合成气的生产

合集下载

合成气生产工艺

合成气生产工艺

合成气生产工艺
合成气是一种由氢气(H2)和一氧化碳(CO)组成的混合气体,通常用于化学合成、燃料生产和其他工业过程。

合成气的生产工艺主要有煤气化、重油蒸气改制和生物质气化等多种方法。

以下是其中两种主要的合成气生产工艺的简要介绍:
1.煤气化工艺:
煤气化是通过高温、高压条件下将固体煤转化为合成气的工艺。

主要步骤包括:
a.煤的预处理:煤在煤气化之前通常需要进行破碎、粉碎和脱硫等预处理,以提高气化效率。

b.煤气化反应:将预处理后的煤与气化剂(通常是水蒸气和空气或氧气的混合物)在高温高压反应器中反应,产生合成气。

c.气体清洁:合成气中可能含有杂质,需要通过气体清洁设备去除硫化物、氮氧化物等有害成分。

2.重油蒸气改制工艺:
这是一种将重质石油馏分转化为合成气的工艺。

主要步骤包括:
a.热裂解:通过加热重质石油馏分,使其分解为较轻的烃类物质。

b.蒸气改制反应:将热裂解产生的烃类物质与水蒸气在催化剂的作用下发生改制反应,生成合成气。

c.气体净化:清除合成气中的杂质,如硫化物、氮氧化物等。

这两种工艺是实现合成气生产的常见方法,选择使用哪种工艺通常取决于原料的类型和可获得的资源。

此外,生物质气化、焦炭气化等方法也在一些特定情境下被应用。

合成气是一种重要的工业中间体,在合成燃料、化学品和其他产品方面有广泛的应用。

化学工艺学 第 2 章 合成气

化学工艺学  第 2 章  合成气
原则:不析碳,原料充分利用,能耗小。
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.5 转化反应工艺流程及转化炉
燃料用天然气 11
8 9 过 热 蒸 汽
5
2
1 3
一段转化
4
二段转化
对流段
7 10 蒸汽 空气 原料天然气 锅炉给水 转化气去变换 6
氢氮气来自合成
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热 锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
图解法或迭代法求解x,y
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

水碳比 反应温度 反应压力
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

温度增加,甲烷平衡含量下降,反应温度每降低 10℃,甲烷平衡含量约增加1.0%-1.3%;

增加压力,甲烷平衡含量随之增大;
增加水碳比,对甲烷转化有利; 甲烷蒸汽转化在高温、高水碳比和低压下进行有利
立式圆筒,内径约3米,高约13米;壳体材质 为碳钢,内衬不含硅的耐火材料,炉壳外保温。
上部有燃烧空间的固定床绝热式催化反应器。

合成气的生产工艺与设备概论

合成气的生产工艺与设备概论

合成气的生产工艺与设备概论背景介绍合成气是一种由氢气和一氧化碳组成的混合气体,广泛用于化工、石油和能源等行业。

在工业生产中,合成气通常通过合成气生产工艺和设备进行制造。

本文将介绍合成气的生产工艺以及常用的合成气生产设备。

合成气的生产工艺煤炭气化工艺煤炭气化是一种常用的合成气生产工艺,它通过在高温、高压和缺氧的条件下处理煤炭,产生合成气。

煤炭气化工艺主要包括以下步骤:1.煤炭预处理:将煤炭进行粉碎和干燥,以提高气化效率。

2.煤气化反应:在气化炉中,煤炭在高温下与氧气反应,产生合成气。

气化反应可以分为两种类型:固体气化和流化床气化。

3.合成气净化:合成气中含有杂质和有害物质,需要通过净化设备去除。

常见的净化方法包括压力摩擦水洗、低温洗涤和吸附等。

4.合成气的使用:合成气可以用于炼油、化工和发电等行业。

根据不同的需求,合成气可以进一步加工制成甲醇、合成油和合成烯烃等产品。

重油加氢工艺重油加氢是另一种常见的合成气生产工艺,它通过将重油与氢气在催化剂的作用下进行反应,生成合成气。

重油加氢工艺主要包括以下步骤:1.重油预处理:将重油进行加热和脱盐处理,以提高反应效率。

2.加氢反应:将经过预处理的重油与氢气在加氢催化剂的存在下进行反应,产生合成气。

3.合成气净化:类似于煤炭气化工艺中的净化步骤,合成气需要经过净化设备去除杂质和有害物质。

4.合成气的使用:合成气可以用于炼油厂、石化厂和电力厂等行业,用于生产燃料、化工原料和发电等。

生物质气化工艺生物质气化是一种新兴的合成气生产工艺,它通过将生物质材料(如木材、秸秆和农作物废弃物)在高温条件下气化,产生合成气。

生物质气化工艺主要包括以下步骤:1.生物质预处理:将生物质材料进行切碎和干燥处理,以提高气化效率。

2.气化反应:将经过预处理的生物质材料在气化炉中进行高温反应,生成合成气。

生物质气化主要采用固定床气化和热解气化两种方式。

3.合成气净化:合成气需要通过净化设备去除杂质和有害物质,以满足后续加工和利用的需要。

第四章合成气的生产过程

第四章合成气的生产过程

1.8737 107 T2 11.894
lg K P2
2.183 T
0.09361 lg T 0.632 103 T
1.08 107 T2 2.298
图解法或迭代法求 解x,y
c. 影响转化反应平衡组成的因素 水碳比 反应温度 反应压力
水碳比的影响
P=3.5MPa、T=800℃
水碳比
水碳比为2
甲烷平衡含量% 5.0 2.0 1.0 0.5 0.2
压力 (MPa)
温度 ℃
1
800 870 910 950 1000
2
870 950 1000 1030 1100
4
940 1020 1080 1130 1200
温度增加,甲烷平衡含量下降
(3)反应动力学 在镍催化剂表面甲烷和水蒸汽解离成次甲基和原子态氧, 并在催化剂表面吸附与互相作用,生成CO、CO2和H2
2 4 6
甲烷平衡含量(%)
18.0 7.9 1.0
水碳比越高,甲烷平衡含量越低。
反应压力影响
甲烷平衡含量%
反应压力 MPa 水碳比=2、T=800℃
• 压力增加,甲烷平衡 含量也随之增大。
• 在烃类蒸汽转化方法 的发展过程中,压力 都在逐步提高,主要 原因是加压比常压转 化经济效果好。
反应温度的影响
催化剂中毒 a S S≤0.5ppm,可逆性中毒
催化剂活性越高,允许S含量越低。 温度越低,S对镍催化剂毒害越大。 b As 永久性中毒
As来源:含As碱液脱碳 c 卤素 卤素 ≤0.5ppm,永久性中毒
催化剂活性下降判断方法:
甲烷含量升高;平衡温距增大;“红管”现象
(6)工业生产方法 甲烷蒸汽转化过程中控制的主要工艺条件是温度、压力、 水碳比、空气加入量等。同时还要考虑到炉型、原料、炉 管材料、催化剂等对这些参数的影响。参数的确定,不仅 要考虑对本工序的影响,也要考虑对压缩、合成等工序的 影响,合理的工艺条件最终应在总能耗和投资上体现出来。

第五章 合成气生产过程 化工工艺学课件

第五章 合成气生产过程 化工工艺学课件
出热量。
下部为有催化剂的转化段,利用燃烧段反应放出的热量,进行吸热的甲烷蒸汽 转化反应[见式(5-20)]。
下部的反应条件: 2.45 MPa,950~1030℃,(下部的)颗粒状镍催化剂(以含 氧化锰和氧化铝的尖晶石为载体,具有很高的活性和耐高温性能,可采用较 高空速进行反应)。
②优点 a.合成气中的H2/CO可在0.99~2.97之间灵活地调节; b.反应器的设计合理地利用了反应热,不需外部供热,提高热效率。
(1)ATR工艺:由丹麦Topse公司提出并已完成中试。
①工艺过程 基本原理:把 CH4的部分氧化和蒸汽转化组合在一个反应器中进行。
进料: 天然气、纯氧和水蒸气,其中O2/烃=0.55~0.6(摩尔比)。 反应器:反应器为圆筒形,内衬耐火材料,燃烧段入口装有耐火材料保护的金属
燃烧器。 上部为无催化剂的燃烧段,在此处一定量的CH4按下式进行不完全燃烧,释放
机理:活性炭吸附H2S和02,后两者在其表面上反应,生成元素 硫;
活性炭也能脱除有机硫,有吸附、氧化和催化三种方式。
吸附方式对噻吩最有效,CS2次之,COS最差,它要在氨及氧 存在下才能转化而被脱除:
COS+0.5O2
CO2+S
COS+2O2+2NH3+H2O
(NH4)2SO4+CO2
在活性炭上浸渍铁、铜等盐类,可催化有机硫转化为H2S, 然后被吸附脱除。
PSA法还可用于分离提纯H2、N2、CH4、CO、C2H4等气体。
5.2 由天然气制造合成气
5.2.1 天然气制合成气的工艺技术及其进展 5.2.2 天然气蒸汽转化过程工艺原理 5.2.3 天然气蒸汽转化过程的工艺条件 5.2.4 天然气蒸汽转化流程和主要设备

合成气的生产过程

合成气的生产过程
合成气的生产过程
气体在反应后各组分的平衡分压
合成气的生产过程
(3)甲烷水蒸气转化反应热力学
(1-1) (1-2)
图解法或迭代法求解x,y
合成气的生产过程
1.甲烷水蒸气转化反应理论基础
(3)甲烷水蒸气转化反应热力学 c.影响甲烷水蒸气转化反应平衡组成的因素
水碳比
反应温度
反应压力
合成气的生产过程
4.3.2.1甲烷水蒸气转化制合成气
合成气的生产过程
2020/11/7
合成气的生产过程
第4章 合成气的生产过程
主要内容 4.1 概述 4.2 由煤制合成气 4.3 以天然气为原料制合成气 4.4 原料气脱S 4.5 CO2的脱除 4.6 CO变换
合成气的生产过程
4.1概述
4.1.1 生产方法及应用
合成气(synthesis gas or syngas) CO和H2的混合物
合成气的生产过程
鲁奇炉结构示意图 1.煤箱 2.分布器 3.水夹套 4.灰箱 5.洗涤器
合成气的生产过程
3.流化床气化法
4.2.2 水煤气的生产方法
特点 煤:粒度<10mm 流化状态 气体组成和温度均匀
温克勒炉(Winkler) 煤气组成(体积%)
H2: 35~46 CO: 30~40 CO2: 13~25 CH4: 1~2
合成气的生产过程
水 煤 气 发 生 炉
合成气的生产过程
1.固定床间歇法(蓄热法) 生产工艺条件:
温度 吹风速度 蒸汽用量 燃料层高度 循环时间
间歇气化法优缺点: 制气时不用氧气,不需空分装置。 间歇生产过程,发生炉的生产强度低,对煤 的质量要求高。
合成气的生产过程
4.2.2 水煤气的生产方法

第四章_合成气的生产过程.pptx

第四章_合成气的生产过程.pptx

0.1MPa下碳 -蒸汽反应 的平衡组成
2MPa下碳蒸汽反应的 平衡组成
动力学特征 气固反应,反应速率不仅与化学反应速率,还与气化剂 向碳 表面的扩散速率有关。另外,反应速率还与煤的 种类有关:无烟煤<焦炭<褐煤(反应活性)
(1) 对于碳与氧气的反应,一般认为先生成CO2,然后0~ 1200℃高温反应 ;大量吸热
要求:大量供热 采取措施: 通过燃烧一部分C的反应热, 维持整个系 统的热平衡。
具体方法包括: 固定床 间歇式气化法 连续式气化法(鲁奇法) 流化床 气流床(德士古法)
.固定床间歇法(蓄热法)
优:制气时 不用氧气, 不需空分装 置
缺:生产 过程间歇, 发生炉的生 产强度低, 对煤的质量 要求高。
• 蒸汽转化法 Steam reforming
分H6部H氧2k29分J98化=8/氧m2法=部0化-o63l法k分5CCJ.HH7/氧mk44CCJo++H化H/强lm14H4/法o++22外OOl1H强2/热22供OO催外高平2化热温P供催剂衡高a化,r温热,技tCH剂iO,a2C技术/lCOC+o术OCO3+成xHO+易成2i2dH3熟+调熟Ha22t2H,节,iHHoH2Hn2.22需/29/CH98CH=8纯O222=9O098=-氧=863=2k35=0J.-73/63mkk5JJo.7//lmmkJoo/llm强热ol外平强热供衡外平热,供H衡 -35.7kJ/mol 热平衡,H2/CO易调节.需纯氧
.鲁奇炉结构示意图
1.煤箱 2.分布器 3.水夹套 4.灰箱 5.洗涤器
特点:
气化剂:水蒸汽和氧气的 混合物
燃料层分层:与间歇法 大致相同

合成气的生产过程

合成气的生产过程

合成气的生产过程1. 简介合成气是由一氧化碳和氢气组成的气体混合物,通常用作能源源和化工原料。

它可以通过多种不同的方法来生产,本文将介绍合成气的主要生产过程。

2. 生产方法2.1 煤气化法煤气化法是最常见和传统的合成气生产方法之一。

该方法将煤炭与氧气和水蒸气在高温下反应,产生一氧化碳和氢气。

具体的步骤如下: 1. 原料准备:将煤炭破碎成适当的大小并干燥。

2. 煤气化反应:将干燥的煤炭与预热的氧气和水蒸气一起送入煤气化炉中,在高温下反应生成合成气。

3. 硫化物的处理:通过添加适当的催化剂或吸收剂,去除合成气产生过程中的硫化物。

4. 分离和净化:将产生的合成气进行分离和净化,去除杂质和不需要的组分。

2.2 水蒸气重整法水蒸气重整法是另一种常用的合成气生产方法。

该方法主要用于天然气和液化石油气等碳氢化合物的转化。

具体的步骤如下: 1. 原料准备:准备天然气或液化石油气作为原料。

2. 蒸汽重整反应:将天然气或液化石油气与水蒸气以适当的比例混合,通过蒸汽重整催化剂在高温下反应,生成一氧化碳和氢气。

3. 硫化物的处理:与煤气化法相同,通过添加适当的催化剂或吸收剂,去除合成气产生过程中的硫化物。

4. 分离和净化:将产生的合成气进行分离和净化,去除杂质和不需要的组分。

2.3 部分氧化法部分氧化法是一种将重油、煤焦油和煤等碳质燃料直接部分氧化而制取合成气的方法。

具体的步骤如下: 1. 原料准备:准备重油、煤焦油或煤作为碳质燃料。

2. 燃烧反应:将碳质燃料与氧气在合适的反应条件下进行部分燃烧,生成一氧化碳和氢气。

3. 硫化物的处理:与前两种方法一样,通过添加适当的催化剂或吸收剂,去除合成气产生过程中的硫化物。

4. 分离和净化:将产生的合成气进行分离和净化,去除杂质和不需要的组分。

3. 应用领域合成气作为一种重要的能源源和化工原料,被广泛应用于以下领域: - 化工工业:合成气可用于制造合成油、合成烯烃、合成醇、氨和甲醇等化学品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章合成气的生产5.2由天然气制合成气5.2.1概述1.水蒸气转化法在高温和催化剂存在下,烷烃与水蒸气反应生产合成气的方法称为水蒸气转化法。

当以天然气为原料时,又称甲烷蒸汽转化法,是目前工业生产应用最广泛的方法。

2.部分氧化法部分氧化法是指用氧气(或空气)将烷烃部分氧化制备合成气的方法。

反应式表示为, 部分氧化法多用于以石脑油或重油为原料的合成气生产。

3. 自热式催化转化部分氧化法(ATR工艺)CH4的部分氧化和蒸汽转化组合在一个反应器进行。

反应器上部为无催化剂的燃烧段,CH4的不完全燃烧,放出热量。

反应器下部为含催化剂的转化段,利用燃烧段反应放出的热量,进行吸热的水蒸气转化反应。

催化剂为:颗粒状镍催化剂,以含氧化锰和氧化铝的尖晶石为载体,具有很高的活性和耐高温性能,可采用较高空速进行反应。

4.甲烷-二氧化碳催化转化法(Sparg工艺)催化剂上易结炭:改进镍基转化催化剂、开发新型抗积炭催化剂和优化反应条件等。

调节原料混合气的CO2/CH4H2O/CH4之比,转化后合成气中H2/CO在1.8—2.7之间变动5.2.2天然气蒸汽转化的基本原理一、主要反应天然气中所含的多碳烃类与水蒸气发生类似反应在—定条件下,转化过程可能发生成碳反应二、催化剂和工艺条件:1.催化剂催化剂的基本条件:高活性、高强度、抗析碳。

活性组分:镍是目前天然气蒸汽转化催化剂的唯一活性组分。

在制备好的催化剂中,镍以NiO形式存在,含量一般为10%一30%(质量)。

助催化剂:抑制熔结过程,使催化剂有较稳定的高活性,延长使用寿命并提高抗硫抗析碳能力。

金属氧化物,如Cr2O3、A12O3、MgO、TiO等。

助催化剂用量一般为镍含量的10%(质量)以下。

载体:使镍的晶粒尽量分散,较大比表面。

催化剂的载体是熔点在2000℃以上的金属氧化物,它们能耐高温,且有很强的机械强度。

常用的载体有A12O3、MgO、CaO、K2O等。

2.工艺条件甲烷蒸汽转化过程中控制的主要工艺条件是温度、压力、水碳比、空气加入量等。

同时还要考虑到炉型、原料、炉管材料、催化剂等对这些参数的影响。

参数的确定,不仅要考虑对本工序的影响,也要考虑对压缩、合成等工序的影响,合理的工艺条件最终应在总能耗和投资上体现出来。

(1)温度:甲烷蒸汽转化为可逆吸热反应。

从化学平衡和反应速率考虑,提高温度对转化反应有利,可以降低残余甲烷含量。

但温度的升高,受催化剂耐热程度和炉管材质等条件的限制。

HK40材料制成的合金钢管,炉壁最高温度不超过930℃,所以炉管出口气体温度应维持在830℃以下。

(2)压力:甲烷蒸汽转化反应是摩尔数增加的反应。

从化学平衡来看,增加压力对反应不利。

目前工业生产都采用加压操作。

A加压下转化可以大大地节省动力:甲烷转化后气体体积增加4—5倍,从节省动力的角度看是有利的。

与常压相比,操作压力采用 1.06lMPa,可节省动力约38%;当在6.0MPa下操作时,甚至可以省去原料气压缩机。

B加压操作可以提高后部工序的设备生产能力。

随着压力的升高,能量消耗减少的程度也逐渐下降。

C加压下蒸汽转化可以提高热效率:当操作压力提高时,蒸气分压也提高了,可有效地回收这一部分热量,就能大大提高热效率,降低生产成本。

工业上一般采用3MPa左右的压力,近年来也有采用更高的压力(6MPa)进行转化的。

D加压转化可以提高设备能力:加压可使同样规模的装置设备减小,催化剂用量也可减少,因此降低了投资费用。

(3)水碳比水碳比是水蒸气与甲烷的摩尔比。

提高水碳比从化学平衡角度看有利于甲烷转化,对抑制析碳也是有利的。

水碳比对甲烷的平衡含量影响是很大的。

提高水碳比,蒸汽耗量的增加,致使能耗增加,炉管热负荷提高。

在实际生产中,天然气蒸汽转化法水碳比为3.5—4.5。

5.2.4天然气蒸汽转化工艺流程和装置1.基本步骤转化炉、原料预热和余热回收等装置。

2.天然气蒸汽二段转化法的工艺流程对流段预热到380一400℃,经钴钼加氢和氧化锌脱硫后,按水碳比为3.5的比例,天然气与压力工业蒸汽混合。

一段转化炉对流段进一步预热到500一523℃,流经转化催化剂进行转化反应。

一段炉的热量是由顶部烧嘴喷入天然气燃烧供给的。

工艺空气加压,配入少量蒸汽、对流段预热盘管加热,与—段转化气汇合,燃烧区燃烧后,进入二段炉使化剂床层。

转化气经两个废热锅炉回收热量后,温度被降至330℃左右,送去合成工序。

5.2.5合成气净化一、概述1. 工艺过程设置:合成气的组成调整与杂质清除的工艺过程与原料、原料气组成有关。

用于合成甲醇时以石脑油蒸汽转化所得合成气,无需变换与脱碳工序;以天然气蒸汽转化所得合成气,无需变换工序,外加二氧化碳;以煤与重油为原料所得合成气,配置变换、脱硫、脱碳。

2. 合成气净化:CO会使合成工艺中催化剂失活。

清除杂质的目的是保证后续合成催化剂的寿命,被清除的杂质主要是硫化氢与有机硫化物。

二氧化碳的脱除,兼有调整组成与维持催化剂较高活性状态的双重作用。

二、脱硫1. 硫化合物如硫化氢、氧硫化碳、二硫化碳、硫醇、硫醚、噻吩等。

2.合成气脱硫方法:干法脱硫:设备简单,设备比较庞大,且需多个设备切换操作。

湿法脱硫:物理吸收法、化学吸收法、直接氧化法三种。

物理吸收法:选择硫化物溶解度大的有机溶剂为吸收剂,加压吸收,富液减压解吸,溶剂循环使用,解吸的硫化物需二次加工。

化学吸收法:选用弱碱性溶液为吸收剂,吸收时伴有化学反应,富液升温再生循环使用,再生的硫化物也需二次加工回收。

直接氧化法:吸收剂为碱性溶液,溶液中加载体起催化作用,被吸收的硫化氢氧化为硫磺.溶液再生循环使用。

3. 干法脱硫氢氧化铁法氢氧化铁再生条件:氢氧化铁脱硫剂组成为α-Fe2O3·xH2O,脱硫剂适宜的含水量:30%一50%;常温、常压与加压下都能使用。

钴钼加氢脱硫常与氧化锌法串连使用,以天然气或石脑油蒸汽转化制备合成气,一般转化前先经过钴钼加氢催化剂,使有机硫转化为无机硫,再串以氧化锌脱硫,可使总硫含量降到10-7以下,保证催化剂的正常操作。

反应:钴钼催化剂组成:主要组分是MoO3、CoO,A12O3为载体,含Mo量5%一13%,含Co量1%一6%,催化剂制成片状或挤条。

钴钼催化剂的使用条件:350一430℃,压力0.7—7MPa,气态烃空速500一1500h-1,加氢量相当干原料气含氢量的5%一10%。

氧化锌法:精细脱硫手段之一,特别适用于烃类蒸汽转化制合成气工艺,气体中硫化物可脱除到l一2×10-7以下。

当气体中有氢存在时,COS、CS2、RSH、RSR′等会转化为硫化氢,再被氧化锌吸收。

单独用氧化锌不能除去噻吩类硫化物。

氧化锌脱硫剂的操作温度:200一400℃,脱硫剂无法再生。

工艺流程钴钼加氢串连氧化锌的脱硫流程。

原料先经预热至340一400 ℃,进入加氢转化器,在此与富氢气源配合以满足加氢转化要求,再进入氧化锌脱硫器精脱硫。

三、变换1.作用以重油或固体煤为原料所制得的合成气均需经过一氧化碳变换工序。

(1)调整氢碳比例:合成甲醇所用的合成气组成应保持一定的氢碳比例,当以重油或煤为原料生产合成气时,CO含量偏高,需通过变换工序使过量的一氧化碳变换成氢和二氧化碳。

(2)生产氢气(3)使有机硫化物转化为无机硫:天然气或石脑油为原料时在蒸汽转化前,用钴钼加氢串连氧化锌的脱硫法可达到要求。

以重油或煤得到的合成气,设置了变换工序,除噻吩外,其它有机硫化物均可在铁基变换催化剂上转化为硫化氢,便于后工序脱除。

(4)合成氨中除去一氧化碳:一氧化碳与合成氨的铁系催化剂发生反应,导致催化剂失活。

2.变换反应主反应副反应反应热力学:变换反应的平衡受温度、水碳比(即原料气中H2O/CO的摩尔比)、原料气中CO2含量等因素影响:低温和高水碳比有利于平衡右移、压力对平衡无影响。

当H2O/CO比低时,有利于副反应,CO歧化会使催化剂积碳。

3.催化剂(1)中变催化剂铁—铬系催化剂:Fe3O4为活性组分,Cr2O3助催化剂的多成分。

一般含Fe2O3 80%一90%,含Cr2O37%一11%,并含有K2O(K2CO3)、MgO及A12O3等成分。

Cr2O3作用:将活性组分Fe3O4分散,使之具有更细的微孔结构和较大的比表面积;防止Fe3O4的结晶成长,使催化剂耐热性能提高,延长使用寿命;提高催化剂的机械强度,抑制析碳副反应等;添加(K2CO3)也能提高催化剂的活性,单独添加极少量的(K2CO3),就有一定促进效果,如同时添加Cr2O3,则效果更佳。

添加MgO及A12O3虽不能提高催化剂约活性,但可增加催化剂的耐热性,而且MgO还具有良好约抗硫化氢的能力。

有机硫化物通过铁基变换催化剂转变为硫化氢。

中变钴钼催化剂:以氧化铝为载体,有效组分为氧化钴(3%一3.5%)和三氧化钼(10%一15%).并加入少量碱金属氧化物。

在使用前,通含硫化氢的气体硫化。

实际起催化剂作用的是硫化钴和硫化钼。

催化剂不受硫化物的毒害,活性温度比铁铬催化剂低,机械强度大于铁铬催化剂。

(2)低变催化剂以氧化铜为主体,加入氧化锌和氧化铝助剂。

助剂作用:使微晶铜有效地被分隔开来不致长大、从而提高了催化剂的活性和热稳定性。

低变催化剂含CuO15.3%一31.2%,ZnO32%一62.2%.A12O3一40.5%。

4.变换过程工艺条件(1)温度变换反应是可逆的放热反应,必然存在着最佳反应温度。

最佳温度To,与平衡温度Te的关系为一个两段绝热反应,段间间接换热的T-x操作状况图。

EF、GH分别为一、二段绝热反应操作线、FG为段间间接换热降温线,绝热操作线方程可由热量衡算导出,如采用平均温度时的反应热(一△H R)和平均热容C P计算,可得出(2)压力压力对变换反应的平衡没有影响,提高压力将使析碳等副反应易于进行。

动力学角度分析,加压可提高反应速度,因为变换催化剂存加压下比常压下活性更高。

先压缩原料气再进行变换的动力消耗比先变换后压缩变换气的动力消耗低。

加压变换设备体积小,布置紧凑。

加压变换过程的湿变换气中水蒸气冷凝温度高,有利于热能回收。

具体的操作压力:小型氨厂操作压力为0.7—1.2MPa,中型氨厂为1.2—1.8MP a,以煤为原料,纯氧气化的大型氨厂,压力可达5.2MPa,以烃类为原料的大型合成氨厂,压力为3.0MPa。

(3)水蒸气比增加水蒸气用量,提高一氧化碳平衡变换率,加快反应速度,防止催化剂进一步被还原,避免析碳及生成甲烷的副反应。

改变水蒸气用量是调节床层温度的重要手段。

原料气中水蒸气过量,使原料气中CO含量下降、绝热温升λ减小。

水蒸气用量不宜过高,否则不仅蒸汽消耗增加,而且床层压降太大,反应温度难以维持,中变水蒸气比例一般为H2O/CO=3一5。

5.变换反应的工艺流程一氧化碳含量较高,则应采用中温变换。

相关文档
最新文档