《新编基础物理学》十四和十五章光学习题解和分析
《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t g t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 0v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m g a M M+==题2.4 :答案:[D] 提示:a a A22A BA B m g T m a T m a aa ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos 60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k g a== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
《新编基础物理学》第14章习题解答和分析

第14章 波动光学14-1.在双缝干涉实验中,两缝的间距为,照亮狭缝S 的光源是汞弧灯加上绿色滤光片.在远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为.试计算入射光的波长,如果所用仪器只能测量5mm x ∆≥的距离,则对此双缝的间距d 有何要求?分析:由杨氏双缝干涉明纹位置公式求解。
解:在屏幕上取坐标轴Ox ,坐标原点位于关于双缝的对称中心。
屏幕上第k 级明纹中心的距坐标原点距离:λdD kx ±= 可知dD d D k d D k x x x k k λλλ=-+=-=∆+)1(1 代入已知数据,得545nm xd Dλ∆== 对于所用仪器只能测量5mm x ∆≥的距离时0.27mm D d x λ≤=∆14-2.在杨氏双缝实验中,设两缝之间的距离为.在距双缝1m 远的屏上观察干涉条纹,若入射光是波长为400nm 至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?(91nm=10m -)分析:由双缝干涉屏上明纹位置公式,求k 取整数时对应的可见光的波长。
解:已知:d =,D =1m ,x =20mm 依公式λk d D x =∴ 4000nm dxk Dλ==故k =10 λ1=400nmk =9 λ2 k =8 λ3=500nm k =7 λ4 k =6 λ5这五种波长的光在所给的观察点最大限度地加强.14-3.如题图14-3所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I 与干涉加强时最大强度I max 的比值.分析:已知光程差,求出相位差.利用频率相同、振动方向相同的两列波叠加的合振幅公式求出P 点合振幅。
杨氏双缝干涉最大合振幅为2A 。
解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以2max 4A I ∝ , 因为λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后()3π23π2π212=⋅=-=∆λλλϕr r 题图14-3P 点合振动振幅的平方为:22223π2cos2A A A A =++ 因为2I A ∝ 所以22max1==44I A I A14-4. 在双缝干涉实验中,波长550nm λ=的单色平行光, 垂直入射到缝间距4210m d -=⨯的双缝上,屏到双缝的距离2m D =.求:(1) 中央明纹两侧的两条第10级明纹中心的间距; (2) 用一厚度为66.610m e -=⨯、折射率为 1.58n =的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?分析:(1)双缝干涉相邻两条纹的间距为 ∆x =D λ / d ,中央明纹两侧的两条第10级明纹中心的间距为20∆x .(2)不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,中央明纹对于O 点的光程差0δ=,其余条纹相对O 点对称分布.插入介质片后,两相干光在两介质薄片中的几何路程相等,但光程不等。
2024版高考物理一轮复习教材基础练第十四章光学第2讲光的干涉衍射和偏振教学课件

知识点91 光的衍射和偏振
教材知识萃取
知识点91
光的衍射和偏振
教材素材变式
1. 将两支铅笔并排放在一起,中间留一条狭缝,通过这条狭缝去看与其平行的日光灯,能观察到彩色条纹,这是由于
光的
(选填“折射”“干涉”或“衍射”)。当缝的宽度
(选填“远大于”或“接近”)光波的波长时,这
种现象十分明显。
弱,故C错误;用不同波长的光做实验,衍射图样并不相同,因为波长越长,对同一圆孔而言,衍射现象越明显,故D错
误。
知识点90
光的干涉
教材素材变式
5. 把一个凸透镜压在一块平面玻璃上(图甲),在透镜的下表面和平面玻璃的上表面之间形成一个很薄的空气狭缝
层。让单色光从上方射入(示意图如图乙),从上往下看凸透镜,可以观察到环状圆形条纹,这些条纹叫作牛顿环,则
下列说法正确的是
A.牛顿环是由凸透镜上、下两表面的反射光叠加产生的
SP向A平移至何位置,透过A的偏振光的振动方向始终与B的透振方向垂直,在P处始终看不到光亮,故D错误。
知识点91
光的衍射和偏振
教材素材变式
6. 用如图1所示的装置做圆孔衍射实验,在屏上得到的衍射图样如图2所示,实验发现,光绕过孔的边缘,传播到了相
当大的范围。下列说法正确的是
A.此实验说明了光沿直线传播
P点处是P0上方第2条亮条纹的中心。则
A.Δx2大于Δx1
Δ
B.该矿泉水的折射率为Δ1
2
C.当介质为空气时,P0上方第2条亮纹的中心在P点的下方
D.仅将S0水平向左移动少许,就不能观察到干涉图样了
知识点90
光的干涉
教材素材变式
答案
4.B 由Δx=λ可知,干涉条纹间距正比于波长,设入射光在空气中的波长为λ,在矿泉水中的波长为λ',矿泉水的折射
物理十四和十五章光学习题解和分析

十四章 几何光学习题与解答14-1.如题图14-1所示,一束平行光线以入射角θ射入折射率为n ,置于空气中的透明圆柱棒的端面.试求光线在圆柱棒内发生全反射时,折射率n 应满足的条件.分析:一次折射,一次反射;利用端面折射角与内侧面入射角互余及全反射条件即可求解。
解:设光线在圆柱棒端面的折射角为γ,在内侧面的入射角为'θ,根据折射定律,有'sin 'cos sin sin 222θθγθn n n n -===光线在界面上发生全反射的条件为1'sin ≥θn∴发生全反射时,n 必须满足θ2sin1+≥n14-2.远处有一物点发出的平行光束,投射到一个空气中的实心玻璃球上.设玻璃的折射率为50.1=n ,球的半径为cm r 4=.求像的位置.分析:利用逐步成像法,对玻璃球的前后两个球面逐一成像,即可求得最后像的位置.用高斯成像公式时,应注意两个球面的顶点位置是不同的.cm r r cm r r 4,421-=-===.解:cm cm r n n f 12)415.15.1(1'11=⨯-=-=cm cm f nf 8)5.112('111-=-=-=cm f p p p f p f 12'',,1''1111111==∞==+或用-∞====-=-1111111111,1,5.1','''p n n n r n n p n p ncm p p 12',415.11'5.111=-=∞--对玻璃球前表面所成的像,对后表面而言是物,所以cm cm r p p 4)812(2'212=-=+=cmcm r nf 8)]4(5.111[11'22=-⨯-=-=cm cm nf f 12)85.1('22-=⨯-=-= cm cm f p f p p p f p f 2)12484('',1''222222222=+⨯=-==+题图14-1或用1',5.1,'''222222222===-=-n n n r n n p n p ncm p p 2',45.1145.1'122=--=-像在球的右侧,离球的右边2cm 处.14-3.如题图14-3所示的一凹球面镜,曲率半径为40cm ,一小物体放在离镜面顶点10cm 处.试作图表示像的位置、虚实和正倒,并计算出像的位置和垂轴放大率.分析:利用凹面镜的半径可确定焦距,以知物距,由球面镜的物像公式和横向放大率公式可求解。
大学物理答案第14章.docx

第十四章波动光学14-1在双缝干涉实验中,若单色光源S到两缝$、S2距离相等,则观察屏上中央明条纹位于图中0处,现将光源S向下移动到图中的S,位置,则()(A)中央明纹向上移动,且条纹间距增大(B)中央明纹向上移动,且条纹间距不变(C)中央明纹向下移动,且条纹间距增大(D)中央明纹向下移动,且条纹间距不变分析与解由S发出的光到达$、S2的光程相同,它们传到屏上中央0处,光程差A=0,形成明纹.当光源由S移到£时,由£到达狭缝$和S2的两朿光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O处.使得由空沿S|、S2狭缝传到0’处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B).® 14-1 图14-2如图所示,折射率为血,厚度为0的透明介质薄膜的上方和下方的透明介质的折射率分别为⑴和〃3,且小<叽,灼>"3,若用波长为久的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是()(C)2/?2e 一2 (D)2/?2e ———2/7题14-2图分析与解由于® <血,"2 >〃3,因此在上表面的反射光有半波损失,下表面的反2射光没有半波损失,故它们的光程差\ = 附土即 这里久是光在真空中的波长.因此正 确答案为(B ).14-3如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L,夹在 两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚 柱之间的距离厶变小,则在厶范围内干涉条纹的( )(A )数目减小,间距变大(B )数目减小,间距不变 (C )数目不变,间距变小 (D )数目增加,间距变小题14-3图分析与解 图⑴)装置形成的劈尖等效图如图(b )所示.图中〃为两滚柱的直径差, b 为两相邻明(或暗)条纹间距.因为d 不变,当厶变小时,3变大,厶,、b 均变小.由图可得sm0 = A n /2h = d /厶‘,因此条纹总数N 二厶f /h = 2d/A tl ,因为d 和久n 不变,所 以N 不变.正确答案为(C )14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二 级暗纹,则相应的单缝波阵面可分成的半波带数目为( )(A ) 3 个(B ) 4 个 (C ) 分析与解根据单缝衍射公式(暗条纹)k — 1,2,... (明条纹)因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面 被分成2£+1个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B )・14-5波长2=550 nm 的单色光垂直入射于光栅常数d =/? + //= 1.0 xlO'4 cm 的光 栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程dsin& = ±Rl (£ = O,l,・・.),可能观察到的最大级次为壘也=述2 max A即只能看到第1级明纹,正确答案为(D ).5个 (D ) 6个±(2八1耳 (b)14-6三个偏振片F\、P?与尸3堆叠在一起,P\与尸3的偏振化方向相互垂直,尸2与Pi的偏振化方向间的夹角为30°,强度为/()的自然光入射于偏振片凡,并依次透过偏振片鬥、E与巴,则通过三个偏振片后的光强为()(A) 3Z0/16 (B) V3 /()/8 (C)3IJ32(D) 0 分析与解自然光透过偏振片后光强为厶=IJ2.由于比和P2的偏振化方向成30。
《新编基础物理学》第15章习题解答和分析

第15章 早期量子论15-1 某物体辐射频率为146.010Hz ⨯的黄光,问这种辐射的能量子的能量是多大? 分析 本题考察的是辐射能量与辐射频率的关系. 解: 根据普朗克能量子公式有:-3414196.6310 6.010 4.010(J)h εν-==⨯⨯⨯=⨯15-2 假设把白炽灯中的钨丝看做黑体,其点亮时的温度为K 2900. 求:(1) 电磁辐射中单色辐出度的极大值对应的波长; (2) 据此分析白炽灯发光效率低的原因.分析 维恩位移定律告诉我们,电磁辐射中单色辐出度的极大值对应的波长与温度的乘积等于一个常量.由此可以直接由维恩位移定律求解. 解 (1)由维恩位移定律,得-3-72.89810=9.9910(m)=999(nm)2900b T λ⨯==⨯(2)因为电磁辐射中单色辐出度的极大值对应的波长在红外区域,所以白炽灯的发光效率较低。
15-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108km )。
分析 本题是斯忒藩—玻尔兹曼定律的应用。
解: 由 40T M σ=太阳的辐射总功率为2428482002644 5.671060004(6.9610)4.4710(W)S S S P M R T R πσππ-===⨯⨯⨯⨯⨯=⨯地球接受到的功率为62226221117 6.3710() 4.4710()422 1.496102.0010(W)S E E E S P R P R P d d ππ⨯===⨯⨯⨯=⨯ 把地球看作黑体,则 24244E E E E E R T R M P πσπ==290(K)E T ===15-4 一波长nm 2001=λ的紫外光源和一波长nm 7002=λ的红外光源,两者的功率都是400W 。
大学物理通用教程 习题解答 光学

大学物理通用教程习题解答光学1. 引言光学是物理学中非常重要的一个分支,主要研究光的传播、反射、折射、干涉、衍射等现象。
在大学物理课程中,光学是必修的内容之一。
本文将为大家提供一些习题解答,旨在帮助学习光学的同学更好地理解光学原理和应用。
2. 光的特性Q1: 什么是光的双折射现象?光的双折射现象是指光线在某些材料中传播时会发生折射率的变化,使光线被分裂成两个方向传播的分量。
这种现象通常发生在具有非中心对称晶格结构的材料中,如石英等。
Q2: 请解释光的偏振现象。
光的偏振现象是指光波中的电场矢量在特定方向上振动的现象。
光波中的电场矢量可以沿任意方向振动,如果只能在一个方向上振动,则称为线偏振光;如果在所有方向上振动,则称为非偏振光。
3. 光的传播和反射Q1: 什么是光的全反射现象?光的全反射是指光从光密介质射向光疏介质的界面时,当入射角大于临界角时,光完全被反射回光密介质,不再从界面透射到光疏介质中去。
Q2: 请解释折射定律。
折射定律描述了光从一种介质传播到另一种介质时光线的弯曲现象。
按照折射定律,入射光线、折射光线和法线所在的平面相互垂直,并且入射光线的折射角和折射光线的入射角之间满足一个简单的数学关系。
4. 光的折射和透镜Q1: 什么是凸透镜和凹透镜?凸透镜是指中央较厚、边缘较薄的透镜,可以使平行光线聚焦到一个点上;凹透镜则相反,中央较薄、边缘较厚,会使平行光线发散。
Q2: 请解释透镜的焦距。
透镜的焦距是指平行光线通过透镜后会聚或发散的距离。
对于凸透镜,焦点在透镜的正面,焦距为正值;对于凹透镜,焦点在透镜的反面,焦距为负值。
5. 干涉和衍射Q1: 什么是干涉现象?干涉现象是指当两束或多束光线相遇时,由于光波的叠加和相长干涉,产生了明暗相间的干涉条纹。
干涉班纹的形态和颜色取决于光的频率、波长、入射光线的角度等因素。
Q2: 请解释衍射现象。
衍射现象是指当光通过绕过或通过一个障碍物时,会出现光的弯曲或扩散的现象。
大学物理第十四章波动光学课后习题答案及复习内容

第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。
2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。
3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。
4. 掌握光栅衍射公式。
会确定光栅衍射谱线的位置。
会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 了解自然光和线偏振光。
理解布儒斯特定律和马吕斯定律。
理解线偏振光的获得方法和检验方法。
6. 了解双折射现象。
二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。
相应的光源称为相干光源。
获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。
2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。
nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。
即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。
4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。
其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十四章 几何光学习题与解答14-1.如题图14-1所示,一束平行光线以入射角θ射入折射率为n ,置于空气中的透明圆柱棒的端面.试求光线在圆柱棒内发生全反射时,折射率n 应满足的条件.分析:一次折射,一次反射;利用端面折射角与内侧面入射角互余及全反射条件即可求解。
解:设光线在圆柱棒端面的折射角为γ,在内侧面的入射角为'θ,根据折射定律,有'sin 'cos sin sin 222θθγθn n n n -===光线在界面上发生全反射的条件为1'sin ≥θn∴发生全反射时,n 必须满足θ2sin 1+≥n14-2.远处有一物点发出的平行光束,投射到一个空气中的实心玻璃球上.设玻璃的折射率为50.1=n ,球的半径为cm r 4=.求像的位置.分析:利用逐步成像法,对玻璃球的前后两个球面逐一成像,即可求得最后像的位置.用高斯成像公式时,应注意两个球面的顶点位置是不同的.cm r r cm r r 4,421-=-===.解:cm cm r n n f 12)415.15.1(1'11=⨯-=-=cm cm f n f 8)5.112('111-=-=-=cm f p p p f p f 12'',,1''1111111==∞==+ 或用-∞====-=-1111111111,1,5.1','''p n n n r n n p n p ncm p p 12',415.11'5.111=-=∞--对玻璃球前表面所成的像,对后表面而言是物,所以cm cm r p p 4)812(2'212=-=+=cm cm r n f 8)]4(5.111[11'22=-⨯-=-=cm cm nf f 12)85.1('22-=⨯-=-=cm cm f p f p p p f p f 2)12484('',1''222222222=+⨯=-==+题图14-1或用1',5.1,'''222222222===-=-n n n r n n p n p ncm p p 2',45.1145.1'122=--=-像在球的右侧,离球的右边2cm 处.14-3.如题图14-3所示的一凹球面镜,曲率半径为40cm,一小物体放在离镜面顶点10cm 处.试作图表示像的位置、虚实和正倒,并计算出像的位置和垂轴放大率.分析:利用凹面镜的半径可确定焦距,以知物距,由球面镜的物像公式和横向放大率公式可求解。
解:像的位置如图所示,为正立、放大的虚像. 2)1(10120''20'1'112021=-⨯-⨯====+-==pn n p cmp f p p cm R f β14-4.高为0h 的物体,在焦距0'>f 的薄透镜左侧,置于f p <<0的位置。
试用作图法表示像的位置,实、虚,放大还是缩小,正立还是倒立.并用文字指明.分析:0'>f ,利用过凸透镜光心的光线方向不变,平行主光轴的入射光线折射后过像方焦点画图。
解:成像光线如题14-4解图所示,所成之像是:放大、正立的虚像.14-5.高为0h 的物体,在焦距0'<f 的薄透镜左侧,放置在f p >的位置,试用作图法表示像的位置,实、虚,放大还是缩小,正立还是倒立。
并用文字指明.分析:0'<f ,利用过凹透镜光心的光线方向不变,平行主光轴的入射光线折射后的反向延长线过像方焦点。
解:成像光线如题14-5解图所示.所成之像是:缩小、正立的虚像.14-6.一竖立玻璃板的折射率为1.5,厚度为10cm ,观察者在玻璃板后10cm 处,沿板的法线方向观察置于同一法线上10cm 处的一个小物体时,它距离观察者有多远?分析:两次平面折射。
解:由平面折射公式,利用逐步成像法,即可求得物体的像.根据cmp n n cm p cm p n n cm p p nn p 67.16'.50.1,1',25)1510(.15',1,50.1',10,''22221111-=∴==-=--=-=∴==-==距观察者距离 cm cm L 67.26)67.1610(=+=14-7.为下列情况选择光焦度合适的眼镜. (1)一位远视者的近点为80.0cm;(2 ) 一位近视者的远点为60.0cm .(1)分析:远视眼应配凸透镜眼镜,配上眼镜后,相当于物体在离明视距离(cm p 25-=)处,而所成虚像在近点处(cm p 80'-=).解:由透镜成像公式'11'1f p p =- 可得'1251801f =--- 解得镜片焦距cm f 36.36'=,其光焦度为D f 75.2m3636.01'1===φ 应配眼镜度数为27510075.2=⨯度.(2)分析:近视者应配凹透镜眼镜,配上眼镜后,从无穷远处()-∞=p 物体发出的光看似从远点处发出,即虚像成在远点处(cm p 60'-=).解:由透镜成像公式'11'1f p p =- 可得'11601f =∞--- 解得镜片焦距cm f 60'-=,其光焦度为D f 67.1m60.01'1-=-==φ 应配眼镜度数为16710067.1=⨯度.14-8.一双凸薄透镜的两表面半径均为50m m,透镜材料折射率n =1.5,求该透镜位于空气中的焦距为多少?分析:将已知条件代入薄透镜在空气中的焦距公式。
解 位于空气中时,)11)(1(121r r n f --=' 501)501501)(15.1(=---= 即 )mm (50=-='f f14-9.一玻璃棒(n=1.5),长50cm,两端面为半球面,半径分别为5cm 和10cm,一小物高0.1厘米,垂直位于左端球面顶点之前20厘米处的轴线上.求:(1)小物经玻璃棒成像在何处? (2)整个玻璃棒的横向放大率为多少?分析:光线经过凸球面折射,再经过凹球面折射,利用球面折射成像公式逐次成像求像的位置。
整个横向放大率为每次横向放大率的乘积。
注意每次成像的顶点位置不同。
解:小物经第一个球面折射成像。
由球面折射成像公式rn n p n p n -=-''' 有515.1201'5.11-=--p 得 cm p 30'1=横向放大率:1)20(5.1301''1111-=-⨯⨯==p n p n β 再经第二个球面折射成像由 cm d p p 205030'12-=-=-= 有105.11205.1'12--=--p 得 cm p 40'2-= 即小物经玻璃棒成像于距第二个球面顶点处水平向左40cm处横向放大率:3)20(1)40(5.1''22222=-⨯-⨯==p n p n β(2)整个玻璃棒的横向放大率 321-==βββ题14-14解图十五章 波动光学习题与解答15-1.在双缝干涉实验中,两缝的间距为0.6mm ,照亮狭缝s 的光源是汞弧灯加上绿色滤光片.在2.5m远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为 2.27m m.试计算入射光的波长,如果所用仪器只能测量mm x 5≥∆的距离,则对此双缝的间距d 有何要求?分析:由明纹位置公式求解。
解:在屏幕上取坐标轴Ox ,坐标原点位于关于双缝的对称中心。
屏幕上第k 级明纹中心的距坐标原点距离:λdD kx ±=--可知 dD d D k d D k x x x k k λλλ=-+=-=∆+)1(1代入已知数据,得 nm d Dx545=∆=λ 对于所用仪器只能测量mm x 5≥∆的距离时 mm x D d 27.0=∆≤λ15-2.在杨氏双缝实验中,设两缝之间的距离为0.2mm .在距双缝1m 远的屏上观察干涉条纹,若入射光是波长为400n m至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?(1nm=10-9m )分析:由双缝干涉屏上明纹位置公式,求K 取整数时对应的可见光的波长。
解:已知:d =0.2mm,D =1m,x =20m m 依公式: λk dD x =∴ Ddxk =λ=4×10-3 mm=4000nm故 k =10 λ1=400nmk =9 λ2=444.4nm k =8 ﻩﻩ λ3=500nm k =7 λ4=571.4nm k =6 ﻩﻩﻩλ5=666.7nm这五种波长的光在所给观察点最大限度地加强.15-3.如图15-3所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I与干涉加强时最大强度I m ax 的比值.分析:已知光程差,求出相位差.利用频率相同、振动方向相同的两列波叠加的合振幅公式求出P 点合振幅。
杨氏双缝干涉最大合振幅为2A。
解:设S 1、S 2分别在P点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以 2max 4A I ∝因为 λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后()3π23π2π212=⋅=-=∆λλλϕr r P 点合振动振幅的平方为:22223π2cos 2A A A A =++∵ I ∝A 2 ∴ I /Imax =A 2/4A2=1/415-4.用图所示的瑞得干涉仪可以测定气体在各种温度和压力下的折射率,干涉仪的光路原理与杨氏双缝类似.单色平行光入射于双缝后,经两个长为l 的相同的玻璃管,再由透镜会聚于观察屏上.测量时,可先将两管抽成真空,然后将待测气体徐徐导入一管中,在观察屏上关于两管的对称位置处观察干涉条纹的变化.即可求出待测气体的折射率.某次测量,在将气体徐徐导入下管的过程中,观察到有98条干涉条纹移动,所用的黄光波长为589.3nm(真空中),cm l 20=,求该气体的折射率.分析:当气体慢慢导入管内,由于两束相干光的光程差改变了,从S S r 1 r 2题图15-31S 2S1r 2r题图15-4而引起干涉条纹发生移动.解:气体导入一管过程中,光程差从零变为:λδk l nl =-=,有98条干涉条纹移动即可k=98.所以,00029.19811=+=+=ll k n λλ15-5.在图所示的洛埃德镜实验装置中,距平面镜垂距为1mm的狭缝光源0s 发出波长为680nm 的红光.求平面反射镜在右边缘M 的观察屏上第一条明条纹中心的距离.已知cm MN 30=,光源至平面镜一端N 的距离为20c m.分析:洛埃德镜可看作双缝干涉,光源S0和虚光源S 0′是相干光源.但是洛埃德镜的反射光有半波损失,故屏上的干涉条纹与双缝干涉条纹互补,即屏上的明暗位置互换.解:cm D mm d 50,2==由明纹条件:λλλθδk D x dd =+=+=22sin 代入1=k ,mm dD x 21105.82-⨯==λ15-6.在双缝干涉实验中,单色光源S 0到两缝S 1和S2的距离分别为1l 和2l ,并且λ321=-l l ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D(D >>d ),如图15-6.求: (1) 零级明纹到屏幕中央O 点的距离.(2) 相邻明条纹间的距离.解:(1) 如图,设P0为零级明纹中心 则 D O P d r r /012≈-又 0)()(1122=+-+r l r l∴ λ32112=-=-l l r r ∴d D d r r D O P /3/)(120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件 λδk ±= (k =1,2,....)d D k x k /)3(λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距=-+k k x x 1d D /λ15-7.在S i的平表面上氧化了一层厚度均匀的SiO 2薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的A B段,平面图).现用波长为600nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中AB 段共有8条暗纹,且B处恰好是一条暗纹,求薄膜的厚度.(S i折射率为 3.42,SiO 2折射率为1.50)分析:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长.解:设膜厚为e, A 处为明纹, B 处为暗纹,2ne =2λ(2k +1),(k =0,1,2,…), 第8个暗纹对应上式k =7,()nk e 412λ+==1.5×10-3m m屏d S 2 S 1 l 1 S 0 l 2OD题图15-6OP 0 r 1 r 2Dl 2s 1 s 2d l 1 0x 题15-6解图Si ABSiO 2,膜题图15-720cm30cmS 1S 01mm15-8.在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600nm 的光波干涉相消,对λ2=700nm 的光波干涉相长.且在600nm 到700nm 之间没有别的波长的光是最大限度相消或相长的情形.求所镀介质膜的厚度.(1nm=10-9m ).分析:上、下表面反射均为由光疏介质到光密介质,故不计附加光程差.光程差为ne 2=δ.解:当光垂直入射时,i =0.对λ1(干涉相消): ()112212λ+='k e n ①对λ2(干涉相长): 22λk e n =' ② 由① ②解得: ()32121=-=λλλk将k 、λ2、n '代入②式得n k e '=22λ=7.78×10-4mm 15-9.白光垂直照射在空气中厚度为m μ40.0的玻璃片上,玻璃的折射率为1.50.试问在可见光范围内,哪些波长的光在反射中增强?哪些波长的光在透射中增强?分析:当光垂直入射到玻璃片时,由于玻璃的折射率大于空气的折射率.因此,反射光在玻璃表面上存在半波损失.所以,反射光干涉时光程差22λδ+=ne ,透射光干涉时光程差ne 2=δ.解:玻璃片上下表面的反射光加强时, 应满足 3,2,1,22==+k k en λλ即 124-=k neλ 在可见光范围内,只能取3=k (其它值均在可见光范围外), 代入上式,得 nm 480=λ 玻璃片上下表面的透射光加强时, 应满足 3,2,1,0,2==k k en λ 或,反射光应满足干涉减弱条件(与透射光互补) 即 3,2,1,0,2)12(22=+=+k k en λλ都有:kne 2=λ 2=k 时,nm ne600221==λ 3=k 时,nm ne400322==λ15-10.波长为λ的单色光垂直照射到折射率为n 2的劈形膜上,如图所示,图中 n1<n 2<n 3,观察反射光形成的干涉条纹.(1) 从劈形膜顶部O开始向右数起,第五条暗纹中心所对应的薄膜厚度e 5是多少?(2) 相邻的二明纹所对应的薄膜厚度之差是多少?分析:因为 n1<n2<n 3 ,劈形膜上下表面都有半波损失,所以二反射光之间没有附加相位差,光程差为2n2e .解:第五条暗纹中心对应的薄膜厚度为e5, 2n2e 5 =(2k +1)λ/2 k = 4()522241/49/4e n n λλ=⨯+=明纹的条件是 2n 2e k =k λ 相邻二明纹所对应的膜厚度之差e=e k +1-e k=λ/(2n2) . 15-11.如图所示,1G 是用来检验加工件质量的标准件.2G 是待测的加工件。