人教版八年级数学下册第十八章平行四边形复习课教案设计
新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
人教版数学八年级下十八章《平行四边形》复习 教学设计 (2)

十八章《平行四边形》复习课教学设计北京师范大学大连普湾附属学校徐冰【教学目标】一、知识与技能:1.利用导图构建平行四边形知识体系,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,明确它们之间的相互联系;2.灵活应用平行四边形的性质和判定解决问题,了解四边形与三角形的密切联系。
二、过程与方法:1.通过小组活动,相互讨论交流构建知识体系,使知识系统化;2.明确“一般与特殊”的关系,感受几何的基本证明方法。
三、情感态度和价值观:经历解决问题的过程,培养学生思考能力和几何直观,感受几何变化的巧妙。
【教材分析】本节课内容选材为教材第十八章平行四边形复习,基于2011版课程标准的要求,需要对本章知识进行总理和复习。
十八章是整个八年级下册书的重点、难点,也是中考的高频考点。
本节课需要把学习时相对独立的知识系统化、结构化;进而更好的解决综合性问题。
【学情分析】授课对象是八年级的学生,经过初中快两年的学习,学生已经掌握了基本的几何知识:平行、垂直、相交、三角形等,并且掌握了进行几何研究的基本方法和思路,能够从合情推理上升到演绎推理。
通过对本章的学习,学生已经基本掌握了平行四边形、菱形、矩形、正方形的性质及它们的判定,因为在学习平行四边形、菱形、矩形和正方形时,知识都相对比较独立,学生对这些特殊的平行四边形之间的关系掌握得还不是很好,比较陌生。
因此本节教学设计主要引导学生通过所学内容和方法进行平行四边形及特殊的平行四边形的知识梳理及综合应用。
【教学重点】1.平行四边形与各种特殊平行四边形的区别和联系;2.梳理平行四边形、矩形、菱形、正方形的知识体系。
【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学媒体】PPT,交互式电子白板【设计理念】本节课的设计理念严格按照2011版课程标准的要求,所有内容均建立在学生已有经验的基础上,通过启发式教学,在合作探究中分析问题、解决问题,让学生充分体验知识的发生发展过程,进一步增强几何直观以及推理能力。
人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》教学设计

为了巩固学生对特殊平行四边形性质的理解,提高学生的几何素养,特布置以下作业:
1.必做题:
-请学生完成教材第十八章复习题中关于特殊平行四边形的题目,确保掌握基本性质和计算方法。
-从生活实际中选取一个特殊平行四边形的例子,描述其特点和应用,并画出图形,以加深对性质的理解。
-结合课堂学习,尝试编写一道应用特殊平行四边形性质解决实际问题的题目,并与同学互相交流、讨论。
(二)教学设想
1.教学方法:
-采用问题驱动的教学方法,通过设计具有挑战性的问题,激发学生的好奇心,引导他们主动探究特殊平行四边形的性质。
-运用比较、归纳、演绎等思维方法,帮助学生形成系统的知识结构,提高几何证明能力。
-利用现代信息技术,如几何画板、多媒体演示等,增强学生对几何图形的直观感受,提高空间想象力。
二、学情分析
八年级学生已经具备了一定的几何基础,对平行四边形的性质和判定方法有了一定的了解。在此基础上,他们对特殊平行四边形(矩形、菱形、正方形)的性质和应用已有初步的认识,但在深入理解和灵活运用方面还存在一定的困难。因此,在教学过程中,应关注以下几点:
1.学生在分析特殊平行四边形性质时,往往容易忽略性质之间的联系,需要引导他们通过比较、归纳,形成系的知识体系。
3.设计丰富的课堂活动,如小组讨论、几何画板演示、实际操作等,增强学生对特殊平行四边形性质的理解,提高学生的几何直观和空间想象力。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,培养学生积极、主动、合作的学习态度,让学生体验数学探究的乐趣。
2.培养学生严谨、细致、踏实的科学精神,使学生认识到数学的实用价值和美学价值,增强对数学的热爱。
-鼓励学生利用几何画板等工具,动态演示特殊平行四边形的性质,加深对几何图形的认识。
【人教版】数学八下:第18章《平行四边形》全章名师教学设计

【人教版】数学八下:第18章《平行四边形》全章名师教学设计一. 教材分析人教版数学八下第18章《平行四边形》是学生在学习了四边形的性质和分类之后的内容,本章主要引导学生探究平行四边形的性质,并学会运用这些性质解决实际问题。
本章内容包括平行四边形的定义、性质、判定以及平行四边形的应用。
通过本章的学习,学生能进一步理解和掌握四边形的分类,提高解决几何问题的能力。
二. 学情分析学生在学习本章之前,已经掌握了四边形的性质和分类,具备一定的几何思维能力。
但部分学生对几何图形的理解和操作能力仍需提高,因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和辅导。
三. 教学目标1.理解平行四边形的定义和性质,掌握平行四边形的判定方法。
2.能够运用平行四边形的性质解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力、逻辑思维能力和团队合作能力。
四. 教学重难点1.平行四边形的定义和性质的理解与运用。
2.平行四边形的判定方法的掌握。
3.实际问题中平行四边形性质的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结等方式主动学习。
2.利用多媒体课件和实物模型,直观展示平行四边形的性质和判定,增强学生的空间想象能力。
3.注重个体差异,实施分层教学,针对不同水平的学生给予适当的辅导和指导。
4.小组合作学习,培养学生的团队合作能力和沟通能力。
六. 教学准备1.多媒体课件和教学软件,用于展示平行四边形的性质和判定。
2.实物模型和教具,用于直观展示平行四边形的性质。
3.练习题和实际问题,用于巩固和拓展学生的知识。
4.教学计划和教学反思表,用于指导教学过程和评价教学效果。
七. 教学过程1.导入(5分钟)利用多媒体课件展示平行四边形的图片,引导学生回顾四边形的分类,激发学生对平行四边形的学习兴趣。
2.呈现(10分钟)介绍平行四边形的定义和性质,通过实物模型和教具直观展示平行四边形的性质,引导学生理解和掌握。
人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》课程教学设计

课题:《特殊平行四边形复习》教学设计•教材分析特殊的平行四边形是考查的重点,一般考查的是与特殊平行四边形有关的开放性、探索性问题,或是与三角形全等和相似、圆、函数等知识结合构建的综合题,每年都会在选择(填空)和解答题中对相关内容考查。
【教学目标】知识目标:1.掌握平行四边形、菱形、矩形、正方形之间的联系及区别。
2.灵活运用平行四边形、菱形、矩形、正方形的性质及判定解决问题。
能力目标:1.通过本节课的学习,培养学生合作学习的能力。
2.发展学生的合情推理能力,进一步学习有条理的思考与表达,让学生理解推理与论证的基本过程。
情感目标:让学生树立科学、严谨、理论联系实际的良好学风,让学生通过了解几何学习严谨的特点,建构学生严谨的思维模式。
教学重点:特殊平行四边形知识体系的形成。
难点:特殊平行四边形知识综合应用。
•教法分析九年级的复习面临时间少,内容多,每个学生都期望在复习中都有所提高,为此,我采用了情景教学法,导学案教学法,启发式教学法,比较教学法,多媒体辅助教学。
•学法分析整个教学过程注重学生探究,变“教学”为“导学”,采用活动教学法,小组交流合作。
•教学过程本课教学我分为两大部分:第一部分为基础的复习,第二部分为综合知识的复习。
复习思路是从梳理知识点出发,先建立知识网络,然后采用以习题带动知识点的形式,在具体的问题中,引导学生从点到线,再到形,层层推进。
(一)、情景引入让学生观察生活中的图片,借此提出了今天的课题:特殊平行四边形的复习。
再通过接力游戏,让学生拖动把平行四边形变成正方形,让学生回忆矩形、菱形、正方形的定义是什么?(二)、自主建构,知识回顾活动一:以小组为单位,将特殊平行四边形按①性质;②判定;③联系三个方面进行归纳,整理,并制作成三个知识结构图。
然后小组交流展示。
设计意图:培养学生自主学习,归纳整理的能力,小组协作,尽量让中下等学生能参与课堂。
归纳1:矩形、菱形、正方形的性质归纳3:特殊平行四边形之间关系设计意图:分类整理,易于辨别区别与联系,采用填空题形式,主要是兼顾到中下等学生归纳整理知识,形成体系。
八年级数学下册18平行四边形复习一教案新版新人教版

第18章平行四边形复习一、复习目标1、经历平行四边形基本性质,常见判定方法的复习交流过程,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础.2、让学生理解平面几何观念的基本途径是多种多样的,感知和体验几何图形的现实意义,体验二维空间相互转换关系.3、通过对正方形的探索学习,体会它的内在美和应用美.二、课时安排1课时三、复习重难点重点:平行四边形的性质以及判定.难点:定理的综合应用.四、教学过程(一)知识梳理1、平行四边形定义:2、平行四边形的性质:3、平行四边形的判定:4、三角形的中位线概念:5、三角形的中位线三角形的第三边,且等于第三边的 .6、一个三角形有中位线。
(二)题型、技巧归纳考点一平行四边形的定义例1、如图, ABCD中,∠A=120°,则∠1= 。
考点二平行四边形的性质例2.平行四边形ABCD中,AB=6cm,AC+BD=14cm ,则△AOB的周长为多少?考点三平行四边形的判定例3、点A、B、C、D在同一平面内,从①AB//CD;②AB=CD;③BC//AD;④BC=AD四个条件中任意选两个,不能使四边形ABCD是平行四边形的选法有()A.①②B.②③C.①③D.③④考点四三角形中位线例4.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为。
(三)典例精讲1.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cmB.5cmC.6cmD.8cm2.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm3.如图,在平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2 cm,则AB=______cm.4.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点M,N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为______.5.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.6.已知,如图,O为▱ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F 在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.(四)归纳小结1.本节课学习了哪些主要内容?2.在平行四边形的综合应用时要注意哪些问题?(五)随堂检测1.在平行四边形ABCD中,∠A=70°,∠D= , ∠BCD=______.2.平行四边形的两邻边分别为6和8,那么其对角线应()A.大于2, B.小于14C.大于2且小于14 D.大于2或小于123、如图,平行四边形ABCD中,AB=5,AD=8,∠ BAD 、∠ADC的平分线分别交BC于点E、F上,则EF= 。
人教版八年级数学下册第18章平行四边形(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和三角板制作平行四边形,演示其性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两组对边分别平行的四边形,它在几何图形中具有重要的地位。它是研究其他更复杂数学概念的基础。
2.案例分析:接下来,我们来看一个具体的案例。通过分析实际生活中的平行四边形物体,了解平行四边形在实际中的应用,以及它如何帮助我们解决问题。
举例:分析不同类型的四边形,让学生判断其是否为平行四边形,并说明理由。
(3)特殊平行四边形的性质:掌握矩形、菱形、正方形的性质及判定方法。
举例:通过实际操作,让学生探索特殊平行四边形的性质,并运用性质解决相关问题。
(4)平行四边形的面积计算:掌握平行四边形面积的计算公式,并能解决实际问题。
举例:给出具体图形,让学生计算平行四边形的面积,并应用于实际情境。
4.学生小组讨论环节,大家围绕平行四边形在实际生活中的应用展开了热烈的讨论。通过这个环节,学生们的思维得到了拓展,但也有一些学生在提出问题和解决问题方面显得不够自信。在今后的教学中,我会鼓励这部分学生多参与讨论,提高他们的自信心和解决问题的能力。
5.总结回顾环节,我对本节课的教学内容进行了梳理,希望学生们能够掌握平行四边形的性质、判定方法以及在生活中的应用。但从学生的反馈来看,他们对某些知识点的掌握程度仍有待提高。在接下来的教学中,我会加强对这些知识点的讲解和练习,确保学生们能够熟练掌握。
人教版八年级数学下册第18章平行四边形复习课教学设计

(二)过程与方法
1.通过复习课的教学,引导学生自主探究、合作交流,提高学生的几何逻辑思维能力。
2.利用实际问题,激发学生的兴趣,培养学生的几何直观和空间想象能力。
3.设计具有层次性的练习题,使学生在解决问题的过程中,逐步提高解题能力和技巧。
(2)从生活中寻找一个实例,运用平行四边形的性质和判定方法进行分析,并简要说明。
2.选做题:
(1)探究题目:矩形、菱形、正方形各自具有哪些独特的性质?它们之间的关系是什么?
(2)拓展题目:运用平行四边形的性质,解决以下问题:一个平行四边形的对角线互相垂直,求证该平行四边形是菱形。
3.小组合作任务:
以小组为单位,设计一道关于平行四边形的实际问题,要求包含平行四边形性质和判定方法的应用。小组成员共同讨论,解决问题,并在课堂上进行展示。
7.总结提炼,形成知识体系
在复习课结束时,引导学生总结平行四边形的知识点,形成完整的知识体系,提高学生的归纳、总结能力。
8.拓展延伸,激发兴趣
设计一些拓展性问题和实际应用题,激发学生的学习兴趣,提高学生的创新思维和解决问题的能力。
四、教学内容与过程
(一)导入新课
1.教学活动:利用多媒体展示一组生活中常见的平行四边形实物图片,如建筑物的立面、操场上的跑道等,引导学生观察并说出这些图形的共同特征。
人教版八年级数学下册第18章平行四边形复习课教学设计
一、教学目标
(一)知识与技能
1.让学生掌握平行四边形的性质,如对边平行且相等、对角线互相平分等,并能运用这些性质解决实际问题。
2.培养学生运用平行四边形的判定方法,如两组对边分别平行、一组对边平行且相等、对角线互相平分等,识别和构造平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18章平行四边形小结与复习教案
一、学习目标:
1.进一步理解平行四边形、矩形、菱形、正方形的概念及其相互
联系。
2.掌握平行四边形、矩形、菱形、正方形的性质和判定。
3.会把各种平行四边形的相关知识进行结构化整理。
二、学习重点:
梳理平行四边形的知识结构体系,根据具体问题情境,选择适的知识进行推理计算,并解决问题。
三、复习流程:
(一)课前准备
1.认真回忆所学内容,用自己的方式整理本章知识。
2.请梳理本章本章学习的顺序,并说说每一种四边形之间的关系。
3.你发现我们研究各种平行四边形的过程中,有哪些共同的研究内容、研究步骤、研究的方法?
(二)课堂展示
1.小组内说说自己课前的预习,并相互补充,在全班展示。
2.全班范围内就展示的同学预习结果做出评价和补充。
(三)创设情境回顾知识:1.把一块矩形纸板放在阳光下,它的影子可能是哪些图形?
2.本章学习了哪些特殊的四边形?是按照什么顺序学习这些四边
形的?请说说这些四边形之间的关系.
(四)整理知识优化知识结构
你能说一下平行四边形、矩形、菱形和正方形的性质和判定吗?你能把本章知识整理成知识结构图吗?试一试。
(五)知识点复习
1.在图中的标号下面写出所有的判定定理:
2.平行四边形一个内角为40。
,一组邻边为3和4,求平行四边形的各边长和各内角的度数。
3.如果矩形的对角线长为13,一边长为5,则该矩形的周长是----------。
4.依次连接菱形各边中点得到的四边形是哪一种特殊的四边形?请说出你的判断理由。
5.如图
ABCD 中,CE ⊥AB ,垂足为E ,如果∠A =
115°,则∠BCE =______.
6.如图在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果EF =2,那么菱形ABCD 的周长是( ). A.4 B.8 C.12
D.16
E B
A C D
(六)综合应用解决问题(合作讨论)
例题:如图,ABCD的对角线AC,BD相交于点O,过点B作BP∥AC,过点C作CP∥BD,BP与CP相交于点P.试判断四边形BPCO的形状,并说明理由.
变式1:若连接OP得四边形ABPO,四边形ABPO是什么四边形?
变式2:若将ABCD改为矩形ABCD,其他条件不变,得到的是什么四边形?
变式3:如要得到矩形BPCO,应将条件中的ABCD 改为什么四边形?
变式4:能否得到正方形BPCO?此时四边形ABCD应该是什么形状?
(七)丰收乐园
1.本节课复习了哪些数学知识?
2.在解决问题的过程中突出的数学思想方法是什么?
3.畅所欲言:本节课你有什么收获?还有什么疑惑?。