高二数学平面向量试题答案及解析
专题02 平面向量基本定理及坐标表示(专题测试)--解析版

专题02 平面向量基本定理及坐标表示(专题测试)【基础题】1. (2020·广东东莞市·高一期末)已知向量()2,3a =,(),6b m =,且a b ⊥,则m =( ) A .4- B .4C .9-D .9【答案】C【分析】根据向量的数量积的运算公式和向量的垂直条件,列出方程,即可求解. 【详解】由题意,向量(2,3)a =,(),6b m =,因为a b ⊥,可得2362180a b m m ⋅=⨯+⨯=+=,解得9m =-. 故选:C.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的垂直条件的应用,其中解答中熟记向量的数量积的计算公式是解答的关键,着重考查计算能力.2. (2020·广东揭阳市·高一期中)已知(1,1)AB =-,(0,1)C ,若2CD AB =,则点D 的坐标为 A .(2,3)- B .(2,3)-C .(2,1)-D .(2,1)-【答案】D【分析】设出D 的坐标,代入2CD AB =,计算出D 点的坐标.【详解】设(),D x y ,则(),1CD x y =-,()22,2AB =-,根据2CD AB =得()(),12,2x y -=-,即212x y =⎧⎨-=-⎩,解得()2,1D -,故选D. 【点睛】本小题主要考查向量的减法和数乘计算,考查两个向量相等的坐标表示,属于基础题.3.(2020·广东汕头市·高二期末)如图所示,已知在ABC 中,D 是边AB 上的中点,则CD =( )A .12BC BA -B .12BC BA -+ C .12BC BA --D .12BC BA + 【答案】B【分析】利用向量减法和数乘运算求得正确结论. 【详解】1122CD BD BC BA BC BC BA =-=-=-+.故选:B 4. (2019·广东深圳市·福田外国语高中高三一模(文))向量(1,2)a =,(2,)b k =-,若a 与b 共线,则|3|a b +=( )A B .C .D .5【答案】A【分析】通过向量共线求出k ,然后求解|3|a b +即可. 【详解】向量(1,2)a =,(2,)b k =-,a 与b 共线, ∴4k =-,即3(1,2)a b +=,∴2312a b +=+=故选:A .【点睛】本题考查向量的共线,向量的模的求法,属于基础题.5.(2020·东莞市光明中学高二月考)已知向量()3,2a =,(),4b x =且//a b ,则x 的值是( ) A .6- B .83C .6D .83-【答案】C【分析】根据平面向量共线的坐标表示可得出关于实数x 的等式,由此可解得实数x 的值. 【详解】向量()3,2a =,(),4b x =且//a b ,212x ∴=,解得6x =.故选:C.【点睛】本题考查平面向量共线的坐标表示,属基础题.6.(2020·汕头市澄海中学高二期中)已知向量()2,1a =-,()5,4b =-,(),c x y =,若()a b c +⊥,则x 、y 可以是( )A .1x =,1y =B .0x =,1y =C .1x =,0y =D .1x =,1y =- 【答案】A【分析】根据()0a b c +⋅=可得x y =.【详解】因为()a b c +⊥,所以()()()3,3,330a b c x y x y +⋅=-⋅=-+=,即x y =,故选:A. 【点睛】本题考查了平面向量垂直的坐标表示,考查了平面向量线性运算的坐标表示,属于基础题. 7.(2020·广东深圳市·高一期末)设向量(,1)a x x =+,(1,2)b =,且a b ⊥,则x =( ). A .23-B .23C .1-3D .13【答案】A【分析】由a b ⊥得0a b ⋅=,建立方程求解即可. 【详解】a b ⊥,()210a b x x ∴⋅=++=,解得23x =-.故选:A. 【点睛】本题考查向量垂直的坐标表示,属于基础题.8.(2012·广东湛江市·)已知向量()3,4a =,()sin ,cos b αα=,且//a b ,则tan α=( ) A .34B .34-C .43D .43-【答案】A【分析】根据向量共线的坐标表示以及同角公式可得结果. 【详解】因为//a b ,所以3cos 4sin 0αα-=,所以3tan 4α=.故选:A. 【点睛】本题考查了向量共线的坐标表示,考查了同角公式,属于基础题.9.(2020·广州市·广东实验中学高三月考(文))已知向量()(),,1,2a x y b ==-,且()1,3a b +=,则2a b -等于( ) A .1 B .3C .4D .5【答案】D【分析】先根据已知求出x,y 的值,再求出2a b -的坐标和2a b -的值.【详解】由向量()(),,1,2a x y b ==-,且()1,3a b +=,则()(1,2)1,3a b x y +=-+=,解得2,1x y ==,所以()()2,1,1,2a b ==-,所以2(2,1)2(1,2)(4,3)a b -=--=-,所以224(5a b -=+=,故答案为D【点睛】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.10.(多选题)(2020·廉江市第三中学高二月考)如果平面向量(2,0)a=,(1,1)b =,那么下列结论中正确的是( ) A .2a b = B .22a b ⋅=C .()-⊥a b bD .//a b【答案】AC【分析】根据题中条件,由向量模的坐标表示,数量积的坐标表示,以及向量共线的坐标表示,逐项判定,即可得出结果. 【详解】由平面向量(2,0)a=,(1,1)b =知:在A 中,2=a ,2b =,∴=2a b ,故A 正确;在B 中,2a b,故B 错误;在C 中,(1,1)a b -=-,∴()110a b b -⋅=-=,∴()-⊥a b b ,故C 正确; 在D 中,∵2011≠,∴a 与b 不平行,故D 错误. 故选:A C .【点睛】本题主要考查向量数量积的坐标运算,考查向量共线的坐标表示等,属于基础题型.【提升题】11.(2021·广东高三其他模拟)在90A ∠=︒的等腰直角ABC 中,E 为AB 的中点,F 为BC 的中点,BC AF CE λμ=+,则λ=( )A .23-B .32-C .43-D .1-【答案】A【分析】以A 为原点建立直角坐标系,设直角边长为2,写出各点坐标,计算可得λ的值. 【详解】以A 为原点建立直角坐标系,设()2,0B ,()0,2C ,则()1,1F ,()1,0E ,则()2,2BC =-,()()()1,11,2,2AF CE λμλμλμλμ+=+-=+-,所以222λμλμ+=-⎧⎨-=⎩,所以23λ=-.故选:A12.(2020·广东高三月考)已知菱形ABCD 的边长为2,60A ∠=︒,点P 满足1()2AP AB AC =+,则PA PD ⋅=( )A .0B .3C .3D .92【答案】C【分析】如图,以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系,由1()2AP AB AC =+,可知P 点为线段BC 的中点,由60A ∠=︒,菱形ABCD 的边长为2,可求出,,P A D 的坐标,从而可求出PA PD ⋅的值【详解】以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系, 根据1()2AP AB AC =+,可知P 点为线段BC 的中点,又因为60A ∠=︒,所以2AB BC CD DA BD =====,易求得31,22P ⎛⎫ ⎪⎝⎭,(3,0)A -,(0,1)D -,331,22PA ⎛⎫=-- ⎪ ⎪⎝⎭,33,22PD ⎛⎫=-- ⎪ ⎪⎝⎭,所以,3PA PD ⋅=, 故选:C .13. (2020·广东汕尾市·高一月考)已知向量()1,2a =,()2,b t =.若a b ⊥,则t =______,此时a 与a b +的夹角为______. 【答案】1-π4【分析】利用向量垂直的坐标表示列方程,解方程求得t 的值.利用夹角公式,求得a 与a b +的夹角的余弦值,进而求得a 与a b +的夹角.【详解】由于a b ⊥,所以()()1,22,220t t ⋅=+=,解得1t =-, 所以()()2,1,3,1b a b =-+=. 设a 与a b +的夹角为θ,则()()()22221,23,152cos 25101231a a ba a bθ⋅+⋅====⋅⋅++⋅+. 由于[]0,θπ∈,所以4πθ=.故答案为:1-;π4【点睛】本小题主要考查向量数量积的坐标运算,考查向量垂直的坐标表示,考查向量夹角的计算,属于中档题.14(2021·全国高三其他模拟)地砖是一种地面装饰材料,也叫地板砖,用黏土烧制而成质坚、耐压、耐磨、防潮.地板砖品种非常多,图案也多种多样.如图是某公司大厅的地板砖铺设方式,地板砖有正方形与正三角形两种形状,且它们的边长都相同,若OA a =,OB b =,则AF =( )A .5122a b -- B .33232a b ⎛⎫-+- ⎪ ⎪⎝⎭C .3323a b ⎛--+ ⎝⎭ D .3323a b ⎛-+- ⎝⎭ 【答案】D【分析】以AB 的中点M 为坐标原点建立平面直角坐标系,根据平面向量的坐标运算公式,结合平面向量基本定理进行求解即可.【详解】以AB 的中点M 为坐标原点建立平面直角坐标系,设2AB =,则(3O ,()1,0A -,()10B ,,(1,223F +,所以(1,3OA =--,(1,3OB =-,(2,2AF =+.设AF OA OB λμ=+,则22λμ-+=⎧⎪-=+233λμ⎧=--⎪⎪⎨⎪=-⎪⎩,所以33233AF OA OB ⎛⎫=-+- ⎪ ⎪⎝⎭,即3323AF a b b ⎛⎫=-+- ⎪ ⎪⎝⎭,故选:D 【点睛】用一组基底表示平面向量往往利用平面向量的坐标表示公式以及平面向量运算的坐标表示公式进行求解.15.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b,则函数f (x )的值域. 【答案】(1(2) 【分析】(1)利用向量共线的坐标表示可得cos 02x x -=,根据二倍角的正弦公式可得1sin 22x =,根据x 的范围可得26x π=,进一步可得tan 23x =;(2)利用平面向量的数量积的坐标表示与两角和的正弦公式可得())4fx x π=+,再根据x 的范围,结合正弦函数的图象可得结果.【详解】(1)因为//a b ,所以cos 02x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan6x π==. (2)()f x a b =⋅=2cos x x x x+=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以2sin()(,1]42x π+∈,所以()(3,6]f x ∈. 【点睛】本题考查了平面向量共线的坐标表示,考查了二倍角的正弦公式,考查了平面向量数量积的坐标表示,考查了两角和的正弦公式,考查了利用正弦函数的图象求值域,属于中档题.【拓展题】(选用)16.(2020·山西太原市·高三期末(理))赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD AB AC λμ=+,若2DF AF =,则可以推出λμ+=_________.【答案】1213【分析】利用建系的方法,假设1AF =,根据120ADB ∠=,利用余弦定理可得AB 长度,然后计算cos ,sin DAB DAB ∠∠,可得点D 坐标,最后根据点,B C 坐标,可得结果.【详解】设1AF =,则3,1AD BD AF ===如图由题可知:120ADB ∠=,由2222cos AB AD BD AD BD ADB =+-⋅⋅∠所以AB =AC AB ==所以),22BC ⎛⎫⎪ ⎪⎝⎭,()0,0A又sin sin sin 26BD AB BAD BAD ADB =⇒∠=∠∠所以cos BAD ∠==所以()cos ,sin D AD AD BAD BAD ∠∠即D ⎝⎭所以()2113339,13,026,26ADAB ⎛⎫==⎪ ⎪⎝⎭13,22AC ⎛=⎝⎭又ADAB AC λμ=+所以913313μλμμ⎧==⎪⎪⇒⎨⎪==⎪⎩ 所以1213λμ+=故答案为:1213【点睛】本题考查考查向量的坐标线性表示,关键在于建系,充分使用条件,考验分析能力,属难题.。
2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)

A.√3
B.2√3
C.3√3
D.4√3
)
)
10.(多选)设 M 是△ABC 所在平面内一点,则下列说法正确的是(
A.若⃗
1 ⃗
2
1 ⃗
,则
2
⃗
M 是边 BC 的中点
B.若⃗=2⃗
⃗ ,则点 M 在边 BC 的延长线上
C.若⃗=-⃗
⃗,则 M 是△ABC 的重心
1
1
D.若⃗=x⃗+y⃗ ,且 x+y= ,则△MBC 的面积是△ABC 面积的
2
2
1
4
11.(历年山东德州高三模拟)设向量 a,b 不平行,向量 a+ λb 与-a+b 平行.则实数 λ=
.
12.(历年浙江杭州二中高二期中)在等腰梯形 ABCD 中,设⃗=a,⃗=b,⃗ =2⃗,M 为 BC 的中点,则
2
3
1
3
A. a+ b
2
3
1
3
C. a- b
2
3
)
(
)
1
3
B.- a+ b
2
3
1
3
D.- a- b
5.(历年四川宜宾叙州区第一中学月考)在▱ABCD 中,若|⃗
A.▱ABCD 为菱形
(
⃗|=|⃗
⃗|,则必有(
)
B.▱ABCD 为矩形
C.▱ABCD 为正方形 D.▱ABCD 为梯形
6.设 a,b 是非零向量,则“a=2b”是“|a+b|≥|a|+|b|”的
A.充分不必要条件
新疆高二数学平面向量及其应用练习试题 百度文库

一、多选题1.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭2.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( )A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫ ⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 6.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =7.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C8.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 9.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解10.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+11.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 12.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-13.对于ABC ∆,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ∆为等腰三角形B .若A B >,则sin sin A B >C .若8a =,10c =,60B ︒=,则符合条件的ABC ∆有两个D .若222sin sin sin A B C +<,则ABC ∆是钝角三角形14.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形15.题目文件丢失!二、平面向量及其应用选择题16.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等腰或直角三角形17.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b 的范围是)+∞.以上结论中正确的有( )A .1个B .2个C .3个D .4个18.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心19.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定20.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13- D .34-21.在ABC ∆中,设222AC AB AM BC -=⋅,则动点M 的轨迹必通过ABC ∆的( ) A .垂心B .内心C .重心D . 外心22.在ABC 中,若A B >,则下列结论错误的是( )A .sin sin AB > B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <23.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123B .63C .12D .18324.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭25.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7226.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭27.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .228.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )A .1-B .12-C .2-D .32-29.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .530.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( ) (注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心31.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b = ②ABC ∆的面积为833③ABC ∆的周长为443+ ④ABC ∆外接圆半径433R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.已知ABC 中,1,3,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°34.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )A .2133AB AD - B .1233AB AD - C .2133AB AD -+ D .1233AB AD -+ 35.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A 62B .1(62)2C 62D .1(62)2【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知 解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误;【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.2.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.3.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫ ⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩,解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.4.ABC 【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C .()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.5.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.6.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D .【详解】 ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确; ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB .【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.7.ACD【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确;对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确;对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R C R B C+=+=左边,故该选项正确. 【详解】 对于A ,由正弦定理2sin sin sin a b c R A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确;对于D ,由正弦定理2sin sin sin a b c R A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R C R B C B C++==++=左边,故该选项正确. 故选:ACD.【点睛】 本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对:因为,又,故可得,故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=,故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=. 故a 在b 上的投影向量为12a b b b b ⎛⎫⋅ ⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -, 则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形.故D 选项正确;综上所述,正确的有:ABD .故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.9.ABC【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解.【详解】对于,因为为锐角且,所以三角解析:ABC【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解.【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且sin 4 3.9c B b c ===<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 sin 432c B b =⨯=>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确.故选:ABC.【点睛】本题考查了判断三角形解的个数的方法,属于基础题. 10.ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确;对于B 选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.11.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.12.AB【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】当时,则、方向相反且,则存在负实数解析:AB【分析】 根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】 当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确.故选:AB.【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.13.BD【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可.【详解】在中,对于A ,若,则或,当A =解析:BD【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可.【详解】在ABC ∆中,对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=,当A =B 时,△ABC 为等腰三角形;当2A B π+=时,△ABC 为直角三角形,故A 不正确,对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B =,即sin sin A B >成立.故B 正确;对于C ,由余弦定理可得:b C 错误; 对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,∴222cos 02a b c C ab+-=<,∴C 为钝角,∴ABC ∆是钝角三角形,故D 正确; 综上,正确的判断为选项B 和D .故选:BD .【点睛】本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.14.AD【解析】【分析】由条件可得,再两边平方即可得答案.【详解】∵P 是所在平面内一点,且,∴,即,∴,两边平方并化简得,∴,∴,则一定是直角三角形,也有可能是等腰直角三角形,故解析:AD【解析】【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案.【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=,∴|||()()|0CB PB PA PC PA --+-=,即||||CB AC AB =+,∴||||AB AC AC AB -=+,两边平方并化简得0AC AB ⋅=,∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形,故不可能是钝角三角形,等边三角形,故选:AD.【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.15.无二、平面向量及其应用选择题16.A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=,0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形. 故选:A.【点睛】本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.17.B【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误.【详解】①由正弦定理及大边对大角可知①正确;②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=,结合()sin sin sin cos sin cos C A B A B B A =+=+可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =,因为0A π<<,所以2A π=,因此③正确;④由正弦定理sin sin a b A B =得sin sin sin a B b A A==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin A ⎫∈⎪⎪⎝⎭,即)b ∈,故④错误. 故选:B【点睛】 本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题.18.B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 19.B【分析】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a a θ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈, 所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1, 所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a-⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.20.B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】 13BE AE AB AD AB =-=-,1()2AD AB AC =+ ,5166BE AB AC AB AC λμ∴=-+=+, 56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.21.D【分析】 根据已知条件可得()222AC AB AC AB BC AM BC -=+⋅=⋅,整理可得()0BC MC MB ⋅+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线上,可得轨迹必过三角形外心.【详解】 ()()()222AC AB AC AB AC AB AC AB BC AM BC -=+⋅-=+⋅=⋅ ()20BC AC AB AM ∴⋅+-=()()0BC AC AM AB AM BC MC MB ⇒⋅-+-=⋅+=设E 为BC 中点,则2MC MB ME += 20BC ME ∴⋅= BC ME ⇒⊥ME ⇒为BC 的垂直平分线M ∴轨迹必过ABC ∆的外心本题正确选项:D【点睛】本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论.22.C【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD .【详解】设ABC 三边,,a b c 所对的角分别为,,A B C ,由A B >,则,a b >∴sin sin 0A B >>,A 正确;由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =,当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确.【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题.23.A【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 48123222ABC S ab C ∆=≤⨯⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值24.C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.25.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.26.D【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x 的取值范围.【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合),所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭.故选:D【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.27.A【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点,根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OCOC OC ⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-. 故选:A.【点睛】 本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力.28.B【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量BD ,BM ,然后结合平面向量的运算法则即可求得最终结果.【详解】如图所示,因为点D 在线段BC 上,所以存在t R ∈,使得()BD tBC t AC AB ==-, 因为M 是线段AD 的中点,所以: ()()()111112222BM BA BD AB t AC t AB t AB t AC =+=-+-=-++, 又BM AB AC λμ=+,所以()112t λ=-+,12t μ=, 所以12λμ+=-. 故选:B.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.29.A【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 30.C【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++=,则NA NB NC +=-,取AB 的中点E ,则2NA NB NE CN +=-=,所以2NE CN =,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.31.C【分析】由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论.【详解】4c =,3C π∠=,可得42sin 3sin 3c R C π===,可得ABC ∆外接圆半径3R =,④正确; ()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==, 则cos 0A =,即2A π=或sin 2sin B A =,即2b a =; 若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得3a =,3b =,则三角形的周长为4+;面积为123bc =; 则②③成立; 若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得3a =,3b =则三角形的周长为4a b c ++=+11sin sin 223333S ab C π==⋅⋅= 则②③成立①不成立;综上可得②③④一定成立,故选C .【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.32.C【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可.【详解】。
2023年福建省普通高中高二1月学业水平合格性考试数学试题+答案解析(附后)

一、单选题:本题共15小题,每小题3分,共45分。
在每小题给出的选项中,只有一项是符合题目要2023年福建省普通高中高二1月学业水平合格性考试数学试题求的。
1.已知集合,则( )A.B.C.D.2.一个正方体的六个面上分别有字母A ,B ,C ,D ,E ,F ,如下图所示是此正方体的两种不同放置,则与D 面相对的面上的字母是( )A. BB. EC. B 或FD. E 或F3.直线的倾斜角是( )A. B.C. D.4.函数的定义域是( )A.B.C. D. R5.随机投掷一枚质地均匀的骰子,出现向上的点数为奇数的概率是( )A. B.C. D.6.等差数列中,若,公差,则( )A. 10B. 12C. 14D. 227.已知函数则( )A. 4B. 2C.D.8.已知,且为第一象限角,则( )A. B.C.D.9.函数的零点所在的区间是( )A. B.C.D.10.函数的最小正周期是( )A. B. C. D.11.如图,在长方体体中,分别是棱的中点,以下说法正确的是( )A.平面 B. 平面C. D.12.函数的图象大致为( )A. B.C. D.13.为了得到函数的图象,只需把函数的图象( )A. 向右平移个单位长度,再向上平移1个单位长度B. 向右平移个单位长度,再向下平移1个单位长度C. 向左平移个单位长度,再向上平移1个单位长度D. 向左平移个单位长度,再向下平移1个单位长度14.已知,则的大小关系是( )A. B. C. D.15.下列各组向量中,可以用来表示向量的是( )A. B.C. ,D.二、填空题:本题共5小题,每小题5分,共25分。
16.数列的前n项和为,且,则__________.17.的内角所对的边分别为,且,则__________.18.已知向量与满足,且,则与的夹角等于__________.19.一车间为了规定工时定额,需要确定加工某零件所需的时间,为此进行了多次试验,收集了加工零件个数x与所用时间分钟的相关数据,并利用最小二乘法求得回归方程据此可预测加工200个零件所用的时间约为__________分钟.20.某工厂要建造一个容积为的长方体形无盖水池.如果该水池池底的一边长为,池底的造价为每平方米200元,池壁的造价为每平方米100元,那么要使水池的总造价最低,水池的高应为__________三、解答题:本题共5小题,共50分。
高二数学空间向量及其运算试题

高二数学空间向量及其运算试题1.在平行六面体ABCD—A1B1C1D1中,M为AC与BD的交点,若=,=,=.则下列向量中与相等的向量是()A.B.C.D.【答案】.A【解析】=+(-)=-++.【考点】本题主要考查向量相等、向量的线性运算.考查学生的空间想象能力.点评:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化。
2.在下列条件中,使M与A、B、C一定共面的是()A. B.C. D.【答案】A;【解析】空间的四点P、A、B、C共面只需满足且既可.只有选项A【考点】主要考查向量的线性运算,共面向量基本定理。
点评:属基本题型,要求熟记共面向量基本定理。
3.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量的夹角是()A.0B.C.D.【答案】C【解析】应用向量的夹角公式=-1.所以量的夹角是,故选C。
【考点】本题主要考查向量的数量积及向量的坐标运算.点评:较好地考查考生综合应用知识解题的能力以及运算能力,属于基本题型。
4.已知空间四边形OABC,其对角线为OB、AC,M、N分别是对边OA、BC的中点,点G在线段MN上,且,现用基组表示向量,有=x,则x、y、z的值分别为.【答案】【解析】【考点】本题主要考查向量的线性运算。
点评:本题主要考查向量的线性运算,同时考查了考生的空间想象能力。
5.已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则DABC的形状是.【答案】直角三角形;【解析】利用两点间距离公式计算满足.故DABC的形状是直角三角形。
【考点】本题主要考查向量的坐标运算、模的概念及其运算。
点评:思路明确,计算简单,属基础题型。
6.已知向量,,若成1200的角,则k= .【答案】【解析】由已知,解得,而成1200的角,所以k=。
【考点】本题考查两个向量的坐标运算、数量积以及两个向量的夹角公式的应用。
点评:思路明确,需细心计算。
7.(12分)如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.(1)求向量的坐标;(2)设向量和的夹角为θ,求cosθ的值【答案】(1{0,-};(2)。
高考数学一轮总复习 专题5.1 平面向量的概念及线性运算练习(含解析)理

专题5.1 平面向量的概念及线性运算真题回放1.【2017年高考新课标Ⅱ卷文4题】设非零向量a ,b 满足+=-b b a a 则 ( ) A.a ⊥b B. =b a C. a ∥b D. >b a 【答案】A2.【2016年高考山东理8题】已知非零向量m ,n 满足4|m |=3|n |,cos ,m n =13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4(C )94(D )–94【答案】B【考点】平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从n ⊥(t m +n )出发,转化成为平面向量的数量积的计算.本题能较好地考查考生转化与化归思想、基本运算能力等.3.【2016年高考北京理4题】设,a b 是向量,则“||||=a b ”是“||||+=-a b a b ”的 (A ) 充分而不必要条件 (B )必要而不充分条件(C ) 充分必要条件 (D )既不充分也不必要条件 【答案】D【考点】充要条件,向量运算【名师点睛】由向量数量积的定义||||cos θ⋅=⋅⋅a b a b (θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法. 考点分析融会贯通题型一 平面向量的概念典例1 (2016-2017年河北武邑中学高二文周考)点C 在线段AB上,且,则ACuuu r 等于( )【答案】D【解析】因为点C 在线段AB 上,所以AC uuu r 等于 D.考点:向量的相等. 解题技巧与方法总结平面向量的概念问题需要牢牢抓住平行向量(共线向量)、相等向量、相反向量的概念及特征,需要注意平行向量可以包含两个向量重合的情况,这点需要与直线平行加以区别【变式训练1】(2016-2017学年河北武邑中学高一上学期月考)下列说法正确的是( ) A .零向量没有方向 B .单位向量都相等 C .任何向量的模都是正实数 D .共线向量又叫平行向量 【答案】D考点:向量的概念.【变式训练2】设a r是非零向量,λ是非零实数,下列结论中正确的是( )A .a r 与λa r的方向相反 B .a r 与2λa r 的方向相同 C .|-λa r |≥| a r|D .|-λa r |≥| λ|·a r【答案】B【解析】对于A ,当λ>0时,a r 与λa r 的方向相同,当λ<0时,a r 与λa r的方向相反,B 正确;对于C ,|-λa r |=|-λ|| a r |,由于|-λ|的大小不确定,故|-λa r |与| a r|的大小关系不确定;对于D ,|λ| a r 是向量,而|-λa r|表示长度,两者不能比较大小.【变式训练3】(2015-2016学年江西上饶铅山县一中高一下学期期中)下列关系式正确的是 ( )A. 0AB BA +=uu u r uu r rB. a b ⋅r r是一个向量 C. AB AC BC -=uu u r uuu r uu u r D. 00AB ⋅=uu u r r【答案】D 【解析】试题分析:A 相反向量的和为零向量,所以A 不正确;B 两向量的数量积是一个实数,所以B 不正确;C 根据向量的减法的三角形法则,得CB AC =-AB ,故C 不正确;D 零与任何向量的数量积等等于零向量,故D 正确.考点:平面向量的线性运算;向量的数量积的定义及其性质.1.向量:既有大小又有方向的量叫作向量.向量的大小叫向量的长度(或模).2.几个特殊的向量(1)零向量:长度为零的向量,记作0,其方向是任意的. (2)单位向量:长度等于1个单位长度的向量.(3)平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线.(4)相等向量:长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.典例2 (青海省平安县第一高级中学2015~2016课后练习)设向量,a b rr 不平行,向量a b λ+r r 与2a b +r r平行,则实数λ=___________【答案】12考点:向量平行的条件 解题技巧与方法总结(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量,a b r r共线是指存在不全为零的实数12,λλ,使120a b λλ+=r r r 成立;若120a b λλ+=r r r ,当且仅当12λλ==0时成立,则向量,a b r r不共线.【变式训练1】(青海省平安县第一高级中学2015~2016课后练习)已知向量i r 与j r不共线,且,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线,则实数,m n 满足的条件是( )A. 1m n +=B. 1m n +=-C. 1mn =D. 1mn =-【解析】法一:Q ,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线且,,A B D 三点共线所以存在非零实数λ,使AB AD λ=uu u r uuu r即()i m j ni j λ+=+r r r rQ i r 与j r不共线所以1n m λλ=⎧⎨=⎩1n m λλ⎧=⎪⇒⎨⎪=⎩∴1mn =法二:由题可得, AB CD uu u r uu u rP∴AB AD λ=uu u r uuu r∴11m n = ∴1mn =考点:向量共线定理【变式训练2】已知(1,0),(2,1)a b ==r r(1) 当k 为何值时,ka b -r r 与2a b +r r共线?(2) 若23AB a b =+uu u r r r ,BC a mb =+uu u r r r,且,,A B C 三点共线,求m 的值【答案】1-232(2)Q ,,A B C 三点共线AB BC ∴u u u r u u u rP故存在实数λ,使得AB BC λ=uu u r uu u r()23a b a mb λ+=+r r r r∴2λ=,32m =考点:向量的运算法则、共线定理 知识链接:平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线. 两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =λa . 题型二 向量的线性运算 命题点1 简单的向量线性运算典例 (吉林省吉林大学附属中学2017届高三第五次摸底考试数学(理))在梯形ABCD 中,3AB DC =uu u r uuu r ,则BC uu u r等于( )【答案】D解题技巧与方法总结(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系;④化简结果.【变式训练1】(河南省商丘市九校2016-2017学年高一下学期期中)如图12,e e u r u r为互相垂直的单位向量,向量a b c ++r r r可表示为( )A. 1223e e +u r u rB. 1232e e +u r u rC. 1232e e -u r u rD. 1233e e --u r u r【答案】B【解析】 1212122,2,2a e e b e e c e e =+=-=+u r u r u r u r u r u r r r r ,故 1232a b c e e ++=+u r u rr r r .知识链接:平面向量的基本定理如果12,e e u r u r是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数21,λλ使:1122a e e λλ=+r u r u r 其中不共线的向量12,e e u r u r叫做表示这一平面内所有向量的一组基底【变式训练2】(北京市东城区2017届高三5月综合练习(二模)数学理)设,a b rr 是非零向量,则“,a b rr 共线”是“ )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B命题点2 向量线性运算运用典例 (山东省淄博市临淄中学2016-2017学年高二上学期期末考试数学(理)试题)如图在空间四边形 OABC 中,点M 在OA 上,且 2OM MA = , N 为BC 中点,则MN uuu r等于( )A.121232OA OB OC -+uu ruu u r uuu r B.211322OA OB OC -++uu r uuu r uuu r C.111222OA OB OC +-uu ruu u r uuu r D.221332OA OB OC+-uu ruu u r uuu r【答案】B【名师点睛】进行向量的运算时,要尽可能转化到平行四边形或三角形中,选用从同一点出发的基本量或首尾相接的向量,运用向量的加减运算及数乘来求解,充分利用相等的向量,相反的向量和线段的比例关系,把未知向量转化为与已知向量有直接关系的向量来解决 【变式训练1】如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12b B.12a -bC .a +12b D.12a +b【答案】D【解析】连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【变式训练2】如图所示,设P 、Q 为△ABC 内的两点,且=+,=+,则△ABP与△ABQ 的面积之比为 .【答案】知识链接:1.向量加法:求两个向量和的运算叫做向量的加法,例AB BC AC +=uu u r uu u r uuu r(1)0+0a a a =+=r r r r r;(2)向量加法满足交换律与结合律;2.向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则. 向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”. 3.向量的减法 :向量a r 加上b r 的相反向量叫做a r 与b r的差,记作:()a b a b -=+-r r r r 求两个向量差的运算,叫做向量的减法4.作图法:a b -r r 可以表示为从b r 的终点指向a r 的终点的向量(a r 、b r有共同起点)命题点3 向量线性运算求参数值或取值范围典例 1(黑龙江省齐齐哈尔市第一中学校2016-2017学年高一3月月考数学(理)试题)已知在ABC ∆中,点在边上,且2,CD DB CD r AB sAC ==+u u u r u u u r u u u r u u u r u u u r,则的值为( ) A. 0 B. D. 3- 【答案】A【解析】分析试题由已知可得:()22223333CD CB AB AC AB AC ==-=-uu u r uu r uu u r uuu r uuu r uuu r ,所以=点睛:向量的线性运算,注意理解加法的三角形法则和平行四边形法则以及减法法则的运用. 【变式训练1】(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【答案】12【变式训练2】在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为 ( )A. 12B. 13C. 14D .1【答案】A【解析】∵M 为BC 上任意一点,∴可设AM →=x AB →+y AC →(x +y =1).∵N 为AM 的中点,∴AN →=12AM →=12x AB →+12y AC →=λ AB →+μ AC →,∴λ+μ=12(x +y )=12.知识链接:三点共线的性质定理:(1)若平面上三点A 、B 、C 共线,则AB →=λBC →.(2)若平面上三点A 、B 、C 共线,O 为不同于A 、B 、C 的任意一点,则OC →=λOA →+μOB →,且λ+μ=1.典例2【2014届广东省东莞市高三第二次模拟考试】如图所示,A 、B 、C 是圆O 上的三点,CO 的延长线与线段AB 交于圆内一点D ,若OC =uuu r xOA yOB +uu r uu u r,则 ( )A.01x y <+<B.1x y +>C.1x y +<-D.10x y -<+<【答案】C【变式训练】(2014北京东城高三期末)在直角梯形ABCD 中,90,30,2,A B A BB C ∠=︒∠=︒==,点E 在线段CD 上,若AE AD AB μ=+uu u r uuu r uu u r,则实数μ的取值范围是 .【答案】102⎡⎤⎢⎥⎣⎦, 【解析】由题意可求得1,AD CD ==2AB DC =uu u r uuu r.因为点E 在线段CD 上,所以DE DC λ=uuu r uuu r(01λ≤≤).因为AE AD DE =+uu u r uuu r uuu r ,又AE AD AB μ=+uu u r uuu r uu u r =2AD DC μ+u u u r u u u r =2AD DE μλ+uuur uuu r ,所以2μλ=1,即μ=2λ.因为0≤λ≤1,所以0≤μ≤12.知识交汇例1 如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.【答案】3【交汇技巧】本题将向量的共线定理与三角形重心的性质进行结合,三角形重心是三条边中线的交点,另外本题还结合了方程思想,通过消去λ得到m ,n 之间的关系例2 已知点O 为△ABC 外接圆的圆心,且0OA OB CO ++=uu r uu u r uu u r r,则△ABC 的内角A 等于( )A .30°B .60°C .90°D .120°【答案】A【解析】 由0OA OB CO ++=uu r uu u r uu u r r 得OA OB OC +=uu r uu u r uuu r,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知四边形OACB 为菱形,且∠CAO =60°,故A =30°.【交汇技巧】三角形外接圆的圆心是三角形三条边垂直平分线的交点,到三个顶点距离相等,结合0OA OB CO ++=uu r uu u r uu u r r可得四边形OACB 为平行四边形的条件,得出四边形OACB 为菱形,从而求出角A 的大小 练习检测1.【山东省淄博实验中学2015届高三第一学期第一次诊断考试试题,文10】在ABC ∆中,点,M N 分别是,AB AC 上,且32,5AM MB AN AC ==uuu r uuu r uuu r uuu r,线段CM 与BM 相交于点P ,且,AB a AC b ==u u u r r u u u r r,则AP uu u r 用a r 和b r 表示为( )A .4193AP a b =+uu u r r rB .4293AP a b =+uu u r r rC . 2493AP a b =+uu u r r rD .4377AP a b =+uu u r r r【答案】A2.(江西省南昌市重点学校2016-2017学年高一4月检测)已知ABC ∆的边BC 上有一点D 满足3BD DC =uu u r uuu r ,则AD uuu r可表示为( )A. 23AD AB AC =-+uuu r uu u r uuu rB.【答案】C【解析】如图所示,3.(2015届北京市156中学高三上学期期中考试理科)如图,向量b a -等于( )(A )2124e e -- (B )2142e e --(C )213e e - (D )213e e - 【答案】C点评:12,e e u r u r 是两个单位向量,从图上将,a b r r用单位向量表示出来4.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则 ( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上 【答案】B【解析】因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B. 5.(2016-2017学年天津市静海县第一中学高二上学期期末五校联考理)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,AB a BC b AA c ===uu u r r uu u r r uuu r r,则BM uuu r 可表示为( )A. 1122a b c -++r r rB. 1122a b c ++r r rC. 1122a b c --+r r rD. 1122a b c -+r r r【答案】A【解析】()111222BN BA BC a b =+=-+uuu r uu r uu u r r r Q1122BM BN NM a b c ∴=+=-++uuu r uuu r uuur r r r,故本题正确答案为A6.(江西省赣州市十四县(市)2017届高三下学期期中联考(理))如图,平行四边形ABCD的两条对角线相交于点O ,点E , F 分别在边AB , AD 上,直线EF 交AC 于点K , AK AO λ=uuu r,则λ等于( )【答案】C7.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.8.设点O 在ABC V 内部,且有40OA OB OC ++=uu r uu u r uuu r r,求△ABC 的面积与△OBC 的面积之比.【答案】S △ABC ∶S △OBC =3∶2.【解析】取BC 的中点D,连接OD,则+=2,4++=0,∴4=-(+)=-2,∴=-.∴O 、A 、D 三点共线,且||=2||,∴O 是中线AD 上靠近A 点的一个三等分点, ∴S △ABC ∶S △OBC =3∶2.9.在任意四边形ABCD 中,E 是AD 的中点,F 是BC 中点,求证:()1=+2EF AB DC uu u r uu u r uuu r法二:连接EB EC uu r uu u r , 则=+EC ED DC uu u r uu u r uuu r()()11==+++=22EF EC EB ED DC EA AB +uu u r uu u r uu r uu u r uuu r uu r uu u r ()1+2AB DC uuu r uuu r。
人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。
高中数学必修二 专题6 2 平面向量的加法、减法、数乘运算-同步培优专练

专题6.2 平面向量的加法、减法、数乘运算知识储备一.向量加法的法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任意向量a,规定a+0=0+a=a以同一点O为起点的两个已知向量a,b为邻边作▱OACB,则以O为起点的对角线OC就是a与b的和.把这种作两个向量和的方法叫做向量加法的平行四边形法则有什么关系?【答案】(1)当向量a与b不共线时,a+b的方向与a,b不同,且|a+b|<|a|+|b|.(2)当a与b同向时,a+b,a,b同向,且|a+b|=|a|+|b|.(3)当a与b反向时,若|a|>|b|,则a+b的方向与a相同,且|a+b|=|a|-|b|;若|a|<|b|,则a+b的方向与b相同,且|a+b|=|b|-|a|.二.向量的减法1.定义:向量a加上b的相反向量,叫做a与b的差,即a-b=a+(-b),因此减去一个向量,相当于加上这个向量的相反向量,求两个向量差的运算,叫做向量的减法.2.几何意义:在平面内任取一点O,作OA=a,OB=b,则向量a-b=BA,如图所示.3.文字叙述:如果把两个向量的起点放在一起,那么这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量.【思考】若a ,b 是不共线向量,|a +b |与|a -b |的几何意义分别是什么?【答案】如图所示,设OA =a ,OB =b .根据向量加法的平行四边形法则和向量减法的几何意义,有OC =a +b ,BA =a -b .因为四边形OACB 是平行四边形,所以|a +b |=|OC |,|a -b |=|BA |,分别是以OA ,OB 为邻边的平行四边形的两条对角线的长.三 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下:(1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎪⎩⎪⎨⎧<>.00的方向相反时,与当的方向相同;时,与当a a λλ 特别地,当λ=0时,λa =0.当λ=-1时,(-1)a =-a .四 向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .【思考】向量共线定理中为什么规定a ≠0?【答案】若将条件a ≠0去掉,即当a =0时,显然a 与b 共线.(1)若b ≠0,则不存在实数λ,使b =λa .(2)若b =0,则对任意实数λ,都有b =λa .能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·江西高一期末(理))下列四式不能化简为AD 的是( )A .MB AD BM +- B .()()AD MB BC CM +++C .()AB CD BC ++D .OC OA CD -+【答案】A 【解析】对B ,()()AD MB BC CM AD MB BC CM AD +++=+++=,故B 正确; 对C ,()AB CD BC AB BC CD AD ++=++=,故C 正确;对D ,OC OA CD AC CD AD -+=+=,故D 正确;故选:A.2.(2021·北京市第四中学顺义分校高一期末)在平行四边形ABCD 中,设对角线AC 与BD 相交于点O ,则AB CB +=( )A .2BOB .2DOC .BD D .AC【答案】B 【解析】因为四边形ABCD 为平行四边形,故0AO CO +=,故22AB CB AO OB CO OB OB DO +=+++==,故选B.3.(2020·莆田第七中学高二期中)在五边形ABCDE中(如图),AB BC DC+-=()A.AC B.AD C.BD D.BE【答案】B【解析】AB BC DC AB BC CD AD+-=++=.故选B4.(2020·全国高二单元测试)如图所示,已知空间四边形ABCD,连接AC,BD,M,G分别是BC,CD的中点,则AB+12BC+12BD等于()A.AD B.GA C.AG D.MG 【答案】C【解析】∵四面体A-BCD中,M、G为BC、CD中点,∵12BC BM=,12BD MG=,∵1122AB BC BD AB BM MG AM MG AG ===+++++.故选C 5.(2021·江苏高一)八卦是中国文化中的哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形 ABCDEFGH ,其中1OA =,则给出下列结论:①0BF HF HD -+=;①2OA OC OF +=-;①AE FC GE AB +-=.其中正确的结论为( )A .①①B .①①C .①①D .①①①【答案】C 【解析】对于∵:因为BF HF HD BF FH HD BH HD BD -+=++=+=,故∵错误; 对于∵:因为3602908AOC ︒∠=⨯=︒,则以,OA OC 为邻边的平行四边形为正方形, 又因为OB 平分AOC ∠,所以22OA OC OB OF +==-,故∵正确;对于∵:因为AE FC GE AE FC G EG A FC +-=++=+,且FC GB =,所以AE FC GE AG GB AB +-=+=,故∵正确,故选:C.6.(2019·天津市南开区南大奥宇培训学校高三月考)如图,在四边形ABCD 中,设,,AB a AD b BC c ===,则DC =( )A .a b c -++B .a b c -+-C .a b c ++D .a b c -+【答案】D 【解析】由题意,在四边形ABCD 中,设,,AB a AD b BC c ===,根据向量的运算法则,可得DC DA AB BC b a c a b c =++=-++=-+.故选D.7.(2020·陕西宝鸡市·高三二模(文))点P 是ABC ∆所在平面内一点且PB PC AP +=,在ABC ∆内任取一点,则此点取自PBC ∆内的概率是( )A .12B .13C .14D .15【答案】B【解析】设D 是BC 中点,因为PB PC AP +=,所以2PD AP =,所以A 、P 、D 三点共线且点P 是线段AD 的三等分点, 故13PBC ABC S S ∆∆=,所以此点取自PBC ∆内的概率是13.故选B. 8.(2020·自贡市田家炳中学高二开学考试)P 是ABC 所在平面内一点,若CB PA PB λ=+,其中R λ∈,则P 点一定在( )A .ABC 内部B .AC 边所在直线上 C .AB 边所在直线上D .BC 边所在直线上【答案】B【解析】根据题意,CB PA PB CB PB PA CP PA λλλ=+⇔-=⇔=,∴点P 在AC 边所在直线上,故选B.二、多项选择题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学平面向量试题答案及解析1.若干个能唯一确定一个数列的量称为该数列的“基本量”.设是公比为的无穷等比数列,下列的四组量中,一定能成为该数列“基本量”的是第组;①;②;③;④.【答案】①④【解析】由得,所以①唯一确定数列,由得,方程的解不定,所以②不能唯一确定数列,由得方程的解不定,所以③不能唯一确定数列,由得,所以④唯一确定数列.【考点】数列基本量运算2.下列各组向量中不平行的是()A.a="(1,2,-2),b=(-2,-4,4)"B.c=(1,0,0),d=(-3,0,0)C.e="(2,3,0)," f="(0,0,0)"D.g=(-2,3,5),h=(16,-24,40)【答案】D【解析】略3.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则4.已知向量与的夹角为且,若,且,则实数的值为A.B.1C.2D.【答案】B【解析】因为,所以,所以得.【考点】1.数量积;2.向量垂直.5.已知向量,,若,则__________________.【答案】或【解析】两向量平行,所以,解得:或.【考点】向量平行的坐标表示6.设,向量,且,则()A.﹣2B.4C.﹣1D.0【答案】D【解析】向量,且,可得,解得或(舍去,因为).则.故选:D.【考点】平面向量数量积的运算7.已知||=2,||=4,⊥(+),则与夹角的度数为.【答案】120【解析】设与夹角为.由⊥(+)得,,解得,所以.【考点】向量的数量积及其运算律并求向量的夹角.8.已知平面向量满足,且,则向量与的夹角为()A.B.C.D.【答案】C【解析】根据题意,由于平面向量满足,且,那么代入可知向量与的夹角的余弦值为,即可知向量与的夹角为,选C.【考点】向量的数量积公式.9.设,,且,则锐角为()A.B.C.D.【答案】C【解析】由,得,即,由二倍角公式得,故选C.【考点】1、向量的坐标运算;2、向量共线的基本定理.【思路点晴】本题主要考查的向量的基本概念与简单运算、向量的坐标运算,属于容易题.本题通过向量共线,得,代入坐标运算的公式;再由二倍角公式,得到关于角的三角函数值,从而求得锐角的值.10.在平面直角坐标系中,为原点,,动点满足,则的最大值是.【答案】【解析】设,表示以为圆心,r=1为半径的圆,而,所以,,,故得最大值为【考点】1.圆的标准方程;2.向量模的运算11.若||=1,||=2,=+,且⊥,则与的夹角为________。
【答案】【解析】⊥,所以【考点】向量夹角12.已知点是圆上的一个动点,过点作轴于点,设,则点的轨迹方程______________.【答案】【解析】设,由得,代入得【考点】动点的轨迹方程13.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是()A.B.C.D.【答案】C【解析】对应的可行域为直线围成的三角形及其内部,三个顶点为,,当过点时取得最小值0,过点时取得最大值2,所以其范围是【考点】线性规划问题14.如图,四棱柱的底面为平行四边形,已知,则用向量可表示向量为()A.B.C.D.【答案】B【解析】利用空间向量的平行六面体法则即可得出.故选B.【考点】平面向量基本定理及其意义15.已知向量则A.2或3B.-1或6C.6D.2【答案】D【解析】由得【考点】向量的坐标运算16.的夹角为,,则.【答案】7【解析】【考点】向量的模17.在平面直角坐标系xoy中,点P到两点的距离之和等于4,设点P的轨迹为C.(Ⅰ)写出C的方程;(Ⅱ)设直线与C交于A,B两点,k为何值时?【答案】(1);(2).【解析】(1)根据已知可得动点满足椭圆的定义,并且焦点在轴上,即可求得;(2)设联立直线与椭圆方程可得,要满足,即,由韦达定理以及直线方程带入求得值.试题解析:轨迹C的方程为,(Ⅱ)设,将代入中,化简得,由韦达定理可知,因为直线上,满足直线方程,有,所以,要想,则,∴,解得.【方法点晴】本题主要考查的是利用椭圆定义求标准方程以及直线与椭圆的位置关系.根据已知可得满足椭圆定义,所以可得,应该注意焦点在轴上;(2)问中,转化为向量的坐标运算,是解决圆锥曲线题中常用的一种解题思路,另外的值,由直线方程得到,结合直线与圆锥曲线联立后的韦达定理列得等式,进行求解.18.(2015春•咸宁期末)已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k的值是()A.1B.C.D.【答案】D【解析】由向量=(1,1,0),=(﹣1,0,2),求得k+与2﹣的坐标,代入数量积的坐标表示求得k值.解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【考点】平面向量数量积的运算.19.已知点在平面内,且对空间任意一点,,则的最小值为()A.B.C.D.【答案】D【解析】在平面内,则必存在实数使,,,。
又,,当且仅当即时取得等号.【考点】1向量的加减法,平面向量基本定理;2基本不等式.20.在平面直角坐标系中,为坐标原点,以为圆心的圆与直线相切.(Ⅰ)求圆的方程;(Ⅱ)若直线:与圆交于,两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)已知圆心,求圆的方程,只需求出圆的半径,由圆切线的性质:圆心到切线的距离等于半径即可求得圆的方程;(Ⅱ)先由直线与圆相交可得直线斜率的取值范围,由及,可知四边为菱形,所以,从而得到直线的方程,解方程组求得点的坐标,代入圆的方程即得的值,验证是否满足相交的条件.试题解析:(Ⅰ)设圆的半径为,因为直线与圆相切,所以所以圆的方程为.(Ⅱ)方法一:因为直线:与圆相交于,两点,所以,所以或,假设存在点,使得,因为,在圆上,且,而,由向量加法的平行四边形法则可知四边形为菱形,所以与互相垂直且平分所以原点到直线:的距离为即,解得,,经验证满足条件所以存在点,使得.方法二:假设存在点,使得.记与交于点因为,在圆上,且,由向量加法的平行四边形法则可知四边形为菱形,因为直线斜率为,显然,所以直线方程为由,解得,所以点坐标为因为点在圆上,所以,解得即,经验证满足条件所以存在点,使得.【考点】圆的方程,直线与圆的位置关系的应用.【方法点晴】求圆的方程常用待定系数法,设法求出圆心和半径即得圆的方程;直线与圆位置关系在应用中要特别注意垂直关系,一方面可以找到斜率之间的关系,另一方面又可以构造直角三角形,本题中及,且结合向量加法的几何意义,可知为菱形的对角线,既可利用点到直线的距离公式求解,又可以求出点的坐标代入圆方程即得解.21.在平面直角坐标系中,已知点,,动点满足,则点的轨迹是()A.椭圆B.双曲线C.双曲线的左支D.双曲线的右支【答案】D【解析】根据抛物线的定义得点的轨迹是以点,为焦点,实轴长为的双曲线的右支,故选C.【考点】双曲线的定义.【易错点晴】本题考查双曲线定义,属中档题.由双曲线的定义,到两个定点的距离之差的绝对值等于一个常数(小于)的点的轨迹是双曲线,本题中动点满足,但是缺少“绝对值”,故点的轨迹不是完整的双曲线,而是其中一支,由,故点的轨迹为双曲线的右支.在双曲线定义的考查中注意两点:①到两个定点的距离之差的绝对值,绝对值不能少;②常数小于,否则容易出错.22.如图,空间四边形中,,,,点在上,且,点为中点,则等于()A.B.C.D.【答案】B【解析】.故B正确.【考点】向量的加减法.23.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A.2B.4C.5D.10【答案】D【解析】将直角三角形的直角顶点与原点重合,设,,那么,那么,故选D.【考点】1.坐标系;2.两点间距离.【方法点睛】本题考查了向量法解决平面几何的问题,属于中档题型,而向量法又分是用向量代数表示,还是用坐标表示,经分析用坐标表示,那如何建坐标系?题设只说是直角三角形,所以就以直角顶点为原点建立坐标系,两条直角边落在坐标轴上,这样就可以设各点的坐标,转化为两点间距离求值.坐标法解决平面几何的问题,很多时候会事半功倍.24.(2015秋•陕西校级月考)若平面α的法向量为,直线l的方向向量为,直线l与平面α的夹角为θ,则下列关系式成立的是()A.cos θ=B.cos θ=C.sin θ=D.sin θ=【答案】D【解析】直线与平面所成的角为θ,直线的方向向量与该平面的法向量所成的角为β,则θ=β﹣90°或θ=90°﹣β,由此能求出结果.解:若直线与平面所成的角为θ,直线的方向向量与该平面的法向量所成的角为β,则θ=β﹣90°或θ=90°﹣β,cosβ=,∴sin θ="|cos" β|=,故选:D.【考点】空间向量的数量积运算.25.(2015秋•肇庆期末)已知圆,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1A于点P.(Ⅰ)当A在圆F1上运动时,求P点的轨迹C的方程;(Ⅱ)直线l:y=kx+1与轨迹C交于M、N两点,若(O是坐标原点),求直线l方程.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题意P在线段F2A的中垂线上,所以|PF2|=|PA|,则|PF2|+|PF1|=|PA|+|PF1|=|AF1|=4>|F1F2|,故轨迹C是以F1,F2为焦点的椭圆,从而可求P点的轨迹C的方程;(Ⅱ)由,得x1x2+y1y2=﹣2,由,得(3+4k2)x2+8kx﹣8=0,利用韦达定理,求直线l方程.解:(Ⅰ)因为P在线段F2A的中垂线上,所以|PF2|=|PA|,所以|PF2|+|PF1|=|PA|+|PF1|=|AF1|=4>|F1F2|,所以轨迹C是以F1,F2为焦点的椭圆,且,所以轨迹C的方程.(Ⅱ)设M(x1,y1),N(x2,y2),由,得x1x2+y1y2=﹣2,即x1x2+(kx1+1)(kx2+1)=﹣2,即(1+k2)x1x2+k(x1+x2)+3=0•由,得(3+4k2)x2+8kx﹣8=0,因为△=64k2+32(3+4k2)>0,所以,有代入化简得1﹣4k2=0,解得,所以直线l方程为.【考点】轨迹方程;平面向量数量积的运算.26.已知下列命题(是非零向量)(1)若,则;(2)若,则;(3)则假命题的个数为___________.【答案】3【解析】(1)不正确;(2)不正确,表示两向量共线;(3)不正确;向量不满足结合律【考点】向量运算法则27.(2015秋•河南期末)已知F1、F2是椭圆的两个焦点,若椭圆上存在点P使,则|PF1|•|PF2|=()A.b2B.2b2C.2b D.b 【答案】B【解析】由F1、F2是椭圆的两个焦点,椭圆上存在点P,使,PF1⊥PF2,知=|PF1|•|PF2|=b2,由此能求出结果.解:∵F1、F2是椭圆的两个焦点,椭圆上存在点P,使,∴PF1⊥PF2,∴=|PF1|•|PF2|=b2tan=b2,∴|PF1|•|PF2|=2b2.故选B.【考点】椭圆的简单性质.28.在中,的对边分别为,且,,则的面积为.【答案】【解析】由得,由,得【考点】1.正弦定理;2.向量数量积运算29.(2015秋•潍坊期末)已知四面体ABCD,=,=,=,点M在棱DA上,=2,N为BC中点,则=()A.﹣﹣﹣B.﹣++C.++D.﹣﹣【答案】B【解析】根据题意,利用空间向量的线性表示与运算,用、与表示出.解:连接DN,如图所示,四面体ABCD中,=,=,=,点M在棱DA上,=2,∴=,又N为BC中点,∴=(+);∴=+=﹣++=﹣++.故选:B.【考点】空间向量的加减法.30.设向量与的夹角为,且,则__________ .【答案】【解析】,【考点】向量夹角31.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),(,0),(0,﹣2),O为坐标原点,动点P满足||=1,则|++|的最小值是()A.﹣1B.﹣1C.+1D.+1【答案】A【解析】设点P(x,y),则动点P满足||=1可得 x2+(y+2)2=1.根据|++|=,表示点P(x y)与点A(﹣,﹣1)之间的距离.显然点A在圆C x2+(y+2)2=1的外部,求得AC=,问题得以解决.解:设点P(x,y),则动点P满足||=1可得 x2+(y+2)2=1.根据++的坐标为(+x,y+1),可得|++|=,表示点P(x y)与点A(﹣,﹣1)之间的距离.显然点A在圆C x2+(y+2)2=1的外部,求得AC=,|++|的最小值为AC﹣1=﹣1,故选:A.【考点】平面向量的坐标运算.32.已知圆,定点,是圆上的一动点,线段的垂直平分线交半径于点.(Ⅰ)当在圆上运动时,求点的轨迹的方程;(Ⅱ)直线与轨迹交于两点,若(是坐标原点),求直线方程.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)线段的垂直平分线交半径于点,得;所以,根据椭圆的定义,得到轨迹是以为焦点的椭圆;根据题中条件求出椭圆中的,所以轨迹的方程. (Ⅱ)求直线方程,就是求斜率的值。