高二数学下册第二单元《平面向量》知识点

合集下载

高二数学下册第二单元平面向量知识点梳理

高二数学下册第二单元平面向量知识点梳理

高二数学下册第二单元平面向量知识点梳理数学,是研究数目、构造、变化、空间以及信息等观点的一门学科,查词典数学网为大家介绍了高二数学下册第二单元平面向量知识点,请大家认真阅读,希望你喜爱。

考点一:向量的观点、向量的基本定理【内容解读】认识向量的实质背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等观点,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量观点的理解,向量是能够自由挪动的,平移后所得向量与原向量同样 ;两个向量没法比较大小,它们的模可比较大小。

考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法例、三角形法例进行向量的加减运算 ;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系 ;掌握向量的数目积的运算,领会平面向量的数目积与向量投影的关系,并理解其几何意义,掌握数目积的坐标表达式,会进行平面向量积的运算,能运用数目积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不第1页/共4页大,考察要点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其余内容相联合。

考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】要点考察定义和公式,主要以选择题或填空题型出现,难度一般。

因为向量应用的宽泛性,常常也会与三角函数,分析几何一并考察,若出此刻解答题中,难度以中档题为主,有时也以难度略高的题目。

考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考常常出现的问题,考察了向量的知识,三角函数的知识,达到了高考取试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相联合,也有向量与三角函数图象平移联合的问题,属中档偏易题。

高二数学平面向量知识点

高二数学平面向量知识点

高二数学平面向量知识点平面向量是在二维平面内既有方向direction又有大小magnitude的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量标量。

平面向量用小写加粗的字母a,b,c表示,也可以用表示向量的有向线段的起点和终点字母表示。

平面向量1.基本概念:向量的定义,向量的模,零向量,单位向量,对向量,共线向量和等向量。

2.加法与减法的代数运算:1如果a=x1,Y1,B=X2,Y2,ab=x1+X2,Y1+Y2向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有以下规则:+++交换律++C=++C组合律;3.实数与向量的积:实数与向量的积是一个向量。

1||=||·||;2当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:1向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.2如果=,B=那么‖B平面向量基本定理:如果E1和E2是同一平面上的两个非共线向量,那么对于这个平面上的任何向量,只有一对实数,所以=E1+E24.p分有向线段所成的比:假设P1和P2是直线上的两点,点P是与P1和P2不同的任何点,那么就有一个实数,所以=,这就是点P被分成有向线段的比率。

当点p在线段上时,>0;当点p在线段或的延长线上时,<0;拆分点坐标公式:if=;的坐标是,,;然后≠ - 1、中点坐标公式:5.向量的数量积:1.矢量的夹角:已知两个非零向量与b,作=,=b,则∠aob=叫做向量与b的夹角。

2.两个向量的量积:已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.其中| B | COS称为向量B在方向上的投影3.向量的数量积的性质:如果=,B=那么E·=·E=| cose是单位向量;⊥b·b=0,b为非零向量;||=;cos==.4.向量的量积运算规律:·B=B··B=·B=·B=·B;+b·c=·c+b·c。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

高中数学有关平面向量知识点总结概括

高中数学有关平面向量知识点总结概括

高中数学有关平面向量知识点总结概括高中数学平面向量的知识点总结概括如下:1. 平面向量的定义:平面上两点之间的有向线段。

2. 平面向量的表示法:用向量符号a或者AB来表示。

3. 平面向量的运算:- 平面向量的加法:向量a+b的结果是用起点为a的点与起点为b的点之间的有向线段所代表的向量。

- 平面向量的数乘:向量ka的结果是起点相同且方向与a相同或相反的线段,但其长度为ka倍。

- 平面向量的减法:向量a-b可以表示为a+(-b),其中-(b)表示b的反向量。

4. 平面向量的基本性质:- 平面上任意两个向量的和和差与其起点无关,即将平移后的向量的运算结果与平移前的向量的运算结果相同。

- 向量的交换律:a+b=b+a- 向量的结合律:(a+b)+c=a+(b+c)- 数乘的结合律:k(la)=(kl)a- 数乘的分配律:(k+l)a=ka+la- 零向量的性质:任何向量与零向量的和等于该向量本身。

5. 平面向量的数量积:- 数量积的定义:向量a与向量b的数量积a·b等于a、b的模的乘积和它们的夹角的余弦值的乘积。

- 数量积的计算公式:a·b=|a||b|cosθ,其中θ为a和b的夹角。

6. 平面向量的性质:- 数量积与夹角的关系:a·b=0当且仅当a与b垂直,即a与b的夹角为90度。

- 数量积的交换律:a·b=b·a- 数量积的结合律:(ka)·b=a·(kb)=k(a·b)- 非零向量的性质:若a·b=0,则a、b中至少有一个为零向量。

7. 平面向量的向量积:- 向量积的定义:向量a与向量b的向量积a×b等于a、b的模的乘积和它们的夹角的正弦值的乘积,方向垂直于a、b所在平面,符合右手定则。

- 向量积的计算公式:|a×b|=|a||b|sinθn,其中θ为a和b的夹角,n为单位法向量。

8. 平面向量的性质:- 向量积与夹角的关系:|a×b|=|a||b|sinθ,其中θ为a和b的夹角。

平面向量知识点梳理

平面向量知识点梳理

平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。

2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。

二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。

2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。

3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。

三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。

2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。

3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。

4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。

5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。

四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。

2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。

五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。

2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。

六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。

2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。

以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。

通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

高二数学平面向量知识点梳理

高二数学平面向量知识点梳理

高二数学平面向量知识点梳理平面向量是在二维平面内既有方向又有大小的量,物理学中叫也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。

小编准备了高二数学平面向量知识点,具体请看以下内容。

平面向量1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2. 加法与减法的代数运算:(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);3.实数与向量的积:实数与向量的积是一个向量。

(1)| |=| |(2) 当 a0时,与a的方向相同;当a0时,与a的方向相反;当 a=0时,a=0.两个向量共线的充要条件:(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .(2) 若 =( ),b=( )则‖b .平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得 = e1+ e2.4.P分有向线段所成的比:设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使 = ,叫做点P分有向线段所成的比。

当点P在线段上时,当点P在线段或的延长线上时,分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( -1),中点坐标公式: .5. 向量的数量积:(1).向量的夹角:已知两个非零向量与b,作 = , =b,则AOB= ( )叫做向量与b的夹角。

(2).两个向量的数量积:已知两个非零向量与b,它们的夹角为,则 b=| ||b|cos . 其中|b|cos 称为向量b在方向上的投影.(3).向量的数量积的性质:若 =( ),b=( )则e = e=| |cos (e为单位向量);b b=0 ( ,b为非零向量);| |= ;cos = = .(4) .向量的数量积的运算律:b=b( )b= ( b)= ( b);( +b)c= c+bc.6.主要思想与方法:本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。

平面向量知识点归纳总结

平面向量知识点归纳总结

平面向量是指在平面上具有大小和方向的量。

下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。

●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。

2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。

3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。

●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。

4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。

●向量的减法:a - b = (a₁- b₁, a₂- b₂)。

●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。

5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。

●计算公式为a ·b = a₁* b₁+ a₂* b₂。

●点积满足交换律:a ·b = b ·a。

●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。

6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。

●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。

●矢量积满足反交换律:a ×b = - (b ×a)。

●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。

7.平行向量和共线向量:●平行向量指方向相同或相反的向量。

●共线向量指在同一直线上的向量。

●如果两个向量平行,则它们的叉积为零。

8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。

●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学下册第二单元《平面向量》知识点
高二数学下册第二单元《平面向量》知识点
数学是学习和研究现代科学技术必不可少的基本工具。

以下是数学网为大家整理的高二数学下册第二单元平面向量知识点,供参考学习。

1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2. 加法与减法的代数运算:
(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
3.实数与向量的积:实数与向量的积是一个向量。

(1)| |=| |
(2) 当 a0时,与a的方向相同;当a0时,与a的方向相反;当 a=0时,a=0.
两个向量共线的充要条件:
(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .
(2) 若 =( ),b=( )则‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得 = e1+ e2.
4.P分有向线段所成的比:
设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使 = ,叫做点P分有向线段所成的比。

当点P在线段上时,当点P在线段或的延长线上时,
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( -1),中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量与b,作 = , =b,则AOB= ( )叫做向量与b的夹角。

(2).两个向量的数量积:
已知两个非零向量与b,它们的夹角为,则 b=| ||b|cos .
其中|b|cos 称为向量b在方向上的.投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e = e=| |cos (e为单位向量);
b b=0 ( ,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
b=b( )b= ( b)= ( b);( +b)c= c+bc.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。

由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

相关文档
最新文档