直角坐标牛顿-拉夫逊法潮流计算matlab程序(仅供参考)

合集下载

基于MATLAB进行潮流计算

基于MATLAB进行潮流计算

基于MATLAB进行潮流计算本文介绍了基于MATLAB软件的潮流计算方法。

电力系统潮流计算方法分为手算潮流和计算机潮流计算两类。

手算潮流主要适用于规模较小的辐射型电力潮流计算,而计算机潮流计算有两种途径:编程实现网络方程的迭代求解和借助电力系统分析仿真软件搭建系统模型完成潮流计算。

MATLAB具有强大的矩阵运算功能和电力系统仿真平台,可以为实现潮流计算提供更便捷的手段。

本文采用极坐标形式牛顿─拉夫逊法进行潮流计算,为其他形式的潮流计算提供借鉴。

Abstract: The power flow n method can be divided into two categories: hand n of tidal current and computer power flow XXX simplified equivalent circuits。

making it XXX: programming XXX ns。

or using power system XXX system model for power flow n。

MATLAB are has strong matrix ns and its power system XXX-Raphson method of power flow n in polar coordinates with MATLAB are。

and can serve as a reference for other forms of power flow n.1.电力系统中的牛顿法潮流计算是一种常用的电力系统分析方法。

该方法基于节点电压的相等条件和潮流方程的等式条件,通过迭代求解电压和相位的不平衡量,最终得到各节点的电压、相位和功率等参数。

2.牛顿法潮流计算的步骤包括输入系统原始数据、形成节点导纳矩阵、给定各节点电压初值、计算功率偏差向量、判断收敛条件、计算雅克比矩阵、解修正方程、计算节点电压和相位的修正值、迭代计算直至满足收敛条件、计算各节点功率等参数并输出计算结果。

牛顿—拉夫逊法潮流计算MATLAB程序

牛顿—拉夫逊法潮流计算MATLAB程序

牛顿一拉夫逊法潮流计算程序By Yuluo%牛顿--拉夫逊法进行潮流计算n=i nput(' 请输入节点数:n=');n1=i nput('请输入支路数:n仁');isb=i nput(' 请输入平衡母线节点号:isb=');pr=i nput('请输入误差精度:pr=');B1=input('请输入由支路参数形成的矩阵:B1=');B2=input('请输入各节点参数形成的矩阵:B2=');X=input('请输入由节点参数形成的矩阵:X=');Y=zeros( n);e=zeros(1, n);f=zeros(1, n);V=seros(1, n);O=zeros(1, n);S1=zeros( n1); for i=1: nif X(i,2)~=0;p=X(i,1);丫(p,p)=1./X(i,2);endendfor i=1: n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);end丫(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5);Y(p,q)=Y(p,q);Y(p,q)=Y(q,q)+1./(B1(i,3)*B1(i,5F2)+B1(i,4)./2;丫(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2;end % 求导纳矩阵G=real(Y);B=imag(Y);for i=1: ne(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4);endfor i=1: nS(i)=B2(i,1)-B2(i,2);B(i,i)=B(i,i)+B2(i,5);endP=rea(S);Q=imag(S);ICT1=0;IT2=1;NO=2* n;N=NO+1;a=0;while IT2~=0IT2=0;a=a+1;for i=1: n;C(i)=0;D(i)=0;for j1=1: nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);endP仁C(i)*e(i)+f(i)*D(i);Q仁f(i)*C(i)-D(i)*e(i); % 求'P,Q'V2=e(i)A2+f(i)A2;if B2(i,6)~=3DP=P(i)-P1;DQ=Q(i)-Q1;for j1=1: nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X3=X2;X4=-X1;p=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X4;J(m,q)=X2; end end else DP=P(i)-P1;DV=V(i)~2-V2;for j1=1: nif j1~=isb&j1~=iX1=-G(i,j1)*e(i)-B(i,j1)*f(i);X2=B(i,j1)*e(i)-G(i,j1)*f(i);X5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2;elseif j1==i&j1~=isbX仁-C(i)-G(i,i)*e(i)-B(i,i)*f(i);X2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);X5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV;m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6;J(m,q)=X2; end end end endend % 求雅可比矩阵for k=3:N0k1=k+1;N 1=N;for k2=k1:N1J(k,k2)=J(k,k2)./J(k,k);endJ( k,k)=1;k4=k-1;for k3=3:k4for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J (k, k2);endJ(k3,k)=0;endendfor k3=k1:N0for k2=k1:N1J(k3,k2)=J(k3,k2)-J(k3,k)*J (k, k2);endJ(k3,k)=0;endendendfor k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J (k,N);k1=k+1;f(L)=f(L)-J(k1,N);endfor k=3:N0DET=abs (J(k, N));if DET>=prIT2=IT2+1endendICT2(a)=IT2ICT1=ICT1+1;for k=1: ndy(k)=sqrt(e(k)A2+f(k)A2);endfor i=1: nDy(k)=sqrt(e(k)A2+f(kF2);endfor i=1: nDy(ICT1,i)=dy(i);endend % 用高斯消去法解“ w=-J*V”disp('迭代次数');disp(ICTI);disp('没有达到精度要求的个数');disp(ICT2);for k=1: nV(k)=sqrt(e(k)A2+f(k)A2);O(k)=ata n(f(k)./e(k))*180./pi;endE=e+f*j;disp('各节点的实际电压标么值E为(节点号从小到大的排列):’);disp(E);disp('各节点的电压大小V为(节点号从小到大的排列):’);disp(V);disp('各节点的电压相角0为(节点号从小到大的排列):’);disp(O);for p=1: nC(p)=0;for q=1: nC(p)=C(p)+conj(丫(p,q))*conj(E(q));endS(p)=E(p)*C(p);enddisp('各节点的功率S为(节点号从小到大排列):’);disp(S);disp('各条支路的首端功率Si为(顺序同您输入B1时一样):‘);for i=1: n1if B1 ( i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*con j(1./(B1(i,3)*B1(i,5))));disp(Si(p.q));enddisp('各条支路的末端功率Sj为(顺序同您的输入B1时一样):‘);for i=1: n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(xonj(E(q)./B1(i,5))-conj(E(p)))*xo nj(1./(B1(i,3)*B1(i,5))));disp(Sj(q,p));enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一样):';for i=1: n1if B1(i,6)==0p=B1(i,1);q=B1(i,2);else p=B1(i,2);q=B1(i,1);endDS(i)=Si(p,q)+Sj(q,p);disp(DS(i));endfor i=1:ICT1Cs(i)=i;enddisp('以下是每次迭代后各节点的电压值(如图所示) ‘);plot(Cs,Dy),xlabel('迭代次数'),ylabel('电压'),title(' 电压迭代次数曲线');。

Matlab及C语言在潮流计算运用

Matlab及C语言在潮流计算运用

一,潮流计算算法原理:牛顿—拉夫逊法的基本原理 牛顿-拉夫逊法是一种求解非线性方程的数值解法,由于便于编写程序用计算机求解,应用较广。

下面以一元非线性代数方程的求解为例,来说明牛顿-拉夫逊法的基本思想。

设欲求解的非线性代数方程为 f(x)=o设方程的真实解为x*,则必有f(x*)=0。

用牛顿-拉夫逊法求方程真实解x*的步骤如下:首先选取余割合适的初始估值x°作为方程f(x)=0的解,若恰巧有f(x°)=0,则方程的真实解即为x*= x°若f(x°)≠0,则做下一步。

取x¹=x°+Δx°为第一次的修正估值,则 f(x¹)=f(x°+Δx°) 其中Δx°为初始估值的增量,即Δx°=x¹-x°。

设函数f(x)具有任意阶导数,即可将上式在x°的邻域展开为泰勒级数,即:f(x¹)=f(x°+Δx°)=f(x°)+f'(x°)Δx°+[f''(x°)(Δx°)2]/2+… 若所取的|Δx°|足够小,则含(Δx°)²的项及其余的一切高阶项均可略去,并使其等于零,即:f(x¹)≈f(x°)+f'(x°)Δx°=0 故得 Δx°=-f(x°)/f'(x°) 从而 x¹= x°-f(x°)/f'(x°)可见,只要f'(x°)≠0,即可根据上式求出第一次的修正估值x¹,若恰巧有f(x¹)=0,则方程的真实解即为x*=x¹。

若f(x¹)≠0,则用上述方法由x¹再确定第二次的修正估值x²。

基于MATLAB的牛顿拉夫逊迭代法计算潮流(附加短路计算)

基于MATLAB的牛顿拉夫逊迭代法计算潮流(附加短路计算)

这个程序可以适用于三机九节点系统(参数见主程序),本来是想编一个通用各种结构的程序的,但是因为鄙人比较懒,老师留作业时候又没说要通用,就没改完。

惭愧啊。

不过大同小异啦。

有兴趣的慢慢改吧。

使用方法:按后文中给出的代码建立.m文件放在一个文件夹里面。

先运行Powerflow_main.m计算算例系统的潮流;然后运行ShortcircuitCalc.m计算算例系统三相短路电流;程序说明详见各.m文件注释部分,写的已经很详细了,慢慢看吧。

Powerflow_main.m文件代码如下:clear%牛顿拉夫逊迭代法计算潮流format short %规定参数数据显示精度%节点参数矩阵%第一列为节点编号%第二列表示有功注入P%第三列表示无功注入Q%第四列表示电压幅值U%第五列表示电压角度θ%第六列表示发电机x′%第七列表示发电机E′%第八列表示节点类型(2表示平衡节点,1表示PV节点,0表示PQ节点)Node_p=[ 1, 0, 0, 1.04 , 0, 0.3, 1.137, 2;2, 1.63, 0, 1.025, 0, 0.3, 1.211, 1;3, 0.85, 0, 1.025, 0, 0.3, 1.047, 1;4, 0, 0, 1.0, 0, 0, 0, 0;5, -1.25, -0.5, 1.0, 0, 0, 0, 0;6, -0.9, -0.3, 1.0, 0, 0, 0, 0;7, 0, 0, 1.0, 0, 0, 0, 0;8, -1, -0.35, 1.0, 0, 0, 0, 0;9, 0, 0, 1.0, 0, 0, 0, 0];count_s=0;countPV=0;for k=1:size(Node_p,1)if Node_p(k,8)==1countPV=countPV+1;else if Node_p(k,8)==2count_s=count_s+1;end;end;end;countPV;count_s;countPQ=size(Node_p,1)-1-countPV;%显示节点参数disp('节点参数如下:')disp(Node_p)%支路参数%第一列为首节点,第二列为末节点,第三列表示R,第四列表示X,第五列表示B/2 %第六列表示支路类型(1为变比为1的变压器元件;2为输电线元件;0为接地支路)Branch_p =[ 1, 4, 0 , 0.0576, 0 , 1;2, 7, 0 , 0.0625, 0 , 1;3, 9, 0 , 0.0586, 0 , 1;4, 5, 0.01 , 0.085 , 0.088 , 2;4, 6, 0.017 , 0.092 , 0.079 , 2;5, 7, 0.032 , 0.161 , 0.153 , 2;6, 9, 0.039 , 0.17 , 0.179 , 2;7, 8, 0.0085, 0.072 , 0.0745, 2;8, 9, 0.0119, 0.1008, 0.1045, 2];%显示支路参数disp('支路参数如下:')disp(Branch_p)%设置节点初值U=Node_p(:,4);e_ang=Node_p(:,5);P=Node_p(:,2);Q=Node_p(:,3);save data.matformat long%计算结果数据显示精度%显示节点导纳矩阵admi();disp('节点导纳矩阵Y');sparseYKmax=10; %设置最大迭代次数kaccuracy=10^-7;%设置迭代精度k=0;%迭代次数初始化为零for k1=1:Kmax[dP,dQ,y]=getY(U,e_ang);if max(abs(y))<accuracybreak;end;J=jacob(U,e_ang,dP,dQ);x=-inv(J)*y;de_ang=[0;x(1:8)];dU=x(9:14);u1=U(2:9)*dU.';u=diag(u1);U(4:9)=U(4:9)+u;e_ang=e_ang+de_ang;k=k+1;end;e_ang=e_ang/pi*180;save result.matdisp('迭代次数:')kdisp('4号节点至9号节点电压幅值如下:') disp(U(4:9))disp('2号节点至9号节点电压相角如下:') disp(e_ang(2:9))admi.m文件代码如下:%节点导纳矩阵的形成format long %规定数据格式NI=size(Branch_p,1);k_t=1;Y=zeros(NI);for m1=1:NI;I=Branch_p(m1,1);J=Branch_p(m1,2);R=Branch_p(m1,3);X=Branch_p(m1,4);b=Branch_p(m1,5);Style=Branch_p(m1,6);if Style==1 %判断为变压器元件Y(I,I)=Y(I,I)+1/(R+1j*X);Y(J,J)=Y(J,J)+1/(R+1j*X)/k_t/k_t;Y(I,J)=Y(I,J)-1/(R+1j*X)/k_t;Y(J,I)=Y(J,I)-1/(R+1j*X)/k_t;else if Style==0 %判断为母线接地支路元件Y(I,J)=Y(I,J)+1/(R+1j*X);else %判断为输电线元件Y(I,I)=Y(I,I)+1j*b+1/(R+1j*X);Y(J,J)=Y(J,J)+1j*b+1/(R+1j*X);Y(I,J)=Y(I,J)-1/(R+1j*X);Y(J,I)=Y(J,I)-1/(R+1j*X);end;end;end;Y;G=real(Y);B=imag(Y);sparseY=sparse(Y);save data.mat;getY.m文件代码如下:(线性方程组常写作AX=Y形式,故此处命名为get_Y)%计算ΔP和ΔQ的函数function [dP,dQ,y]=getY(U,e_ang)load data P Q G B Node_p countPV count_s;dP=zeros(size(Node_p,1),1); sum1=zeros(size(Node_p,1),1);for i=1:size(Node_p,1)for j=1:size(Node_p,1)sum1(i)=sum1(i)+U(j)*(G(i,j)*cos(e_ang(i)-e_ang(j))+B(i,j)*sin(e_ang(i)-e_ang(j)));end;dP(i)=P(i)-U(i)*sum1(i);end;dQ=zeros(size(Node_p,1),1);sum2=zeros(size(Node_p,1),1);for i=1:size(Node_p,1)for j=1:size(Node_p,1)sum2(i)=sum2(i)+U(j)*(G(i,j)*sin(e_ang(i)-e_ang(j))-B(i,j)*cos(e_ang(i)-e_ang(j)));end;dQ(i)=Q(i)-U(i)*sum2(i);end;y=[dP((count_s+1):9);dQ((countPV+count_s+1):9)]; %拼接ΔP和ΔQ构成方程-J*x=y的向量yjacob.m文件的代码如下:%形成雅克比矩阵的函数function J=jacob(U,e_ang,dP,dQ)load data B G Q P Node_p countPV count_s;size_Y=size(Node_p,1);%H矩阵H1=zeros(size_Y);for i=1:size_Yfor j=1:size_Yif j==i;H1(i,j)= U(i)*U(i)*B(i,j)+Q(i)-dQ(i);elseH1(i,j)=-U(i)*U(j)*(G(i,j)*sin(e_ang(i)-e_ang(j))-B(i,j)*cos(e_ang(i)-e_ang(j)));end;endendH=H1(2:size_Y,2:size_Y);%N矩阵N1=zeros(size_Y);for i=1:size_Yfor j=1:size_Yif j==i;N1(i,j)= -U(i)*U(i)*G(i,j)-(P(i)-dP(i));elseN1(i,j)=-U(i)*U(j)*(G(i,j)*cos(e_ang(i)-e_ang(j))+B(i,j)*sin(e_ang(i)-e_ang(j)));end;end;end;N=N1(2:size_Y,(countPV+count_s+1):size_Y);%M矩阵M1=zeros(size_Y);for i=1:size_Yfor j=1:size_Yif j==i;M1(i,j)=U(i)*U(i)*G(i,j)-(P(j)-dP(j));elseM1(i,j)=U(i)*U(j)*(G(i,j)*cos(e_ang(i)-e_ang(j))+B(i,j)*sin(e_ang(i)-e_ang(j)));end;end;end;M=M1((countPV+count_s+1):size_Y,2:size_Y);%L矩阵L1=zeros(size_Y);for i=1:size_Yfor j=1:size_Yif j==i;L1(i,j)= U(i)*U(i)*B(i,j)-(Q(i)-dQ(i));elseL1(i,j)= -U(i)*U(j)*(G(i,j)*sin(e_ang(i)-e_ang(j))-B(i,j)*cos(e_ang(i)-e_ang(j)));end;endendL=L1((countPV+count_s+1):size_Y,(countPV+count_s+1):size_Y);J=[H N;M L];%拼接构成雅克比矩阵ShortcircuitCalc.m文件的代码如下:clear%三相短路计算format long;%对YN进行修正,形成包括发电机内阻抗和负荷阻抗的节点导纳矩阵re_admi();Z=inv(rY);%计算节点阻抗矩阵disp('4节点发生金属短路')f=4;%短路点为4节点%输出节点阻抗矩阵的短路点所在列disp('节点阻抗矩阵的短路点所在列Z(:,f)=');Z(:,f)%短路电流If计算load result U e_ang;e_angf=e_ang(f);Uf=U(f)*(cos(e_angf/180*pi)+1j*sin(e_angf/180*pi));Zff=Z(f,f);zf=0;If=Uf/(Zff+zf);i_angf=angle(If)*180/pi;If=abs(If);%短路电流计算结果显示disp('短路电流幅值:')Ifdisp('短路电流相角(单位为°)')i_angf%短路时各节点电压计算U_k=U;for x1=1:size(Node_p,1)U_k(x1)=U(x1)*(cos(e_ang(x1)*pi/180)+1j*sin(e_ang(x1)*pi/180))-Z(x1,f)*If*(cos(i_angf*pi/180)+ 1j*sin(i_angf*pi/180));end;%Uk为短路时各节点电压幅值Uk=abs(U_k);%uk_ang为短路时各节点电压相角(单位为°)uk_ang=angle(U_k)*180/pi;%输出短路时各节点电压disp('短路时1-9节点电压:')disp('幅值:')Ukdisp('相角:(单位为°)')uk_ang%计算短路时各支路电流%输出矩阵初始化%第一列为首节点i%第二列为末节点j%第三列为Ii幅值%第四列为Ii相角(单位为°)%第五列为Ij幅值%第六列为Ij相角(单位为°)Ik=[1 4 1 0 1 0;2 7 1 0 1 0;3 9 1 0 1 0;4 5 1 0 1 0;4 6 1 0 1 0;5 7 1 0 1 0;6 9 1 0 1 0;7 8 1 0 1 0;8 9 1 0 1 0];load data Branch_p k_t;%其中变压器变比为k_tNI=size(Branch_p,1);for m1=1:NI;I=Branch_p(m1,1);J=Branch_p(m1,2);R=Branch_p(m1,3);X=Branch_p(m1,4);b=Branch_p(m1,5);Style=Branch_p(m1,6);if Style~=1 %判断为非变压器支路Ik(m1,3)=(U_k(I)-U_k(J))/(R+1j*X)+U_k(I)*1j*b;Ik(m1,4)=angle(Ik(m1,3))*180/pi;Ik(m1,3)=abs(Ik(m1,3));Ik(m1,5)=(U_k(J)-U_k(I))/(R+1j*X)+U_k(J)*1j*b;Ik(m1,6)=angle(Ik(m1,5))*180/pi;Ik(m1,5)=abs(Ik(m1,5));else %否则为变压器支路Ik(m1,3)=(U_k(I)-U_k(J))/(R+1j*X)/k_t;Ik(m1,4)=angle(Ik(m1,3))*180/pi;Ik(m1,3)=abs(Ik(m1,3));Ik(m1,5)=(U_k(J)-U_k(I))/(R+1j*X)/k_t;Ik(m1,6)=angle(Ik(m1,5))*180/pi;Ik(m1,5)=abs(Ik(m1,5));endend%输出短路时各节点电流disp('第一列为首节点i')disp('第二列为末节点j')disp('第三列为Ii幅值')disp('第四列为Ii相角(单位为°)')disp('第五列为Ij幅值')disp('第六列为Ij相角(单位为°)')format shortIksave result_k%形成包括发电机内阻抗、负荷阻抗的节点导纳矩阵format long %规定数据显示精度load data P Q Y Node_p ;load result U;rY=Y;for n1=1:size(Node_p,1)Xd=Node_p(n1,6);Ed=Node_p(n1,7);style=Node_p(n1,8);if style~=0 %判断是否为发电机节点rY(n1,n1)=rY(n1,n1)+1/(1j*Xd);%YN中与发电机节点对应的对角线元素增加发电机导纳else %其他节点(包含负荷节点)rY(n1,n1)=rY(n1,n1)+(-P(n1)+1j*Q(n1))/(U(n1)*U(n1));%与负荷节点对应的对角线元素增加负荷导纳%对于非负荷节点Y矩阵元素不做修改但仍满足上式end;end;rY;。

直角坐标牛顿-拉夫逊法潮流计算matlab程序(仅供参考)

直角坐标牛顿-拉夫逊法潮流计算matlab程序(仅供参考)

%该程序仅针对《电力系统分析下》何仰赞P61的4节点算例。

%节点电压用直角坐标表示时的牛顿-拉夫逊法潮流计算(matlab程序,可能有小错误,仅供学习之用,如果想要通用的程序,可自己动手改或再到pudn、csdn等网站搜索更好的)%南昌大学电力061李圣涛2009年5月编写,2012年5月上传clc%清空command windowsclear all%清空workspace%为了提高可移植性、可读性、通用性,设置以下变量N=4;%独立节点数NPQ=2;%PQ节点数NPV=1;%PV节点数K=0;%迭代次数%请输入最大迭代次数Kmax。

可从0开始,以观察第Kmax次迭代的结果Kmax=input('\n\n请输入最大迭代次数后回车(可从零开始) Kmax=\n');small=10^(-5);%ε不能太小%i为节点标号,其中1号……NPQ号为PQ节点,(NPQ+1)%号……(N-1)号为PV节点,N号节点为平衡节点%节点导纳矩阵Y的实部G=[1.042093-0.5882350-0.453858;-0.5882351.0690050-0.480769;0000;-0.453858-0.48076900.934627 ];%节点导纳矩阵Y的虚部B=[ -8.2428762.3529413.6666671.891074;2.352941-4.72737702.403846;3.6666670-3.33333330;1.8910742.4038460-4.261590 ];%Y矩阵Y=complex(G,B);%给定PQ节点的Pnode、Qnode,PV节点的Pnode、Vnode。

(Vnode为节点电压的幅值)Pnode=[ -0.3-0.550.5];%PQ、PV节点的初值PQnode=[-0.18-0.130];%PQ节点的初值QVnode=[ 001.10];%PV节点的初值V%迭代初值e=[ 1.01.01.11.05];f=[ 0000];%利用for循环来实现多次迭代。

matlabnewton-raphson method

matlabnewton-raphson method

matlabnewton-raphson method如何使用MATLAB 实现牛顿-拉夫逊方法引言:牛顿-拉夫逊方法是一种用于求解非线性方程的数值方法,在科学计算和工程领域具有广泛的应用。

在MATLAB 中,我们可以利用其强大的数值计算能力轻松实现这一方法。

本文将一步一步介绍如何使用MATLAB 实现牛顿-拉夫逊方法,帮助读者更好地理解和运用该方法。

第一步:问题建模和方程确定在使用牛顿-拉夫逊方法之前,我们首先需要建立一个数学模型并确定需要求解的方程。

我们假设我们试图解决的方程为F(x) = 0,其中x是需要求解的变量。

为了使用牛顿-拉夫逊方法,我们需要确定该方程的导数F'(x)。

在MATLAB 中,我们可以通过定义一个函数来表示方程F(x)和其导数F'(x)。

下面是一个简单的示例:MATLABfunction [F, dF] = equation(x)F = x^2 - 2; 示例方程为x^2 - 2 = 0dF = 2*x; 方程的导数为2*xend在这个示例中,我们定义了一个名为equation的函数,该函数接收一个变量x作为输入,并返回方程F(x)和其导数F'(x)的值。

请注意,这只是一个示例,实际问题中的方程和导数可能更加复杂。

第二步:实现牛顿-拉夫逊迭代算法在确定了方程和导数之后,我们可以开始实现牛顿-拉夫逊迭代算法。

该算法的基本思想是从一个初始猜测值x0开始,通过不断迭代来逼近方程的根。

迭代的过程可以通过以下公式表示:x(i+1) = x(i) - F(x(i)) / F'(x(i))在MATLAB 中,我们可以使用一个循环来实现这个迭代过程。

下面是一个使用牛顿-拉夫逊方法求解方程的示例:MATLABfunction x = newtonRaphson(x0, maxIter, epsilon)x = x0;for iter = 1:maxIter[F, dF] = equation(x);if abs(F) < epsilonbreak;endx = x - F / dF;endend在这个示例中,我们定义了一个名为newtonRaphson的函数,该函数接收一个初始猜测值x0、最大迭代次数maxIter和收敛条件epsilon作为输入,并返回牛顿-拉夫逊方法计算得到的根x。

稳态分析课程设计:直角坐标表示的牛顿拉夫逊法潮流计算程序设计

稳态分析课程设计:直角坐标表示的牛顿拉夫逊法潮流计算程序设计

稳态分析课设目录1.任务书 (2)2.模型简介及等值电路 (3)3.修正方程的建立 (4)4程序流程图 (9)5. MATLAB程序编写 (10)6.结果分析 (16)7.设计总结 (18)8.参考文献 (19)1.任务书课程设计任务书2.、模型简介及等值电路电力网络接线如下图所示,各支路阻抗标幺值参数如下:Z 12=0.02+j0.06,Z 13=0.08+j0.24, Z 23=0.06+j0.18, Z 24=0.06+j0.12, Z 25=0.04+j0.12, Z 34=0.01+j0.03, Z 45=0.08+j0.24, k=1.1。

该系统中,节点1为平衡节点,保持1 1.060V j =+为定值;节点2、3、4都是PQ 节点,节点5为PV 节点,给定的注入功率分别为:20.200.20S j =+, 3-0.45-0.15S j =,40.400.05S j =--,50.500.00S j =-+,5 1.10V =。

各节点电压(初值)标幺值参数如下:节点12345U i (0)=e i (0)+j f i (0)1.06+j0.0 1.0+j0.0 1.0+j0.0 1.0+j0.0 1.1+j0.0 计算该系统的潮流分布。

计算精度要求各节点电压修正量不大于10-5。

3.修正方程的建立当采用直角坐标时,潮流问题的待求量为各节点电压的实部和虚部两个分量1212,,,...,nnf f fe e e 由于平衡节点的电压向量是给定的,因此待求两共2(1)n 需要2(n-1)个方程式。

事实上,除了平衡节点的功率方程式在迭代过程中没有约束作用以外,其余每个节点都可以列出两个方程式。

对PQ 节点来说,is isQ P 和是给定的,因而可以写出()()0()()0i ijij i ijjijj isjj jj ij iijij ijjj ijj iisi jjj ij ip ff fe G e G e P B B Q Qf f fG e e G e B B ∈∈∈∈⎫∆=---+=⎪⎬∆=--++=⎪⎭∑∑∑∑ (3-2-1)对PV 节点来说,给定量是is is V P 和,因此可以列出2222()()0()0i is ijij i ij j ijj ji jj i j ii is i iff fe G e G e P P B B fV V e ∈∈⎫∆=---+=⎪⎬⎪∆=-+=⎭∑∑ (3-2-2)以直角坐标系形式表示3.1迭代推算式采用直角坐标时,节点电压相量及复数导纳可表示为:i i i ij ij ijV e jf Y G jB =+=+ (3-2-3)将以上二关系式代入上式中,展开并分开实部和虚部;假定系统中的第1,2,,m 号为P —Q 节点,第m+1,m+2,,n-1为P —V 节点,根据节点性质的不同,得到如下迭代推算式:⑴对于PQ 节点1111()()()()nni i i ij j ij j i ij j ij j j j n ni i i ij j ij j i ij j ij j j j P P e G e B f f G f B e Q Q f G e B f e G f B e ====⎫∆=---+⎪⎪⎬⎪∆=--++⎪⎭∑∑∑∑ (3-2-4) 1,2,,i m =⑵对于PV 节点112222()()()n ni i i ij j ij j i ij j ij j j j I i i i P P e G e B f f G f B e V V e f ==⎫∆=---+⎪⎬⎪∆=-+⎭∑∑ (3-2-5)1,2,,1i m m n =++-⑶对于平衡节点平衡节点只设一个,电压为已知,不参见迭代,其电压为:n n n V e jf =+ (3-2-6)3.2修正方程式(2-3-5)和(2-3-6)两组迭代式工包括2(n-1)个方程.选定电压初值及变量修正量符号之后代入式(2-3-5)和(2-3-6),并将其按泰勒级数展开,略去,i i e f ∆∆二次方程及以后各项,得到修正方程如下:x J f ∆=∆ (3-2-7)(3-2-8)3.3雅可比矩阵各元素的算式式(3-2-8)中, 雅可比矩阵中的各元素可通过对式(3-2-4)和(3-2-5)进行偏导而求得.当j i ≠时, 雅可比矩阵中非对角元素为22()0i iij i ij i j j i i ij i ij i j jj j P Q G e B f e f P Q B e G f f e U U e f ⎫∂∆∂∆=-=-+⎪∂∆∂∆⎪⎪∂∆∂∆⎪==-⎬∂∆∂∆⎪⎪∂∆∂∆⎪==∂∂⎪⎭(3-2-9)当j i =时,雅可比矩阵中对角元素为:111122()()()()22ni ij j ij j ii i ii i j i n iij j ij j ii i ii i j j n iij j ij j ii i ii i j i niij j ij j ii i ii i j j i iji i i P G e B f G e B f e P G f B e G f B e f Q G f B e G f B e e Q G e B f G e B f f U e e U f f ====∂∆⎫=----⎪∂⎪⎪∂∆=-+-+⎪∂⎪⎪∂∆⎪=+-+∂⎪⎪⎬∂∆⎪=-∆-++⎪∂⎪∂∆⎪=-⎪∂⎪∂∆=-∂⎭∑∑∑∑⎪⎪⎪ (3-2-10)雅可比矩阵各元素的表示如下:()()()()ij i ij i i ij ij j ij j ii i ii i j j iG e B f j i P H G e B f G e B f j i e ∈-+⎧≠∂∆⎪==⎨----=∂⎪⎩∑)()()()ij i ij i i ij ij j ij j ii i ii i j j iB e G f j i P N G f B e B e G f j i f ∈-⎧≠∂∆⎪==⎨-++-=∂⎪⎩∑)()()()ij i ij i i ij ij j ij j ii i ii i j j i B e G f j i Q M G f B e B e G f j i e ∈-⎧≠∂∆⎪==⎨++-=∂⎪⎩∑)()()()ij i ij i i ij ij j ij j ii i ii i j j i G e B f j i Q L G e B f G e B f j i f ∈+⎧≠∂∆⎪==⎨--++=∂⎪⎩∑20()2()i ij ij j i U R e j i e ≠⎧∂∆==⎨-=∂⎩4.程序流程图启动输入数据形成节点导纳矩阵设定节点起始计算电压迭代次数k=0应用式(7-16)和(7-17)计算置节点号i=1雅克比矩阵J 是否已经全部形成,i>n?按式(7-21)和(7-22)计算雅克比矩阵元素J 增大节点号i=i+1解修正方程式,由计算电压修正量求出迭代是否收敛 ,计算平衡节点功率 和线路功率结束S s S ijV i (k)maxi(k)max3?<V i (k)V i (k)V i (k)V i (0)V i(k)V i (k+1)i(k)i(0)i(k)i(k)i(k)i(k+1),和P i (k)(k)(k)i iQ J 和(k)iP i(k)(k)iQ ,=+=+k=k+1否是是否5.MATLAB程序编写程序编写如下:clc;clear;g(4,1)=2.7500;b(4,1)=-8.2500;g(4,3)=1.2500;b(4,3)=-3.7500;g(1,4)=2.7500;b(1,4)=-8.2500;g(1,2)=1.6667;b(1,2)=-5.0000;g(1,3)=3.3334;b(1,3)=-6.6667;g(1,5)=5.0000;b(1,5)=-15.0000;g(2,1)=1.6667;b(2,1)=-5.0000;g(2,3)=10.0000;b(2,3)=-30.0000;g(2,5)=1.2500;b(2,5)=-3.7500;g(3,4)=1.2500;b(3,4)=-3.7500;g(3,1)=3.3334;b(3,1)=-6.6667;g(3,2)=10.0000;b(3,2)=-30.0000;g(5,1)=5.0000;b(5,1)=-15.0000;g(5,2)=1.2500;b(5,2)=-3.7500;b(1,1)=-0.8250;b(4,4)=0.7500;g(1,1)=0.275;g(4,4)=-0.25;N1=4;for m=1:N1+1;for n=1:N1+1;if m==nG(m,m)=g(m,1)+g(m,2)+g(m,3)+g(m,4)+g(m,5);B(m,m)=b(m,1)+b(m,2)+b(m,3)+b(m,4)+b(m,5);elseG(m,n)=-g(m,n);B(m,n)=-b(m,n);endendendY=G+j*B;e(1)=1.0;e(2)=1.0;e(3)=1.0;e(4)=1.10;f(1)=0;f(2)=0;f(3)=0;f(4)=0;u(1)=1.0;u(2)=1.0;u(3)=1.0;u(4)=1.1;uu(1)=0;uu(2)=0;uu(3)=0;uu(4)=0;P(1)=0.20;Q(1)=0.20;P(2)=-0.45;Q(2)=-0.15;P(3)=-0.40;Q(3)=-0.05;P(4)=-0.50;Q(4)=0.00;k=0;disp('迭代前的参数:')e,f,uuN1=4;precision=1;%除平衡节点外节点数while precision>0.00001;e(5)=1.06;f(5)=0.00;for m=1:N1for n=1:N1+1pt(n)=e(m)*(G(m,n)*e(n)-B(m,n)*f(n))+f(m)*(G(m,n)*f(n)+B(m,n)*e(n));endpp(m)=P(m)-sum(pt);endfor m=1:N1-1for n=1:N1+1qt(n)=f(m)*(G(m,n)*e(n)-B(m,n)*f(n))-e(m)*(G(m,n)*f(n)+B(m,n)*e(n));endqq(m)=Q(m)-sum(qt);endfor m=N1uu2(m)=u(m)*u(m)-(e(m)*e(m)+f(m)*f(m))enda=1;for m=1:4dW(a)=pp(m);a=a+2;enda=2;for m=1:3dW(a)=qq(m);a=a+2;enda=3*2+2;for m=4,dW(a)=uu2(m);a=a+2;if max(dW)< precisionfprintf('\n 迭代是收敛的。

基于牛顿拉夫逊法潮流计算的matlab实验报告(含源程序和结果)

基于牛顿拉夫逊法潮流计算的matlab实验报告(含源程序和结果)

基于牛顿拉夫逊法潮流计算的matlab实验报告一、实验目的和要求1.学习掌握matlab的基本用法2.应用MATLAB语言编写具有一定通用性的牛顿-拉夫逊法潮流计算程序。

要求:(1)潮流计算方法为牛顿-拉夫逊法。

(2)编程语言为MATLAB。

(3)程序具有较强通用性。

二、程序流程图1.程序流程图开始形成节点导纳矩阵输入原始数据,节点重新编号设节点电压初值(0)(0)i ie f,i=1,2…,n,i≠s置迭代次数P=0置节点号i=1计算雅克比矩阵元素按公式计算PQ节点的()k i P∆,()kiQ∆,PV节点的()kiP∆,()2kiU∆求解修正方程式,得()kie∆,()kif∆雅克比矩阵是否已全部形成?求()max||ke∆,()max||kf∆迭代次数P=P+1i=i+1计算各节点电压的新值:(1)()()k k kie e e+=+∆(1)()()k k kif f f+=+∆三、求解问题及其结果1.求解问题:IEEE-美国新英格兰10机39节点测试系统1)系统单线图2)系统参数1)系统容量基准值为100MV A。

2) 负荷数据见表D-1表D-1 负荷数据3)发电机数据见表D-24)线路参数见表D-3LN35: BUS-4接有并联电容器,B 4=1.0000 LN36: BUS-5接有并联电容器,B 4=2.00005)变压器参数见表D-4%IEEE-美国新英格兰10机39节点测试系统% 1 2 3 4 5 6% bus volt angle p q typebus=[ 1 1.0000 0.00 0.00 0.00 12 1.0000 0.00 0.00 0.00 13 1.0000 0.00 -3.22 -0.024 14 1.0000 0.00 -5.00 -1.84 15 1.0000 0.00 0.00 0.00 16 1.0000 0.00 0.00 0.00 17 1.0000 0.00 -2.338 -0.84 18 1.0000 0.00 -5.22 -1.76 19 1.0000 0.00 0.00 0.00 110 1.0000 0.00 0.00 0.00 111 1.0000 0.00 0.00 0.00 112 1.0000 0.00 -0.085 -0.88 113 1.0000 0.00 0.00 0.00 114 1.0000 0.00 0.00 0.00 115 1.0000 0.00 -3.20 -1.53 116 1.0000 0.00 -3.29 -0.323 117 1.0000 0.00 0.00 0.00 118 1.0000 0.00 -1.58 -0.30 119 1.0000 0.00 0.00 0.00 120 1.0000 0.00 -6.80 -1.03 121 1.0000 0.00 -2.74 -1.15 122 1.0000 0.00 0.00 0.00 123 1.0000 0.00 -2.475 -1.15 124 1.0000 0.00 -3.08 -0.922 125 1.0000 0.00 -2.24 -0.472 126 1.0000 0.00 -1.39 -0.17 127 1.0000 0.00 -2.81 -0.755 128 1.0000 0.00 -2.06 -0.276 129 1.0000 0.00 -2.835 -0.269 130 1.0475 0.00 2.50 0.00 231 1.0000 0.00 0.00 0.00 332 1.0000 0.00 6.50 1.759 133 1.0000 0.00 6.32 1.0335 134 1.0123 0.00 5.08 0.00 235 1.0493 0.00 6.50 0.00 236 1.0000 0.00 5.60 0.9688 137 1.0278 0.00 5.40 0.00 238 1.0265 0.00 8.30 0.00 239 1.0300 0.00 -1.04 0.00 2];% 1 2 3 4 5 6 7 % line: from bus to bus R, X, G, B/2 Kline=[ 2 1 0.00350 0.04110 0 0.34935 0;39 1 0.00100 0.02500 0 0.37500 0;3 2 0.00130 0.01510 0 0.12860 0;25 2 0.00700 0.00860 0 0.07300 0;4 3 0.00130 0.02130 0 0.11070 0;18 3 0.00110 0.01330 0 0.10690 0;5 4 0.00080 0.01280 0 0.06710 0;14 4 0.00080 0.01290 0 0.06910 0;6 5 0.00020 0.00260 0 0.02170 0;8 5 0.00080 0.01120 0 0.07380 0;7 6 0.00060 0.00920 0 0.05650 0;11 6 0.00070 0.00820 0 0.06945 0;8 7 0.00040 0.00460 0 0.03900 0;9 8 0.00230 0.03630 0 0.19020 0;39 9 0.00100 0.02500 0 0.60000 0;11 10 0.00040 0.00430 0 0.03645 0;13 10 0.00040 0.00430 0 0.03645 0;14 13 0.00090 0.01010 0 0.08615 0;15 14 0.00180 0.02170 0 0.18300 0;16 15 0.00090 0.00940 0 0.08550 0;17 16 0.00070 0.00890 0 0.06710 0;19 16 0.00160 0.01950 0 0.15200 0;21 16 0.00080 0.01350 0 0.12740 0;24 16 0.00030 0.00590 0 0.03400 0;18 17 0.00070 0.00820 0 0.06595 0;27 17 0.00130 0.01730 0 0.16080 0;22 21 0.00080 0.01400 0 0.12825 0;23 22 0.00060 0.00960 0 0.09230 0;24 23 0.00220 0.03500 0 0.18050 0;26 25 0.00320 0.03230 0 0.25650 0;27 26 0.00140 0.01470 0 0.11980 0;28 26 0.00430 0.04740 0 0.39010 0;29 26 0.00570 0.06250 0 0.51450 0;29 28 0.00140 0.01510 0 0.12450 0;4 0 0 0 0 1.0000 0;5 0 0 0 0 2.0000 0;11 12 0.00160 0.04350 0 0 100.60000/100;13 12 0.00160 0.04350 0 0 100.60000/100;30 2 0.00000 0.01810 0 0 102.50000/100 ;31 6 0.00000 0.02500 0 0 107.00000/100 ;32 10 0.00000 0.02000 0 0 107.00000/100 ;34 20 0.00090 0.01800 0 0 100.90000/100 ;33 19 0.00070 0.01420 0 0 107.00000/100 ;35 22 0.00000 0.01430 0 0 102.50000/100 ;36 23 0.00050 0.02720 0 0 100.00000/100 ;37 25 0.00060 0.02320 0 0 102.50000/100 ;38 29 0.00080 0.01560 0 0 102.50000/100 ;20 19 0.00070 0.01380 0 0 106.00000/100] ;计算结果牛顿-拉夫逊法潮流计算结果节点计算结果:n节点节点电压节点相角(角度)节点注入功率1 1.049185 -8.874991 0.000000 + j 0.0000002 1.053167 -6.367180 0.000000 + j 0.0000003 1.041493 -9.207297 -3.220000 + j -0.0240004 1.036574 -10.042585 -5.000000 + j -1.8400005 1.044652 -8.959237 0.000000 + j 0.0000006 1.043883 -8.293104 0.000000 + j 0.0000007 1.032645 -10.342431 -2.338000 + j -0.8400008 1.031177 -10.811816 -5.220000 + j -1.7600009 1.042715 -10.595648 0.000000 + j 0.00000010 1.046426 -6.010476 0.000000 + j 0.00000011 1.044322 -6.792462 0.000000 + j 0.00000012 1.030736 -6.795388 -0.085000 + j -0.88000013 1.042351 -6.675491 0.000000 + j 0.00000014 1.036310 -8.232337 0.000000 + j 0.00000015 1.018517 -8.519794 -3.200000 + j -1.53000016 1.025492 -7.051856 -3.290000 + j -0.32300017 1.032750 -8.077118 0.000000 + j 0.00000018 1.034779 -8.936485 -1.580000 + j -0.30000019 1.044862 -2.382169 0.000000 + j 0.00000020 0.988148 -3.811032 -6.800000 + j -1.03000021 1.024926 -4.596980 -2.740000 + j -1.15000022 1.042650 -0.070512 0.000000 + j 0.00000023 1.032952 -0.245457 -2.475000 + j -1.15000024 1.021125 -6.906503 -3.080000 + j -0.92200025 1.060163 -4.952002 -2.240000 + j -0.47200026 1.052697 -6.205207 -1.390000 + j -0.17000027 1.037683 -8.217337 -2.810000 + j -0.75500028 1.050444 -2.695196 -2.060000 + j -0.27600029 1.050163 0.063077 -2.835000 + j -0.26900030 1.004392 1.594781 6.500000 + j 1.75900031 0.991632 2.892572 6.320000 + j 1.03350032 1.050539 7.797786 5.600000 + j 0.96880033 1.047500 -3.957598 2.500000 + j 1.21117434 1.012300 1.385774 5.080000 + j 1.82635935 1.049300 4.925324 6.500000 + j 2.63756636 1.027800 1.819476 5.400000 + j -0.10822437 1.026500 7.125579 8.300000 + j 0.21422538 1.030000 -10.390696 -1.040000 + j -2.29163939 1.000000 0.000000 5.628660 + j 1.384403线路计算结果:n节点I 节点J 线路功率S(I,J) 线路功率S(J,I) 线路损耗dS(I,J)2 1 1.178698 + j -0.360055 -1.174311 + j -0.360481 0.004386 + j -0.720536 39 1 6.405845 + j -2.096152 -6.361848 + j 2.408287 0.043997 + j 0.3121353 2 -3.633961 + j -0.542613 3.649983 + j 0.446577 0.016021 + j -0.096036 25 2 2.370242 + j -1.109311 -2.328681 + j 0.997356 0.041562 + j -0.1119554 3 -0.750370 + j -0.307172 0.751094 + j 0.080014 0.000724 + j -0.227159 18 3 0.337560 + j -0.663855 -0.337133 + j 0.438599 0.000427 + j -0.225256 5 4 1.635254 + j 0.499000 -1.633054 + j -0.609119 0.002200 + j -0.110119 14 4 2.621711 + j -0.216428 -2.616576 + j 0.150777 0.005135 + j -0.065651 6 5 4.826035 + j -0.675350 -4.821682 + j 0.684607 0.004353 + j 0.0092578 5 -3.178130 + j -1.041836 3.186428 + j 0.998989 0.008297 + j -0.042847 7 6 -4.249274 + j -0.969559 4.259899 + j 1.010657 0.010625 + j 0.04109811 6 3.465003 + j -0.270003 -3.457273 + j 0.209136 0.007730 + j -0.0608668 7 -1.909893 + j -0.196732 1.911274 + j 0.129559 0.001381 + j -0.0671739 8 0.132235 + j 0.116464 -0.131977 + j -0.521432 0.000258 + j -0.404968 39 9 7.617154 + j -1.902126 -7.557438 + j 2.142687 0.059717 + j 0.24056111 10 -3.483660 + j -0.203064 3.488121 + j 0.171352 0.004461 + j -0.03171213 10 -3.008372 + j -0.730489 3.011879 + j 0.688680 0.003508 + j -0.04180914 13 -2.934129 + j -0.411463 2.941429 + j 0.307264 0.007300 + j -0.10419915 14 -0.311115 + j -0.998556 0.312417 + j 0.627891 0.001303 + j -0.37066516 15 2.896296 + j 0.430232 -2.888885 + j -0.531444 0.007411 + j -0.10121217 16 -2.048841 + j 0.950740 2.052282 + j -1.049122 0.003441 + j -0.098383 19 16 4.542969 + j 0.681545 -4.511670 + j -0.625873 0.031300 + j 0.05567221 16 3.324778 + j -0.302389 -3.316338 + j 0.177006 0.008440 + j -0.125383 24 16 0.410793 + j -0.811601 -0.410571 + j 0.744757 0.000222 + j -0.066844 18 17 -1.917560 + j 0.363855 1.920087 + j -0.475208 0.002527 + j -0.111353 27 17 -0.128621 + j 0.132648 0.128754 + j -0.475531 0.000133 + j -0.342884 22 21 6.093176 + j 1.070437 -6.064778 + j -0.847611 0.028398 + j 0.22282623 22 -0.406149 + j -1.116063 0.406824 + j 0.928040 0.000675 + j -0.18802424 23 -3.490793 + j -0.110399 3.516516 + j 0.138837 0.025723 + j 0.02843826 25 -0.771398 + j -0.442881 0.773189 + j -0.111580 0.001791 + j -0.55446027 26 -2.681379 + j -0.887648 2.691475 + j 0.731900 0.010096 + j -0.15574828 26 1.416063 + j -0.565082 -1.408178 + j -0.210747 0.007885 + j -0.77583029 26 1.921038 + j -0.679443 -1.901899 + j -0.248272 0.019138 + j -0.927715 29 28 3.491624 + j -0.395924 -3.476063 + j 0.289082 0.015561 + j -0.106842 4 0 0.000000 + j -1.074485 0.000000 + j 0.000000 0.000000 + j -1.0744855 0 0.000000 + j -2.182596 0.000000 + j 0.000000 0.000000 + j -2.18259611 12 0.018656 + j 0.473066 -0.018327 + j -0.464126 0.000329 + j 0.00894013 12 0.066943 + j 0.423225 -0.066673 + j -0.415874 0.000270 + j 0.00735130 2 7.897633 + j -0.731582 -7.897633 + j 1.860277 0.000000 + j 1.12869531 6 7.506817 + j 1.371343 -7.506817 + j 0.109153 0.000000 + j 1.48049632 10 12.260592 + j 5.296517 -12.260592 + j -2.064007 0.000000 + j 3.23250934 20 5.080000 + j 1.826359 -5.054406 + j -1.314473 0.025594 + j 0.51188633 19 -1.716763 + j 5.348910 1.736896 + j -4.940504 0.020133 + j 0.40840535 22 6.500000 + j 2.637566 -6.500000 + j -1.998477 0.000000 + j 0.63908936 23 1.402814 + j -0.195113 -1.401865 + j 0.246763 0.000949 + j 0.05165037 25 9.586236 + j 0.419689 -9.533808 + j 1.607517 0.052428 + j 2.02720638 29 -12.165903 + j 2.106593 12.280860 + j 0.135062 0.114957 + j 2.24165520 19 -1.745594 + j 0.284473 1.747837 + j -0.240265 0.002242 + j 0.044208结果分析:此程序的运行结果和试验程序给出的结果是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%该程序仅针对《电力系统分析下》何仰赞P61 的4节点算例。

%节点电压用直角坐标表示时的牛顿-拉夫逊法潮流计算(matlab程序,可能有小错误,仅供学习之用,如果想要通用的程序,可自己动手改或再到pudn、csdn等网站搜索更好的)%南昌大学电力061 李圣涛2009年5月编写,2012年5月上传
clc %清空command windows
clear all %清空workspace
%为了提高可移植性、可读性、通用性,设置以下变量
N=4; %独立节点数
NPQ=2; %PQ节点数
NPV=1; %PV节点数
K=0; %迭代次数
%请输入最大迭代次数Kmax。

可从0开始,以观察第Kmax次迭代的结果
Kmax=input('\n\n 请输入最大迭代次数后回车(可从零开始) Kmax=\n');
small=10^(-5); %ε不能太小
%i为节点标号,其中1号……NPQ号为PQ节点,(NPQ+1)
%号……(N-1)号为PV节点,N号节点为平衡节点
%节点导纳矩阵Y的实部
G=[1.042093 -0.588235 0 -0.453858;
-0.588235 1.069005 0 -0.480769;
0 0 0 0 ;
-0.453858 -0.480769 0 0.934627 ];
%节点导纳矩阵Y的虚部
B=[ -8.242876 2.352941 3.666667 1.891074 ;
2.352941 -4.727377 0 2.403846 ;
3.666667 0 -3.3333333 0 ;
1.891074
2.403846 0 -4.261590 ];
%Y矩阵
Y=complex(G,B);
%给定PQ节点的Pnode、Qnode,PV节点的Pnode、Vnode。

(Vnode为节点电压的幅值)Pnode=[ -0.3 -0.55 0.5 ];%PQ、PV节点的初值P
Qnode=[ -0.18 -0.13 0 ];%PQ节点的初值Q
Vnode=[ 0 0 1.10 ];%PV节点的初值V
%迭代初值
e=[ 1.0 1.0 1.1 1.05 ];
f=[ 0 0 0 0 ];
%利用for循环来实现多次迭代。

for K=0:Kmax,
%计算△W。

△W=【△P1,△Q1,△P2,△Q2,……,△P,△V^2】(平衡节点不参与迭代) %用公式(11-46)计算NPQ个PQ节点的△P、△Q。

算法:先初始化,再不断地累减
%初始化,得△P=【Pnode(1),Pnode(2),……,Pnode(NPQ)】
for i=1:NPQ,
dP(i)=Pnode(i);
dQ(i)=Qnode(i);
end
%不断地累减,得△P和△Q
for i=1:NPQ,
for j=1:N,
dP(i)=dP(i)-e(i)*G(i,j)*e(j)+e(i)*B(i,j)*f(j)-f(i)*G(i,j)*f(i)-f(i)*B(i,j)*e(j);%△P
dQ(i)=dQ(i)-f(i)*G(i,j)*e(j)+f(i)*B(i,j)*f(j)+e(i)*G(i,j)*f(i)+e(i)*B(i,j)*e(j);%△Q
end
end
%用公式(11-47)计算NPV个PV节点的△P、(△V)^2 (其中△P的计算同上)算法:先初始化,再不断地累减
%初始化
for i=(NPQ+1):(N-1),
dP(i)=Pnode(i);
end
%不断地累减,得△P和(△V)^2
for i=(NPQ+1):(N-1),
for j=1:N,
dP(i)=dP(i)-e(i)*G(i,j)*e(j)+e(i)*B(i,j)*f(j)-f(i)*G(i,j)*f(i)-f(i)*B(i,j)*e(j);
dV2(i)=Vnode(i)^2-e(i)^2-f(i)^2;
end
end
%组合成△W=【△P1,△Q1,△P2,△Q2,……,△P,△V^2】(平衡节点不参与迭代)
%将△P间隔地赋入△W
a=1;
for i=1:(N-1),
dW(a)=dP(i);
a=a+2;
end
%将△Q间隔地赋入△W
a=2;
for i=1:NPQ,
dW(a)=dQ(i);
a=a+2;
end
%将△V^2间隔地赋入△W
a=NPQ*2+2;
for i=(NPQ+1):(NPQ+NPV),
dW(a)=dV2(i);
a=a+2;
end
%判断是否小于ε
if max(dW)<small
fprintf('\n 迭代是收敛的。

第%d次迭代后终止迭代。

\n',K-1);
break;
end
%计算雅克比矩阵各元素。

算法:先初始化,再不断地累减
J=zeros(N-1);
%初始化
for i=1:N-1,
for j=1:N-1,
if i<=NPQ %求雅克比矩阵中PQ节点的元素
if i==j
J(2*i-1,2*j-1) = -G(i,i)*e(i)-B(i,i)*f(i);
J(2*i-1,2*j ) = B(i,i)*e(i)-G(i,i)*f(i);
J(2*i ,2*j-1) = B(i,i)*e(i)-G(i,i)*f(i);
J(2*i ,2*j ) = G(i,i)*e(i)+B(i,i)*f(i);
elseif i~=j
J(2*i-1,2*j-1) = -G(i,j)*e(i)-B(i,j)*f(i);
J(2*i-1,2*j ) = B(i,j)*e(i)-G(i,j)*f(i);
J(2*i ,2*j-1) = B(i,j)*e(i)-G(i,j)*f(i);
J(2*i ,2*j ) = G(i,j)*e(i)+B(i,j)*f(i);
end
end
if i>NPQ %求雅克比矩阵中PV节点的元素
if i==j
J(2*i-1,2*j-1) = -G(i,i)*e(i)-B(i,i)*f(i);
J(2*i-1,2*j ) = B(i,i)*e(i)-G(i,i)*f(i);
J(2*i ,2*j-1) = -2*e(i);
J(2*i ,2*j ) = -2*f(i);
elseif i~=j
J(2*i-1,2*j-1) = -G(i,j)*e(i)-B(i,j)*f(i);
J(2*i-1,2*j ) = B(i,j)*e(i)-G(i,j)*f(i);
J(2*i ,2*j-1) = 0;
J(2*i ,2*j ) = 0;
end
end
end
end
%不断地累减
for i=1:NPQ,
for k=1:N,
J(2*i-1,2*i-1) = J(2*i-1,2*i-1)-G(i,k)*e(k)+B(i,k)*f(k);
J(2*i-1,2*i ) = J(2*i-1,2*i )-G(i,k)*f(k)-B(i,k)*e(k);
J(2*i ,2*i-1) = J(2*i ,2*i-1)+G(i,k)*f(k)+B(i,k)*e(k);
J(2*i ,2*i ) = J(2*i ,2*i )-G(i,k)*e(k)+B(i,k)*f(k);
end
end
%根据△W=-J*△V, 得△V
dV=(-J)\dW';
%用dV对e、f进行修正,并得到复数表示的V
for i=1:(N-1),
e(i)=e(i)+dV(2*i-1);
f(i)=f(i)+dV(2*i );
V(i)=complex(e(i),f(i));
end
V(N)=complex(e(N),f(N));
format long g;
fprintf('\n 第%d次迭代(共%d个独立节点)',K,N);
V
end。

相关文档
最新文档