).8.已知函数f(x)=lnx+a(x﹣1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.【解答】解:(1),①当0<a≤2时,f'(x)≥0,y=f(x)在(0,+∞)上单调递增,②当a>2时,设2ax2﹣2ax+1=0的两个根为,且,y=f(x)在(0,x1),(x2,+∞)单调递増,在(x1,x2)单调递减.(2)证明:依题可知f(1)=0,若f(x)在区间(0,1)内有唯一的零点x0,由(1)可知a>2,且.于是:①②由①②得,设,则,因此g(x)在上单调递减,又,根据零点存在定理,故.9.已知函数f(x)=,其中a为常数.(1)若a=0,求函数f(x)的极值;(2)若函数f(x)在(0,﹣a)上单调递增,求实数a的取值范围;(3)若a=﹣1,设函数f(x)在(0,1)上的极值点为x0,求证:f(x0)<﹣2.【解答】解:(1)f(x)=的定义域是(0,+∞),f′(x)=,令f′(x)>0,解得0<x<,令f′(x)<0,解得:x>,则f(x)在(0,)递增,在(,+∞)递减,=f()=,无极小值;故f(x)极大值(2)函数f(x)的定义域为{x|x>0且x≠﹣a}.=,要使函数f(x)在(0,﹣a)上单调递增,则a<0,又x∈(0,﹣a)时,a<x+a<0,只需1+﹣2lnx≤0在(0,﹣a)上恒成立,即a≥2xlnx﹣x在(0,﹣a)上恒成立,由y=2xlnx﹣x的导数为y′=2(1+lnx)﹣1=1+2lnx,当x>时,函数y递增,0<x<时,函数y递减,当﹣a≤即﹣<a<0时,函数递减,可得a≥0,矛盾不成立;当﹣a>即a<﹣时,函数y在(0,)递减,在(,﹣a)递增,可得y<﹣2aln(﹣a)+a,可得a≥﹣2aln(﹣a)+a,解得﹣1≤a<0,则a的范围是[﹣1,0);(3)证明:a=﹣1,则f(x)=导数为f′(x)=,设函数f(x)在(0,1)上的极值点为x0,可得1﹣2lnx0﹣=0,即有2lnx0=1﹣,要证f(x0)<﹣2,即+2<0,由于+2=+2==,由于x0∈(0,1),且x0=,2lnx0=1﹣不成立,则+2<0,故f(x0)<﹣2成立.10.已知函数f(x)=lnx﹣x+1,函数g(x)=ax•e x﹣4x,其中a为大于零的常数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).【解答】解:(Ⅰ)…………………………………(2分)x∈(0,1)时,f'(x)>0,y=f(x)单增;x∈(1,+∞)时,f'(x)<0,y=f(x)单减……………………….(4分)(Ⅱ)证明:令h(x)=axe x﹣4x﹣2lnx+2x﹣2=axe x﹣2x﹣2lnx﹣2(a>0,x>0)………………….(5分)故…………………………….(7分)令h'(x)=0即,两边求对数得:lna+x0=ln2﹣lnx0即lnx0+x0=ln2﹣lna……………….(9分)∴,∴h(x)≥2lna﹣2ln2……………………………(12分)11.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表x(0,x0)x0(x0,∞)g′(x)﹣0+g(x)递减递增g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.12.已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.【解答】解:(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.13.已知函数f(x)=(x﹣a)lnx+x,(其中a∈R)(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=x,求a的值;(2)若为自然对数的底数),求证:f(x)>0.【解答】解:(1)f(x)的定义域为(0,+∞),,由题意知,则,解得x0=1,a=1或x0=a,a=1,所以a=1.(2)令,则,因为,所以,即g(x)在(0,+∞)上递增,以下证明在g(x)区间上有唯一的零点x0,事实上,,因为,所以,,由零点的存在定理可知,g(x)在上有唯一的零点x0,所以在区间(0,x0)上,g(x)=f'(x)<0,f(x)单调递减;在区间(x0,+∞)上,g(x)=f'(x)>0,f(x)单调递增,故当x=x0时,f(x)取得最小值,因为,即,所以,即>0.∴f(x)>0.。

相关文档
最新文档