电压放大电路的设计与调试
项目六 任务四 功率放大电路的安装、调试与检修

任务四功率放大电路的安装、调试与检修【学习目标】1.掌握功率放大器的原理。
、2. 掌握PCB电路板的制作2.掌握0TL功率放大器的安装与调试。
【任务导入】功率放大器的作用是对信号进行一个功率放大的作用,主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。
功放的应用很广泛,例如在体育馆场、影剧场、会议厅或其它公共场所的扩声,家庭、汽车音响等生活中很多地方都有用到。
图6-4-1 功放音响立体结构图【相关知识】一、印制电路板的制作工艺及过程在学习电子线路的安装与调试过程中,我们要了解印制电路板的设计方法,掌握印制电路板的制作工艺及过程1.热转印法简介热转印是目前学习电子电路路制作少量实验板的最佳选择。
它利用了激光打印机墨粉的防腐蚀特性,具有制版快速(20分钟),精度较高(线宽15mil,间距10mil),成本低廉等特点。
注:密耳=0.001英寸,线径单位文字 1mil=1/1000inch=0.00254cm=0.0254mm2.设计布线规则由于热转印制版的特点,在布线时要注意以下方面:(1)线宽不小于15mil,线间距不小于10mil。
为确保安全,线宽要在25~30mil,大电流线按照一般布线原则加宽。
导线间距要大于10mil,焊盘间距最好大于15mil。
(2)尽量布成单面板,无法布通时可以考虑跳接线。
仍然无法布通时可以考虑使用双面板,但考虑到焊接时要焊两面的焊盘。
尽量使用手工布线,自动布线往往不能满足要求。
(3)有0.8mm孔的焊盘要在70mil以上,推荐80mil。
否则会由于打孔精度不高使焊盘损坏。
(4)孔的直径可以全部设成10~15mil,不必是实际大小,以利于钻孔时钻头对准。
3.打印打印前先进行排版,把要打的图排满一张A4纸,越多越好。
因为有些图打出来是坏的,我们需要从中选一张好的来转印,然后打印在热转印纸的光面。
(注意:只能用激光打印机打印!不能用喷墨打印机)如果打印出的线路不够黑(在打印选项中若有浓度选项要将之调到最大即最黑)。
电压放大电路的设计与调试

2.2 单管放大电路的分析
• 在直流电源和偏置电阻Rb、Rc的共同作用下, 三极管VT 可获得 “发射结正偏、集电结反偏” 的放大条件, 发射结正偏导通区较小 , 交流电源叠加在发射结, 若信号幅度过大时, 就可能使发射结进 入死区甚至反向偏置区, 因此交流信号应只是小信号。在实践中, 交流信号往往来自传感器检测送来的电信号。可以这样来理解共射极 小信号电压放大电路的工作原理: 直流电源UCC 经电阻分压在发射 结上有压降UBE, 正弦交流信号电压ui 通过耦合电容C1 同样 作用在发射结, 因此加在发射结上的电压为uBE =UBE=ui, 如图2-8 (a) 所示, 为使脉动的uBE始终处于发射结的导通 区, ui的幅值应小于100mV。根据输入伏安特性曲线可知, 在uBE的作用下, 基极电流iB也将产生同向脉动, 如图2-8 ( b) 所示, iB由静态值IB和变化量ib组成。发射结正偏, 三极 管具有电流放大作用,集电极电流iC =β(IB +ib)= IC +ic, 如图2-8 (c) 所示。
上一页
返回
2.2 单管放大电路的分析
• 2.2.1 共射极小信号电压放大电路的分析
• 通过前面的学习了解到, 只要为三极管提供合适的偏置电压, 三极 管即可组成放大电路。那么, 当用电源、电阻和三极管等组成放大 电路后, 电路中实际的工作参数是多少? 应采用什么方式分析电路 呢? 任何电路均将满足基尔霍夫电流定律, 同样必须遵循能量守恒 定律。
上一页 下一页 返回
2.1 三极管的工作特性
• 2) 输出特性曲线 • 三极管输出特性曲线是指当基极电流IB一定时, 输出回路中C、E
极间的电压UCE和集电极电流IC之间的关系。在不同的IB下, 可测得不同的输出特性曲线, 所以三极管的输出特性是一组曲线, 如图2-5 所示。 • 并不是在任何状态下都能实现三极管的电流放大作用, 只在放大状 态才能实现。 • (1) 截止区。IB=0 这条曲线以下的阴影部分为三极管的截止 区。三极管工作在截止区的条件为: 集电结与发射结处于反向偏置 状态。从图2-5 中可以看到, 截止状态的特征是IB≤0、IC≈0, 相当于集电极与发射极之间断开, 三极管无电流放大作用。
功率放大电路的装接与调试

+
RE CE
当 ui > 0 时: VT2 导通,C 放电,VT2 的等效电源电压 0.5VCC
当 ui < 0 时: VT1导通,C 充电,VT1 的等效电源电压 + 0.5VCC
通电前反复检查,无误后才可通电! 用指针R×10挡测量电路板电源入口,黑表笔接“正”,红表笔 接“负”,阻值在1kΩ 以上, 可放心通电。
②通电 将电源调整到12V,短暂通电,无过流现象才可继续通电。 测“中点”(两输出管e极对地)电压, 无过低、过高现象才可进行检 测与调试。通电过程中注意经常用手摸功放管,有无过热。
一.功率放大器简介:
作用: 用作放大电路的输出级,以驱动执行机构。
如扬声器发声、继电器动作等。
例: 扩音系统
前
电
功
置
压
率
放
放
放
大
大
大
功率放大的 特殊要求:
输出功率要 大(三极管极限状态)
效率 要高
失真要小
共发射极放大电路(甲类)的效率: < 50%
RB RL C1+
+VCC
iC Icm
uce = uo
O
t
甲类功放无信号时三极管中有电流,静态功耗较大,发热严 重,效率低!大功率输出时尤其突出。
如何解决这个问题?
功率放大电路分类:
+VCC
+
+
ui
u
iC ICQ
O
o
Icm
iC
V
ICQ
O
2 t
Icm 2
t
甲类
乙类
(导通角 = 2 ) (导通角= )
+VC+C
低电压运算放大器

1.物联网设备需要大量的传感器和数据采集设备,低电压运算放大器能够提供精确 的信号处理,保证数据的准确性。 2.低电压运算放大器的低功耗和小型化特性使得它易于集成到物联网设备中,满足 设备的长寿命和小型化需求。 3.在智能家居、智能农业等应用中,低电压运算放大器能够提高设备的性能和可靠 性,推动物联网技术的发展。
▪ 输入级的设计
1.输入级通常采用差分放大器结构,以提高共模抑制比和输入 阻抗。 2.在低电压环境下,需要优化输入级的晶体管尺寸和偏置电流 ,以确保电压放大和线性度。 3.输入级的噪声性能是衡量运算放大器性能的重要指标,需要 采用低噪声设计和噪声优化技术。Βιβλιοθήκη 低电压运算放大器的工作原理
▪ 中间级的设计
1.根据电路结构不同,低电压运算放大器可分为单电源供电和 双电源供电两种类型。 2.按照输入信号的不同,低电压运算放大器可分为电压跟随器 、反相放大器和同相放大器等。 3.根据带宽不同,低电压运算放大器可分为宽带和窄带两种类 型。
低电压运算放大器的简介
低电压运算放大器的性能指标
1.低电压运算放大器的主要性能指标包括开环增益、带宽、输 入阻抗、输出阻抗等。 2.开环增益是衡量低电压运算放大器放大能力的重要指标。 3.带宽是指低电压运算放大器能够放大的信号频率范围。
1.中间级通常采用电流镜或有源负载结构,以实现电压增益和 带宽扩展。 2.在低电压环境下,中间级的电流控制和电压偏置需要特别优 化,以确保稳定性和动态范围。 3.中间级的功耗和热量产生需要得到有效控制,以满足低功耗 和便携式应用的需求。
▪ 输出级的设计
1.输出级通常采用推挽或开漏结构,以提供足够的驱动能力和 输出摆幅。 2.在低电压环境下,输出级的饱和电压和失真需要特别优化, 以提高线性度和音质表现。 3.输出级的负载匹配和输出阻抗需要与实际应用相匹配,以确 保最佳的信号传输和功率效率。
单管共射放大电路实验讨论在调试过程中出现的问题

单管共射放大电路实验讨论引言单管共射放大电路是一种常见的基本放大电路,也是电子工程学习的重要内容之一。
在实际调试过程中,经常会出现一些问题。
本文将围绕单管共射放大电路实验的调试过程,讨论一些可能出现的问题,并提供解决方案。
实验背景单管共射放大电路是一种用于放大电压信号的电路,它由一个晶体管、若干个电阻和电容组成。
在实验中,我们通常会使用直流电源和信号发生器提供电源和输入信号,使用示波器观察输出信号。
问题讨论1. 输入信号失真在单管共射放大电路中,输入信号的失真可能会导致输出信号的畸变。
输入信号失真的主要原因有:•输入信号源的内阻过大,导致输入信号电压下降;•输入信号的频率超出放大电路的工作范围,或者输入信号的幅度过大,导致饱和或截断现象。
解决方案:•使用低内阻的输入信号源;•根据放大电路的工作范围选择合适的输入信号。
2. 晶体管工作点偏离理想值单管共射放大电路的正常工作需要一个合适的偏置点(也称为工作点),以确保晶体管工作在放大区。
偏置点的选取不当可能导致晶体管处于饱和或截断状态,不利于正常放大。
偏置点的选取可以依据以下原则:•偏置点应选取在负载线中心;•偏置点的选取需要综合考虑信号的幅度和频率,以及晶体管参数。
3. 输出信号失真输出信号的失真可能由多种原因造成,如晶体管的非线性特性、电源的噪声干扰以及电容的放大失真等。
解决方案:•使用高质量的晶体管,以减小非线性失真;•使用稳定的电源,以减小电源噪声;•使用高品质的电容器,以减小放大失真。
4. 功率损耗过大功率损耗过大可能会导致电路元件的过热甚至损坏。
解决方案:•使用适当的电阻值,以减小功率损耗;•使用散热器等降低元件温度的措施。
5. 输入和输出阻抗不匹配当输入源的阻抗与放大电路的输入阻抗不匹配时,会导致信号的反射和失真。
解决方案:•使用匹配的输入和输出阻抗;•添加适当的阻抗变换电路。
6. 温度效应对电路性能的影响晶体管的参数随温度的变化而变化,温度升高可能导致放大电路性能的变化。
电子电路设计制作常用调试方法与步骤

• 7•本文分析电子电路设计制作中的常用调试方法和调试步骤。
目前电子电路在实际设计过程中需要工作人员对调试环节给予一定的重视,电子电路设计中合理的调试能够为设计质量的提升起到辅助作用。
只有电子电路设计内部具有正确的调试步骤才可以促使电子电路设计满足预期需求。
近几年我国社会经济的发展和进步使社会对于电子电路设计的要求不断提升,为了使电子电路设计满足当下社会需求,就需要采取正确的调试方法,提升电子电路设计质量。
在电子电路设计调试过程中,工作人员应该按照标准调试步骤操作,避免由于调试方法错误降低调试质量,影响电子电路设计制作。
1 电子电路设计制作中调试方法及工具介绍1.1 电子电路设计制作中调试方法电子电路设计作为电子工业中较为重要的专业之一,需要工作人员在使用电子技术的时候对电子电路设计进行合理的规划,使其能够有效安排各个电路安装过程,促使理论与实践相结合。
在这种情况下,工作人员会使其主观想象转变为客观,这时就实现了合理的电路设计过程,将其想象转变为现实。
也正是因为这一转变使工作人员发现电子技术在日常生活中存在的无限可能。
基于理论实践,工作人员可以对其展开理论设计验证,进一步完善理论设计内容,对其不断优化,更好的完善相关系统指标。
电子电路的调试主要是为了满足前期计划目标,因此这时可以在满足目标的情况下对其展开合理的分析、判断、测量,保证此系列操作的完整性。
电子电路设计内部调试可以使工作人员及时找出系统内部存在的问题,便于其采取合理的技术对其不断完善。
电子电路设计调试属于电子设备内部的关键环节,可以在接受调试后使装置达到最佳效果,符合预设目标。
辽宁经济职业技术学院 英 玉电子电路设计制作常用调试方法与步骤1.2 电子电路设计制作中调试工具介绍目前工作人员在开展电路调试的过程中需要选择正确的调试工具,其中主要分为万用表,示波器,信号发生器。
首先,工作人员在开展电子电路设计调试的时候可以使用万用表测量交流、直流电流,电阻,电容,半导体,二极管,三极管数据参数,并合理判断引脚。
vca821放大电路设计

vca821放大电路设计VCA821是一种常用的放大电路,它具有很多优点,能够满足各种应用的需求。
本文将介绍VCA821放大电路的设计原理和应用。
我们来了解一下VCA821放大电路的设计原理。
VCA821是一种电压控制放大器,可以通过控制输入电压来调节输出信号的放大倍数。
它采用了高性能的运算放大器作为核心元件,具有宽带、低噪声和高增益等优点。
通过调整反馈电阻和输入电阻的比例,可以实现不同的放大倍数。
在设计VCA821放大电路时,首先需要确定所需的放大倍数和带宽。
根据应用需求,选择合适的运算放大器和外部电阻,并进行电路连接。
接下来,进行电路的仿真和调试,确保电路的正常工作。
最后,进行电路的实际制作和测试,验证电路的性能和可靠性。
VCA821放大电路广泛应用于各种领域。
在音频领域,它可以用于音频信号的放大和控制,如音频放大器、音量控制器等。
在通信领域,它可以用于信号的放大和调节,如射频放大器、信号调理器等。
在仪器仪表领域,它可以用于信号的放大和检测,如示波器、信号发生器等。
此外,VCA821还可以应用于医疗设备、工业自动化等领域。
VCA821放大电路设计时需要考虑一些关键因素。
首先是电路的稳定性和可靠性,要保证电路能够正常工作并且长时间稳定。
其次是电路的线性度和失真,要尽量减小非线性和失真,提高信号的保真度。
再次是电路的功耗和效率,要在满足需求的前提下尽量减小功耗,提高电路的效率。
在设计VCA821放大电路时,还需要考虑一些常见问题和解决方法。
例如,输入电阻和反馈电阻的选择要合理,以保证电路的输入和输出特性。
此外,还需要注意电路的抗干扰能力,尽量减小外部干扰对电路的影响。
另外,还需要考虑电路的布局和散热,以保证电路的稳定性和可靠性。
VCA821是一种常用的放大电路,具有广泛的应用前景。
通过合理的设计和调试,可以实现各种应用需求。
在实际应用中,我们还可以根据具体情况进行电路的优化和改进,以提高电路的性能和可靠性。
负反馈放大电路设计实验报告

负反馈放大电路设计实验报告无07 李杭 2010011147一.实验目的(1)通过实验,学习并初步掌握负反馈放大电路的设计及电路安装、调试方法。
(2)学习用CAD 工具PSpice (或EWB )设计较复杂电路的方法。
(3)深入理解负反馈对放大电路性能的影响。
(4)巩固放大电路主要性能指标的测度方法。
二.实验任务按实验室给定的晶体管型号、参数以及电阻、电容系列值,设计一个负反馈电压放大电 路。
其输入、输出采用电容耦合。
设负载电阻2.2 R L = k Ω ,信号源内阻50 R S = Ω。
主要性能要求如下:vf i o A 40(10%)10R 15k R 10010,?1L H f Hz f MHz =±≥Ω≤Ω≤ ≥,反馈深度不低于,频率响应。
三.实验原理(1)负反馈的类型根据输入端基本放大电路和反馈网络的连接方式有并联和串联2 种,输出端取样方式 有电压取样和电流取样2 种,所以负反馈放大电路有4 种类型,即:电压串联负反馈、电 压并联负反馈、电流串联负反馈、电流并联负反馈。
(2)负反馈对放大电路性能的影响①负反馈降低增益 ②负反馈提高增益稳定性 ③负反馈影响输入输出电阻④负反馈展宽频带⑤负反馈改善非线性失真(3)消除自激的方法①加入补偿电容。
缺点:对放大电路的频率响应的影响很大。
只是要想实现放大电路的稳定,必然要牺牲一部分频带的指标。
②在射极跟随器的基极串入电阻抵消负阻效应。
对放大电路的频率特性有影响。
判断是否是由于负阻效应引起的振荡可以把示波器的探头的衰减器从´1档变为´10档,如果振荡减弱即是由于负阻引起的。
③电路要有良好的接地,尽量加粗接地线,消除干扰信号通过地线引起的影响。
这个方法只对设计印刷电路板有指导作用。
④插入电源去耦电路,抵消反馈的影响。
这种方法是最有效的,且是对放大电路的性能指标影响最小的。
⑤消除外界干扰。
如果前面的措施都解决不了的时候,就要考虑振荡的根源不是出自于自身,而是由外界传入的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 三极管的工作特性
• (2) 饱和区。即曲线右侧的阴影区, 包括曲线的上升和弯曲部分。 三极管饱和的条件是: 集电结与发射结都处于正向偏置状态。饱和 的特征是: UCE很小(即UCE≤UBE ), 相当于集电结与发射结 之间短路接通, IC 不受IB 的控制, 三极管失去电流放大作用。 但此时,IB≠0, IC =UCCRC ≠0, 有一个很大的饱和电流。
上一页 下一页 返回
2.1 三极管的工作特性
• 3.三极管特性与3 种工作状态
• 三极管的特性还可以通过三极管的伏安特性曲线来反映, 下面以N PN 型管的共射极接法为例来介绍三极管的伏安特性曲线。
• 1) 输入特性曲线 • 三极管输入特性曲线是指当集电极与发射极间电压UCE 为常数时,
输入回路中B、E极间的电压UBE与基极电流IB之间的关系。由 于基极与发射极之间的发射结相当于一个二极管, 所以输入特性曲 线与二极管的正向特性曲线相似, 如图2-4 所示。实际上, 电压 UCE对IB 会有一定的影响, 但影响不大, 因而, 输入特性常用 UCE= 1V 的特性曲线表示。
上一页 下一页 返回
2.1 三极管的工作特性
• 三极管的参数用来表征管子的性能和适用范围, 是设计电路时合理 选用三极管的依据,其主要参数有下面几个。
• 1) 共射极电流放大系数 • 共射极直流电流放大系数β - 是指三极管接成共射极接法并工作在
静态时, 集电极电流与基极电流之比, 即
• 共射极交流电放大系数β 是指三极管接成共射极接法并工作在动态时 , 集电极电流的变化量ΔIC 与引起集电极电流变化的基极电流的 变化量ΔIB 之比, 即
上一页 下一页 返回
2.1 三极管的工作特性
• (2) 极间反向击穿电压包括下面3 种参数。 • ①射-基反向击穿电压U(BR)EBO。集电极开路时, 发射极
与基极之间允许施加的最高反向电压, 一般为几伏至几十伏, 超过 此值发射结将击穿。 • ②集-射反向击穿电压U(BR)CEO。基极开路时, 集电极与 发射极之间能承受的最高反向电压, 一般几十伏至几百伏。为保证 使用安全, 应选择U(BR)CEO 大于工作电压UCE 的两倍以 上。 • ③集-基反向击穿电压U(BR)CBO。发射极开路时, 集电极 与基极之间允许施加的最高反向电压。超过此值,集电结发生反向击 穿。
下一页 返回
2.1 三极管的工作特性
• 三极管的3 个电极分别叫作发射极e、基极b、集电极c。对应的 每层半导体分别称为发射区、基区、集电区。两个PN 结分别称为 发射结和集电结。依据基区材料是P 型还是N 型半导体, 三极管有 NPN 型和PNP 型两种类型; 按其制作材料分为硅管和锗管; 按 其工作频率分为低频管、高频管和超高频管; 按其功率分为小功率 管、中功率管和大功率管等。常见三极管的外形结构与封装形式如图 2-2 所示。
• (3) 放大区。饱和区与截止区所夹的中间部分, 特性曲线是一组 间距相等的平行直线簇。三极管工作在放大区的条件是: 发射结正 偏, 集电结反偏。工作在放大状态的特征是:当IB一定时, IC基 本不随UCE变化, IC只受IB的控制, 即β =ΔIC ΔIB。只要I B不变, 则IC也不变,这也称为三极管的恒流特征。
项目2 电压放大电路的设计与调试
• 2.1 三极管的工作特性 • 2.2 单管放大电路的分析 • 2.3 差动放大电路的分析 • 2.4 集成运算放大器的线性应用
返回
2.1 三极管的工作特性
• 1.三极管的结构
• 半导体三极管根据其结构和工作原理的不同, 可以分为双极型和单 极型。双极型半导体三极管又称双极型晶体三极管或三极管、晶体管 等, 单极型半导体三极管又称为场效应晶体管, 以上不做特殊说明 时所涉及的三极管都是指双极型晶体三极管。
上一页 下一页 返回
2.1 三极管的工作特性
• 2) 输出特性曲线 • 三极管输出特性曲线是指当基极电流IB一定时, 输出回路中C、E
极间的电压UCE和集电极电流IC之间的关系。在不同的IB下, 可测得不同的输出特性曲线, 所以三极管的输出特性是一组曲线, 如图2-5 所示。 • 并不是在任何状态下都能实现三极管的电流放大作用, 只在放大状 态才能实现。 • (1) 截止区。IB=0 这条曲线以下的阴影部分为三极管的截止 区。三极管工作在截止区的条件为: 集电结与发射结处于反向偏置 状态。从图2-5 中可以看到, 截止状态的特征是IB≤0、IC≈0, 相当于集电极与发射极之间断开, 三极管无电流放大作用。
上一页 下一页 返回
2.1 三极管的工作特性
• 2.三极管的电流放大作用
• 三极管和二极管一样, 都属于非线性器件, 因此, 需要通过伏安特 性了解它的工作特性。以一只C9014 型低频小功率三极管为例 进行实验, 接成图2-3 所示的实验电路, 为使三极管产生放大效 果, 可以通过外加电源串联可调电阻的方式尽量使三极管获得“发 射结正偏、集电结反偏” 的外电压要求, 电源UBB 使发射结正偏, 取UCC >UBB, 则集电结反偏。再通过调节RP 的阻值来改变 基极的偏置电压UBE, 使基极电流IB改变时, 集电极电流IC 和发射极电流IE也随之改变。
• 三极管的基本结构如图2-1 (a) 所示。在一块极薄的硅或锗基 片上制作两个PN 结,就构成3 层半导体, 从3 层半导体上各自接 出一根引线, 就是三极管的3 个电极, 再将它们封装在管壳里就制 成了晶体三极管, 故三极管的结构可简述为“三区二结”。三极管 的符号如图2-1 (b) 所示, 符号中箭头方向表示发射结正向偏 置时的电流方向。• 2) 极间反向电流 • ICBO指发射极开路时, 集电极和基极之间的反向饱和电流。ICB
O很小, 温度升高, 则ICBO增加。一般硅管的热稳定性比锗管好 , 小功率硅管的ICBO<1μA, 锗管的ICBO≈10μA。 • 3) 三极管的极限参数 • 三极管的极限参数是指三极管正常工作时, 能承受的最大电流、电 压、功率等数值, 它关系到三极管的安全, 在使用中不得超过极限 数值。