最新平行线的判定与性质典型题课件ppt

合集下载

《平行线的性质》平行线的证明PPT课件

《平行线的性质》平行线的证明PPT课件

C
∵AB∥CD(已知)
∴∠1=∠D(两直线平行,内错角相等)
∵∠B=∠D(已知)
∴∠1=∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
例2:已知,如图,AB∥CD,∠B=∠D,求证:
AD∥BC.
证法三:
A
D
3
如图,连接BD(构造一组内错角)
4
∵AB∥CD(已知)
B 12
C
∴∠1=∠4(两直线平行,内错角相等)
所以∠BDF=∠EDF.
课堂小结
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
1ppt.
如果∠1 ≠ ∠2c,n AB与CD的位置P课P件T 关系会怎样呢/?kejia
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外 一点有且只有一条直线与这条直
n/ 语文
线平行”相矛盾.
课件
这说明∠1 ≠ ∠2的假设不成立,
/kejia n/yu
所以∠1 =∠2.
wen/
总结归纳
5.如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠C= 180 °-∠B=180°-115°=65°
所以梯形的另外两个角分别是80° 、 65°.
第七章 平行线的证明
平行线的性质
学习目标
1.理解并掌握平行线的性质公理和定理.(重点) 2.能熟练运用平行线的性质进行简单的推理证 明.(难点)

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

平行线的性质 课件(共22张PPT)

平行线的性质  课件(共22张PPT)

3
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
你发现了什么?
两条平行直线被第三条直线所截,内错角相等. 简写成:两直线平行,内错角相等. 表达方式:如图,
∵a∥b(已知),
∴∠1=∠2(两直线平行,内错角相等).
如图,直线a∥b,直线a、b被直线c所截
试一试
翻开你的数学练习横格本,每一页上都有许多如图所示的互 相平行的横线条,随意画一条斜线与这些横线条相交, 找出其中 任意一对同位角.观察或用量角器度量这对同位角,你有什么发现?
∠1=∠2
那么,一般情况下,如图,如果直线a与直线b平行,直线l与 直线a、b分别交于点O和点P,其中的同位角∠1与∠2也必定相等吗?
A.65°
B.55°
C.45°
D.35°
课堂小结
知识点 平行线的性质
1.两直线平行,同位角 相等 . 2.两直线平行,内错角 相等 . 3.两直线平行,同旁内角 互补 .
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
(2)从∠1=110o可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 o可以知道∠4 是多少度?为什么?B
D
解:(1)∠2=110o 理由:两直线平行,内错角相等;
(2)∠3=110o 理由:两直线平行,同位角相等;
(3)∠4=70o 理由:两直线平行,同旁内角互补.
C 2E 43
2.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为 ( B )
例3 将如左图所示的方格图中的图形向右平行移动4格,再向上 平行移动3格,画出平行移动后的图形.

平行线的判定课件

平行线的判定课件
建筑结构
在建筑结构设计中,为了确保结 构的稳定性和安全性,常常需要 使用平行线的概念来设计和建造 支撑结构。
平行线在生产实践中的应用
机械制造
在机械制造中,为了确保机器的精确 度和稳定性,需要使用平行线的概念 来制造和校准机器部件。
电子设备
在电子设备中,平行线被广泛应用于 电路板的布线和元件的排列,以确保 电流的稳定传输和元件的正常工作。
平行线在几何证明中的应用
平行线的判定定理
通过平行线的性质和判定定理,可以证明两条直线是否平行,从而解决一些几何证明问题。
平行线在几何证明中的重要性
平行线是几何证明中的重要工具,通过平行线可以推导出许多重要的几何结论,如角平分线定理、勾股定理等。
平行线在日常生活中的应用
道路规划
在道路规划中,为了确保车辆行 驶的安全和顺畅,需要确保道路 的平直和方向的一致性。平行线 的概念在这里发挥了重要作用。
同旁内角可以判定两条直线平行 。
详细描述
根据平行线的性质,如果两条直线被第三条 直线所截,且同旁内角互补,则这两条直线 平行。可以通过反证法证明这一点,假设两 条直线不平行,则它们相交于一点,由此产 生的同旁内角不互补,与已知条件矛盾,因 此假设不成立,原命题成立。
内错角相等判定法的证明
总结词
通过内错角相等,可以判定两条直线平 行。
VS
详细描述
根据平行线的性质,如果两条直线被第三 条直线所截,且内错角相等,则这两条直 线平行。可以通过相似三角形的性质进行 证明,设两直线分别为AB和CD,交于点 E,若内错角相等,则△ADE与△CBE相似 ,从而AB与CD平行。
同旁内角互补判定法
总结词
当两条直线被第三条直线所截,如果同旁内角互补,则这两条直线平行。

平行线的判定课件精.ppt

平行线的判定课件精.ppt
12
判定两条直线平行的方法
文字叙述
符号语言
图形
同位角相等 ∵∠1=∠2 (已知) c
两直线平行
内错角 相等
∴a∥b ∵∠3=∠2 (已知)
1 34
a
两直线平行 ∴a∥b
2
同旁内角互补 ∵ ∠2+∠4=180°.
b
两直线平行
(已知) ∴a∥b
13
学以致用
装修工人正在向墙上钉木条,如果
木条b与墙壁的边缘垂直,那么木条
( 同旁内角互补,两直线平)行.
19
2.已知∠3=45 °,∠1与∠2互余,试说明AB//CD ?
解:∵∠1=∠2(对顶角相等) ∠1+∠2=90°(已知) ∴∠1=∠2=45° ∵ ∠3=45°(已知)
A
C
3
1
2
∴∠ 2=∠3
B
D
∴ AB∥CD(内错角相等,两直线平行)
20
3. 如图:已知 ∠1=75o , ∠2 =105o 问:AB与CD平行吗?为什么?
1
a与墙壁的边缘所夹的角为多少度时,
才能使木条a与木条b平行?
2?
当∠2=90 °时, ∠1=∠2, 根据同位角相等,两直线平行; 木条a与木条b平行。
拓展应用
1.已知:如图,a⊥c,b⊥c。求证:a∥b。
a
b
1
2
c
结论:在同一平面内,垂直于同一条直线的 两条直线互相平行。
2.如图,已知∠MCA= ∠ A, ∠ DEC= ∠ B,
这节课你收获了哪些?
平行线的判定
平行线的判定方法
1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行

《平行线的性质》课件(共33张PPT)000

《平行线的性质》课件(共33张PPT)000

如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=110°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
桃子题:
如图,梯子的各条横档互相平行, ∠1=1000,求∠2的度数。
解:∠1=∠3; ∠2 =∠4 理由如下:
∵AB∥DE (已知) A
DC
F
∴∠1=∠3(两直线平行, 同位角相等) ∵ ∠1=∠2 ,∠3=∠4
1
23
4
B
E
∴ ∠2=∠4 (等量代换)
(2 )反射光线BC与EF也平行吗?
平行:∵ ∠2=∠4 ∴ BC∥EF(同位角相等,两直
线平行)
比一比 、乐一乐:(分组比赛)
4
31
56
8
7
∠1=∠5
a b
探索新知
①已知直线a,画直线b,使b∥a,c
②任画截线c,使它与a、
11718°25°8°b
b都相交,则图中∠1与 ∠2是什么角?它们的 大小有什么关系?
21185728°° a
③旋转截线c,同位角
∠1与∠2的大小关系又
如何? ∠1=∠2
通过上面的实验测量,可以得到性质1(公理):
3 2
目前,它与 地面所成的 较小的角
为∠1=85º
1
苹果
草莓
梨子
桃子
香蕉
桔子
西瓜
杨梅
草莓题:
1 A
D
B
C
1、如果AD//BC,根据___________ 可得∠B= _______

(完整版)《平行线的判定与性质的综合运用》教学课件

(完整版)《平行线的判定与性质的综合运用》教学课件

6.如图,AB,CD,EF,MN均为直线,∠2=∠3=70°, ∠GPC=80°,GH平分∠MGB,求∠1的度数.
解:∵∠2=∠3=70°(已知), ∴AB∥CD(内错角相等,两直线平行), ∴∠BGP=∠GPC(两直线平行,内错角相等), ∵∠GPC=80°(已知), ∴∠BGP=80°(等量代换), ∴∠BGM=180°-∠BGP=100°(平角的定 义),
(完整版)《平行线的判定与性质的综合运用》教学课件
平行线的性质
第2课时 平行线的判定与性质的综合运用
导入新课
讲授新课
当堂练习
课堂小结
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
解: ∵a//b (已知),
A.80° B.65° C.60°
D.55°
3.如图,BD⊥AB,BD⊥CD,则∠a的度 数是( A ) A.50° B.40° C.60° D.45°
4.已知AB∥DE,试问∠B,∠E,∠BCE有什么关系.请
完成填空:
A 解:过点C作CF∥AB, 则_∠__B__=_∠__1__ ( 两直线平行,内错角相等 ). C
B
1
F
2
又∵AB∥DE,AB∥CF,
D
E
∴__C_F__∥__D_E____(平行于同一直线的两条直线平行 ).
∴∠E=∠__2__(两直线平行,内错角相等).
∴∠B+∠E=∠1+∠2(等式的性质),
即∠B+∠E=∠BCE.
5.已知:如图,AD⊥BC于D,EG⊥BC与G, ∠E=∠3,试问:AD是∠BAC的平分线吗?若是, 请说明理由.

平行线的判定和性质复习ppt课件.ppt

平行线的判定和性质复习ppt课件.ppt

cd
a
1
3
A
B
2 图1
5b
4
D
图2 C
(2)如图2∵∠A+ ∠D= 180(已知)
∴___A_B__∥____C_D_( 同旁内角互补,两直) 线平行 ∴∠B+∠C=__1_8__0(0 两直线平行,同旁)内角互补
13
体验成功——达标检测
16 a
2、直线a、b与直线c相交,给出下列条件: 5 4
①∠1= ∠2②∠3= ∠6③∠4+∠7=1800
平行线的判定和性质 (复习课)
实验中学 宋春花
1
学习目标
1、掌握平行线的判定和性质, 以及它们的区别;
2、能熟练、准确、灵活地应用 平行线的判定和性质解决问题。
2
知识梳理
一、平行线的性质
1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补
二、平行线的判断方法
1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4、平行于同一条直线的两直线,互相平行 5、垂直于同一条直线的两直线,互相平行
A
B
E1
F
2
C
D
变式1:已知,如图,AB∥CD,BE平分∠ABC,CF平分
∠BCD,你能发现∠1与∠2的关系吗?说明理由.
5
综合运用
变式2:如图,∠1=∠2,能判断AB∥DF吗?为什么?
若不能判断AB∥DF,你认为还需要再添加的一个条件 是什么呢?写出这个条件,并说明你的理由。
B1A


F2

6
综合运用
F 5
C
(3)、∵ _A__B∥_D__F, (已知)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴∠FED+∠CDE=180°(两直线平行,同旁内角互补)
∵∠CDE=152°∴∠FED=28°
∴∠BED=∠BEF+∠FED=50°+28°=78°
练习
5.如图所示,把一张长方形纸片ABCD沿EF折叠,


G
B
解:依题意得:AD//BC,∠DEF=∠MEF
平行线的判定与性质典型题
平行线的判定与性质的区别
平行线的判定
平行线的性质
条件
结论
条件
结论
同位角相等
同位角相等
内错角相等 两直线平行 两直线平行 内错角相等
同旁内角互补
同旁内角互补
平行线的判定回答了:满足怎样条件的两条直线才平行. 平行线的性质回答了:由两条直线平行能得到什么结论.
例题讲解
例1:已知∠3=45 °,∠1与∠2互余,
练习
A的B度∥数CD. ,∠ABE=130°,∠CDE=15A2°,求∠BBED
F 130° E 152°
解:如图过点E做EF//AB。
C
D
∴∠ABE+∠BEF=180°(两直线平行,同旁内角互补)
∵∠ABE=130°∴∠BEF=50°(等式的性质)
∵AB//EF,AB//CD∴EF//CD(分别平行于第三条直线的两直线平行)
∠BAE=∠CDF
解:如图∵AB//CD
A
B

1
∴∠BAD=∠CDA(两直线平行,内错角相等) F
2
E
又∵AE//DF

∴∠1=∠2(两直线平行,内错角相等)
C
图2
D
∴∠BAD-∠1=∠CDA-∠2(等式性质1)
即∠BAE=∠CDF(等量代换)
例题讲解
例3:如图,AB∥CD,∠B=35°, ∠1=75°.求∠A的度数.
2.如图B=25°,∠BCD=45°,∠CDE=30°, ∠E=10°,试说明AB//EF的理由。
解:在∠BCD的内部作∠BCM=25° A
B
在∠CDE的内部作∠EDN=10° ∵∠B=25°,∠E=10°(已知)
C
M
N
D
E
F
∴∠B=∠BCM,∠E=∠EDN(等量代替)
∴AB//CM,EF//DN(内错角相等,两直线平行)
问题分析: ⑴观察图形中的∠B与∠C具有怎 样的位置关系? ⑵AB与CD具有怎样的位置关系 时,才能说明∠B=∠C? ⑶由已知条件能说明AB与CD平 行吗?
综合应用
1. 如 图 , ∠ BHE 与 ∠ BGF 互 为 补 角 , ∠D=∠A.求证:∠B=∠C.
解: ∵∠BHE+ ∠BGF=180°,
二、应激原 ( stressor )
概念:
对各种刺激的非特异性反应称为应激或应激反应
(stress response),而刺激因素被称为应激原。
试说明
AB/?/CD
解:由于∠1与∠2是对顶角, ∴∠1=∠2 又∵∠1+∠2=90°(已知) ∴∠1=∠2=45°
A
C
3
1
2
∵ ∠3=45°(已知)
B
D
∴∴∠∠12==∠∠33((等等量量代代换换) ) ∴∴AABB∥∥CCDD((同内位错角角相相等等,,两两直直线线平平行行))
例题讲解
例2:已知AB∥CD,AE∥DF。请说明
任选A一个加以说B 明.
A
B
P
P
C
D
(1)
P
A
B
C
D
(3)
C
D
(2)
A
B
C
D
P
(4)
练习
1.如图1-15,已知∠ABC+∠C=180°,
BD平分∠ABC。∠CBD与∠D相等吗?请
说明理由。
A
B
提示:
解思:考∵下∠列A几BC个+∠问C题=1:80°
∴(A1B)//CADB(与同C旁D内平角行互吗补?,为两什直么线?平行)
∠BHE+ ∠BHA=180°, ∴∠BGF= ∠BHA(同角的补角相等), ∴AE//DF(同位角相等,两直线平行), ∴∠A= ∠BFD(两直线平行,同位角相等). 又∵∠D=∠A,所以∠BFD= ∠D, ∴AB//CD(内错角相等,两直线平行). ∴∠B=∠C(两直线平行,内错角相等).
综合应用
∴(∠2D)=∠∠DA与BD∠(A两B直D线是平一行对,什内么错的角相等)
又角∵?B它D们平是分否∠A相B等C ?为什么? ∴(∠3A)B∠DC=∠BCDB与D∠ABD相等吗?为
D
∴什∠么C?BD=∠D(等量代换)
图1-15
C
练习
2.如图所示
∠A=120°,∠B=60°,∠EFC=∠DCG,
试说明:AD//EF。
理由如下:
CD与E∵F∠平AG行D =吗∠A?CB为, 什么?
A
∴ GD∥BC.
答:∵∠CD1和∥∠E3F是.内错角,
G1D
∴∠1=∠3(两直线平行,内错角相等).
E
∵∠1=∠2,
∴∠2=∠3(等量代换). C
∵∠2和∠3是同位角,
2 F
B
∴ CD∥EF(同位角相等,两直线平行).
4.如图所示,已
A
E
解: ∵∠A=120°,∠B=60°(已知)
B
∴∠A+∠B=120°+60°=180° (等式性质)
∴AD//BC(同旁内角互补,两直线平行)
∵∠EFC=∠DCG(已知)
∴EF//BC(内错角相等,两直线平行)
∴AD//EF(平行公理的推论)
D F
CG
练习
3.已知:如图,∠AGD=∠ACB,∠1=∠2,
M
∴∠DEF=∠EFG=50°(两直线平行,内错角相等)
50°
FC N
∴∠MEF=50°(等量代换)
∴∠DEG=∠DEF+∠MEF=50°+50°=100°
第七章 应 激 (stress)
第一节 概述
一、应激的概念
应激是指机体在受到各种内外环境因素刺 激时所出现的非特异性全身反应。
出现以交感-肾上腺髓质和下丘脑-垂体-肾 上腺皮质轴兴奋为主的神经内分泌反应,以及 细胞和体液中某些蛋白质成分的改变和一系列 功能代谢的变化。
又∵∠BCD=45°,∠CDE=30°(已知)∴∠DCM=20°,∠CDN=20°
∴∠DCM=∠CDN(等量代换)∴CM//DN(内错角相等,两直线平行)
∵AB//CM∴AB//DN(平行公理推论)又∵EF//DN∴AB//EF
扩展提升
如图所示,已知AB∥CD,分别探索下列四个图形
中∠P与∠A,∠C的关系,请你从所得的四个关系中
解: ∵AB∥CD,∠B=35°
∴∠2 = ∠B=35°
又∵∠ACD = ∠1+ ∠2 = 35°+ 75°= 110° 且AB∥CD
∴∠A+ ∠ ACD= 180° ∴∠A= 180°- ∠ ACD= 70°
综合应用
1. 如 图 , ∠ BHE 与 ∠ BGF 互 为 补 角 , ∠D=∠A.求证:∠B=∠C.
相关文档
最新文档