广东省中考数学总复习第17讲:四边形
2024年广东省中考数学总复习专题16:特殊的平行四边形

2024年广东省中考数学总复习专题16特殊的平行四边形一、矩形的性质与判定1.矩形的性质:1)四个角都是直角;2)对角线相等且互相平分;3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:1)定义法:有一个角是直角的平行四边形;2)有三个角是直角;3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:1)四边相等;2)对角线互相垂直、平分,一条对角线平分一组对角;3)面积=底×高=对角线乘积的一半.2.菱形的判定:1)定义法:有一组邻边相等的平行四边形;2)对角线互相垂直的平行四边形;3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:1)四条边都相等,四个角都是直角;2)对角线相等且互相垂直平分;3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;2)一组邻边相等的矩形;3)一个角是直角的菱形;4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形1)任意四边形所得到的中点四边形一定是平行四边形.2)对角线相等的四边形所得到的中点四边形是矩形.3)对角线互相垂直的四边形所得到的中点四边形是菱形.4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质1.在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A.4B.6C.8D.102.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是()A.2.2cm B.2.3cm C.2.4cm D.2.5cm3.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE 的长是.4.如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为cm.5.如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.6.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.考向二矩形的判定7.已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④8.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND9.如图,在平行四边形ABCD中,在不添加任何辅助线的情况下,请添加一个条件,使平行四边形ABCD是矩形.10.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD =AF,求证:四边形ABFC是矩形.11.如图,已知在△ABC中AB=AC,AD是BC边上的中线,E,G分别是AC,DC的中点,F为DE延长线上的点,∠FCA=∠CEG.(1)求证:AD∥CF;(2)求证:四边形ADCF是矩形.考向三菱形的性质12.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A.90°B.100°C.120°D.150°13.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.8B.8C.4D.214.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为()A.36°B.54°C.64°D.72°15.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE =,则CE的长为.16.如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长.考向四菱形的判定17.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD18.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC19.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)20.如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD 是菱形.21.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.考向五正方形的性质22.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)23.如图的正三角形ABC与正方形CDEF中,B、C、D三点共线,且AC=10,CF=8.若有一动点P沿着CA由C往A移动,则FP的长度最小为多少?()A.4B.5C.4D.524.如图,在正方形ABCD中,E是对角线BD上一点,AE的延长线交CD于点F,连接CE.若∠BAE=56°,则∠CEF=°.25.已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.考向六正方形的判定26.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形27.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)28.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD 是正方形.29.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE =BC ,且∠CBE :∠BCE =2:3,求证:四边形ABCD 是正方形.考向七中点四边形1.顺次连接菱形四边的中点得到的四边形一定是()A .正方形B .菱形C .矩形D .以上都不对2.如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A .互相平分B .相等C .互相垂直D .互相垂直平分3.如图,四边形ABCD 中,AC =m ,BD =n ,且AC ⊥BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去,得到四边形A 5B 5C 5D 5的周长是()A .4m n+B .52mnC .5m n+D .2nmn一.选择题(共7小题)1.如图,要判定▱ABCD是菱形,需要添加的条件是()A.AB=AC B.BC=BD C.AC=BD D.AB=BC2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形4.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1B.5:1C.6:1D.7:15.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.6.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°7.如图所示,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若OE=3,BC=8,则OB的长为()A.4B.5C.D.二.填空题(共6小题)8.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.9.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是.10.已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为.11.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD ∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.13.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.三.解答题(共6小题)14.如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.15.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.17.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE 和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.18.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:四边形EFGH是菱形;(2)若EF=4,∠HEF=60°,求EG的长.19.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.。
最新通用版人教版中考数学一轮复习-第17讲 尺规作图(有详解)

第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B 为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC =•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A .B .C .D .【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC..则∠AOC的大小为【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF 即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。
初中考数学专题总复习《四边形》矩形、菱形、正方形

∵BE=DF,
∴OE=OF.(2分)
在△AOE和△COF中,
OA=OC
∠AOE=∠COF
OE=OF ∴△AOE≌△COF(SAS), ∴AE=CF;(4分)
第2题图
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
(2)解:∵OA=OC,OB=OD,AC=BD, ∴OA=OB. ∵∠AOB=∠COD=60°, ∴△AOB是等边三角形, ∴OA=AB=6, ∴AC=2OA=12,(6分) 在Rt△ABC中,由勾股定理得BC= AC 2 AB2 =6 3 , ∴S矩形ABCD=AB·BC=6×6 3 =36 3 .(8分)
第5题图
(1)证明:∵对角线AC的中点为O, ∴AO=CO. ∵AG=CH, ∴AO-AG=CO-CH.即GO=HO. ∵四边形ABCD是矩形, ∴AB∥CD. ∴∠OAE=∠OCF. 又∵∠AOE=∠COF, ∴△OAE≌△OCF(ASA).
第5题图
∴OE=OF. ∴GH与EF互相平分, ∴四边形EHFG是平行四边形;
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
第1题图
∴AC=BD,OA=OC,OB=OD. ∴OC=OD,∴四边形OCED是菱形.
母题变式 改变条件、增加设问→在矩形基础上构造菱形,增加设问及解题难度. 2. (2020德阳)如图,四边形ABCD为矩形,G是对角线BD的中点,连接GC并延长 至F,使CF=GC,以DC,CF为邻边作菱形DCFE.连接CE. (1)判断四边形CEDG的形状,并证明你的结论;
第6题图
(2)若∠ABE=∠CBE,求证:四边形AFBE为矩形.
(2)∵点D、E分别为AB、AC的中点, ∴DE∥BC,∴∠DEB=∠CBE, ∵∠ABE=∠CBE, ∴∠DEB=∠ABE,∴BD=DE, ∵AD=BD,DF=DE, ∴AD+BD=DE+DF,即AB=EF, ∴四边形AFBE是矩形.
中考数学第17章四边形复习题无答案

第17章 四边形17.1 多边形*17.1.1 若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形( )(A )不存在 (B )只有一个 (C )有限个,但不只一个 (D )有无穷多个 *17.1.2 下列命题中,正确的个数是( ) (1)四边形的四个内角都是锐角;(2)四边形的四个内角至少有一个角是锐角; (3)四边形的四个内角至少有一个不是钝角; (4)四边形必有一对对角之和不小于平角.(A )4 (B )3 (C )2 (D )1*17.1.3 在一个凸n 边形中,除一个角外,其余角之和为8940°,则n 等于( ). (A )60 (B )51 (C )52 (D )53**17.1.4 凸n 边形有且仅有三个内角是钝角,n 的最大值是( ) (A )8 (B )7 (C )6 (D )5 (A )60 (B )51 (C )52 (D )53*17.1.5 如图所示,∠A 1=∠A 2=∠A 3=∠A 4=∠A 5=135°,∠A 6=∠A 8=90°,如果我们称大于180°的角为“优角”,则优角∠A 7的度数为 .A 5A 463A A 1**17.1.6 已知凸n 边形A 1,A 2,……,A n (n >4)的所有内角都是15°的整数倍,且∠A 1+∠A 2+∠A 3=285°,其余的内角都相等,那么,n = .*17.1.7 若n 边形恰有4n 条对角线,则n = .**17.1.8 已知有一张桌子,桌面为多边形,每边长都大于100 cm.开始时,有两只蚂蚁在桌面的同一条边上,距离为10 cm.它们沿着桌面边缘爬行(可进可退,速度不必一样),它们之间的直线距离永远是10 cm.(1)假设多边形是凸的,是否桌面边缘上的每一个点,两只蚂蚁都能经过?(2)假设多边形不是凸的,是否桌面边缘上的每一个点,至少有一只蚂蚁能经过?17.2 平行四边形*17.2.1 如图所示,在□ABCD中,3AB=2AD,E1、E2、E3、E4、E5依次是上的五个点,并且CE1=E1E2=E2E3=E3E4=E4E5=E5B,AE2与DE4交于E点.在三个结论(1)DE3⊥AE3;(2)AE2⊥DE4;(3)AE2⊥DE2之中,正确的个数是()(A)0 (B) 1 (C)2 (D)3B54321**17.2.2 下面命题中,正确命题的个数是()(1)一组对边相等且一组对角相等的四边形是平行四边形;(2)一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;(3)一组对角相等且这一组对角的顶点所连结的对角线平分另一条对角线的四边形是平行四边形;(4)一组对角相等有这一组对角的顶点所连结的对角线被另一条对角线平分的四边形是平行四边形.(A) 1 (B) 2 (C) 3 (D) 4**17.2.3 已知凸四边形ABCD中,AB∥CD且AB+BC=CD+AD,则AD与BC的大小关系是()(A) AD>BC (B) AD<BC (C) AD=BC (D)以上三种情况都可能**17.2.4 在正△ABC中,P为边AB上的一点,Q为边AC上的一点,且AP=CQ,今量得A点与线段PQ的中点M之间的距离是19 cm,则P点到C点的距离等于 cm.**17.2.5 如图所示,在□ABCD中,AE⊥BD,CF⊥BD,MN分别是AD、BC的中点.求证:四边形MENF是平行四边形.N MBD★★17.2.6 若PQRS的各顶点在另一个ABCD的各边上,试证:这两个平行四边形的对角线上过同一点.★★17.2.7 如图所示,△ABC、△A’B’C’各边交成六边形DEFGHK,EF∥KH,GH∥DE,FG∥KD,KH-EF=FG-KD=DE-GH>0,求证:△ABC、△A’B’C’均为正三角形.BA'★★17.2.8 已知线段AB、CD相交于O,且AB=2,CD=1,∠AOC=60°.试证:AC+BD17.3 矩形、菱形、正方形★★1 7.3.1 如图所示,设P是等腰直角三角形ABC的斜边AC上任意一点,PE⊥AB于E,PF ⊥BC于F,PG⊥EF于G,在GP的延长线上取一点D,使PD=PB,则BC与DC的关系是( ).(A)相等但不垂直 (B)不相等但垂直(C)相等且垂直 (D)不相等且不垂直FC B★★1 7.3.2 如图所示,在菱形ABCD 中,AB =4a ,E 在BC 上,EC =2a ,∠BAD =120°,P 点在BD 上,则PE +PC 的最小值是( ).(A) 6a (B) 5a (C) 4aDB★★1 7.3.3 如图所示,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt △CEF 的面积为200,则BE 的值为( )(A) 10 (B) 11 (C) 12 (D)15 E AF★★1 7.3.4 如图所示,矩形AEFG 与矩形APQK 的周长都等于120cm .则△ABC 的周长为___________cm.B★★17.3.5 如图所示,在长方形ABCD 中,M 是AD 边的中点,N 是DC 边的中点,AN 与MC 交于点P,若∠MCB=∠NBC +33°,则∠MPA的度数是___________.BM★★★1 7.3.6 已知Rt△ABC,∠C =90°,AC =3,BC =5,以AB为边向外作正方形ABEF,则此正方形中心O与点C的连线长等于___________.★★17.3.7 如图所示,将边长为1的正方形ABCD绕A点按逆时针方向旋转60°至AB'C'D'的位置,则这两个正方形重叠部分的面积是___________.C'★★17.3.8 一边长为25cm的正方形纸片ABCD,AD上有一点P,且AP=,折这纸片使点B落在点P上,则折痕EF的长是__________ cm.★★17.3.9 如图所示,已知在等腰直角三角形ABC中,D是斜边AB的中点,Q是AD上一点,P是DB上一点,QE⊥AC于E,QF⊥CB于F,PH⊥AC于H,PG⊥CB于G,求证:∠EDH=∠FDG.EAC★★17.3.10 如图所示,延长菱形ABCD一边DC至E,使CE=DC,F、G在BC上,且BF=CG,又∠FAB=14∠DAB,AF交对角线BD于H,求证:∠FHC=2∠CEG.E★★17.3.11 已知正方形ABCD中,P是BD上一点,PE⊥DC于E,PF⊥BC于F.求证:AP⊥EF.★★17.3.12 如图所示,在正方形ABCD中,AK和AN是∠DAB内的任意两条射线,BK⊥AK,BL⊥AN, DM⊥AK, DN⊥AN,试证:KL=MN.★★17.3.13 以△ABC的边AB、AC为边分别向形外作正方形ABEF和ACGH,过A点作直线分别交BC、FH于D、M.试证:(1)若AD⊥BC,则AD平分FH;(2)若AD平分BC,则AD ⊥FH.★★17.3.14 如图所示,在正方形ABCD内任取一点E,连结AE、BE,在△ABE外分别以AE、BE为边作正方形AEMN和BFGE,连结NC、AF,求证:NC//AF.★★17.3.15 如图所示,以菱形ABCD的各边向形外作正三角形ABE、BCF、CDG、DAH,连接AF、CE、AG、CH,AF与CE相交于M,AG与CH相交于N,求证:AMCN也是菱形.★17.3.16如图所示,若在ABCD各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.★★17.3.17 设G是正方形ABCD的边DC上一点,连结AG并延长,交BC延长线于K,求证:1(AG +AK)>AC.2★17.3.18下列图形中,是轴对称图形但不是中心对称图形的是( ).(A)正五边形 (B)矩形 (C)正六边形 (D)平行四边形★17.3.19作两条直线将正方形分成四个全等的图形有( )种作法.(A)1 (B)2 (C)大于2的有限 (D)无穷★★17.3-20 设菱形ABCD的中心为O, E、F是菱形内关于O对称的两个点,连结CE、DF,则线段AB、CE、DF的关系适合( ).(A)两条较短线段之和大于最长线段(B)两条较短线段之和等于最长线段(C)两条较短线段之和小于最长线段(D)不能确定★17.3-21 如图所示,一个矩形内有任意一圆,请用一条直线同时将圆和矩形的周长二等分,并说明作图的道理和方法(要求保留作图痕迹).★★1 7.3.22 如图所示,AC和BD都关于O成中心对称,AD、EF都关于MN成轴对称.求证:(1)ABCD是矩形.(2)△ABE和△DCF既关于MN成轴对称,又关于O成中心对称.(3)△ABE和△DCF是全等的等腰三角形.***17.3.23 在正方形ABCD中,点M、N分别为BC边及AD边的中点,在对角线AC靠近点A 的延长线上取一点K(点K在正方形外部),连接KM交AD边于点L.求证:∠KNA=∠LNA.***17.3.24 点O为正方形ABCD内部的一点,试证:∠OAB、∠OBC、∠OCD、∠ODA、四个角之和与180°之差不大于45°.***17.3.25纸上画着每格边长为1的方格图,万良沿格线剪下了一个矩形,也知道它的面积和周长,而卡利亚接过剪刀说:“瞧我的!”接着他在矩形边上沿格线剪下一个正方形后说:“这个新图形的周长与原矩形的面积在数值上是相等的,而新图形的面积又与原矩形的周长在数值上也是相等的”万良检查后的确如此,请问:(1)剪下的正方形有多大?(2)万良剪下的矩形可能有几种尺寸?17.4 梯形**17.4.1 如图所示,在四边形ABCD 中,∠A =∠C ,∠B ≠∠D ,则各内角平分线所围成的四边形是( )A .只有两个角相等的四边形B .梯形C .平行四边形D .等腰梯形ABDEFG H*17.4.2 如果等腰梯形的一个内角为60°,两底边之和为30cm ,且对角线平分60°的底角,那么此等腰梯形的周长是________cm .**17.4.3 如图所示,在梯形ABCD 中,AD ∥BC ,AB =DC =10cm ,AC 与BD 相交于点G ,且 ∠AGD =60°,设E 是CD 的中点,F 是AB 的中点,则EF 的长为________.ABC EFGD**17.4.4 用长为1、4、4、5的线段为边作成梯形,其中面积最小的那个梯形的两条对角线长度之和等于______cm .**17.4.5 P 是四边形ABCD 内一点,PA =PB =PC =PD ,又AB =CD ,试确定ABCD 的形状,并加以证明.**17.4.6 如图所示,ABCD 为梯形,E 是上底AD 的中点,F 为下底BC 的中点,∠B 与∠C 互为余角求证:EF =12(BC -AD ). ABCD EF**17.4.7 如图所示,四边形ABCD 是梯形,AB ∥CD ,AD =BC ,∠EAB >∠EBA .求证:CE >DE .ABCD17.5 中位线*17.5.1 如图所示,在△ABC 中,D 是AB 的中点过D 点作DE ∥BC 交AC 于E 点,又在△ADE 中,F 是AD 的中点,过F 作FG ∥DE 交AE 于G 点,若GE =6厘米,则GC 等于( )A .12cmB .15cmC .18cmD .21cmG F EDA*17.5.2 如图所示,E 为□ABCD 对角线的交点,过点A 、B 、C 、D 、E 分别向直线XY 引垂线,垂足分别为A′、B′、C′、D′、E′.求证:A′B′=C′D′.E'D'C'B'A'Y XED CBA*17.5.3 如图所示,在梯形ABCD 中,AD ∥BC ,E 为AB 的中点,EF ∥DC 交BC 于F ,FG ∥ED 交CD 于G 点.求证:G 为CD 中点.GFD ECBA*17.5.4 在锐角三角形ABC 中,BE 是高,CF 是中线,若∠ACE =30°,则BE 、CF 的大小关系是( )A .BE >CFB .BE =CFC .BE <CFD .BE 与CF 的大小关系无法确定*17.5.5 如图所示,已知凸五边形ABCDE ,∠ABC =∠AED =90°,∠DAC =30°,∠BAE =70°,F 是边CD 的中点,且FE =FB ,则∠BAC 等于( )A .10° B.20° C.30° D.15°ABEF*17.5.6 如图所示,A 、B 为定点,O 为一动点,在异于O 点的一侧取两点A′、B′,使∠OAA′=∠OBB′=90°,且AA′=OA ,BB′=OB ,设A′B′的中点为O ′,当O 在AB 的一侧移动时,O′的位置将怎样变化?( )A .O′沿着一条直线移动B .O′沿着某一圆周移动C .O′固定不动D .上述结论都不对*17.5.7 如图所示,D、E、F分别是△ABC三边的中点,G是AE的中点,BE与DF、DG分别交于P、Q两点,则PQBE=________.QPGAB DEF*17.5.8 在梯形ABCD中,AB∥BC,∠A=90°,AB=4,CD=3,BC=7 ,O为AD边的中点,则O到BC的距离为_______.*17.5.9 在△ABC中,∠BAC=120°,以AB、AC为边分别在形外作正三角形ABD和正三角形ACE,M为AD中点,O为AE中点,P为BC中点,则∠MPN的度数是_____.*17.5.10 P为三角形ABC内一点,∠PAC=∠PBC,由P作BC、AC垂线,垂足分别是L、M,设D为AB中点(如图).求证:DM=DL.P LMDC***17.5.11 已经△ABD和△ACE都是直角三角形,且∠ABD=∠ABC=90°,如图a所示,连接DE,设M为DE的中点.(1)求证:MB=MC;(2)设∠BAD =∠CAE ,固定Rt △ABD ,让Rt △ACE 绕顶点A 在平面内旋转到图b 的位置,试问:MB =MC 是否还能成立?并证明其结论.图aAB CDEM图bMDCA**17.5.12 如图所示,在Rt △ABC 中,D 、E 分别是直角边BC 、 AC 上的任意点,M 、N 、P 、Q 分别是DE 、BE 、AB 、AD 的中点.求证:MP =NQ .Q PN M E DC**17.5.13 如图所示,已知AH 是△ABC 中∠A 的平分线,在AB 、AC 边上截取BD =CE ,M 是DE 的中点,N 是BC 的中点.求证:MN ∥AH .N M HE D CBA**17.5.14如图所示,设线段AB 的中点为M ,从AB 上另一点C 向直线AB 的一侧引线段CD ,令CD 的中点为N ,BD 的中点为P ,MN 的中点为Q .求证:直线PQ 平分线段AC .N QPDC***17.5.15 在△ABC 中,DE 和CD 分别是∠B 和∠C 的角平分线,P 是DE 的中点,PQ ⊥BC 于Q 点,PM ⊥AB 于M 点,PN ⊥AC 于N 点.求证:PQ =PM +PN .**17.5.16 在△ABC 内作角平分线AA 1和C 1,M 点和K 点分别是从B 点向AA 1、CC 1所作垂线的垂足.证明:MK ∥AC .**17.5.17 线段AB 与CD ,既不平行也不相交,P 点在AD 上,而Q 点在CD 上线段AQ 、BQ ,CP 及DP 的中点分别为K 、L 、M 、N .试证明:线段KL 、MN 和PQ 相交于一点.17.5.18 在四边形ABCD 中,K 、L 、M 、N 分别是边AB 、BC 、CD 、DA 的中点.直线AL 与CK 相交于点P ,直线AM 与CN 相交于点Q .现知APCQ 为平行四边形.证明:ABCD 也是平行四边形.17.6 平移、旋转与对称17.6.1 如图所示,在△ABC 中,∠B =90°,M 为AB 上一点,使得AM =BC ,N 为BC 上一点,使得CN =BM ,连接AN 、CM ,交于P 点.求证:∠APM =45°.MPN BAC17.6.2 如图所示,在△ABC 中,∠A =30°,∠B =40°,延长BC 至D ,使CD =AB ,求∠ADB 的度数.DC A17.6.3 在凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC .求证:BD 2=AB 2+BC 2.17.6.4 已知点P 是正方形ABCD 内一定点,且P 到A 、B 、D 的距离分别为1、3正方形ABCD 的面积.17.6.5 设P 是边长为1的正三角形ABC 内任一点,l =PA +PB +PC .l 2≤<17.6.6 如图所示,∠MON =20°,A 为OM 上一点,OAD 为ON 上一点,ODC 是AM 上任意一点,B 是OD 上任意一点,求证:折线ABCD 的长度AB +BC +CD ≥12.DBCAO17.6.7 A 、B 、C 三个村庄在一条东西走向的公路沿线,如图所示,AB =2km ,BC =3km ,在B 村的正北方有一个D 村,测得∠ADC =45°,今将△ACD 区域规划为开发区,除其中4km 2的水塘外,均作为建筑或绿化用地,试求这个开发区的建筑及绿化用地的面积是多少平方千米?DB17.6.8 如图所示,△ABC是等腰直角三角形,面积为1,BE⊥AC,AD、BE、CF交于O点,BO=14 AC,求四边形BDOF的面积.O EFD CBA17.6.9 关于△ABC,B’是B关于点C的对称点,C’是C关于点A的对称点,A’上A关于点B的对称点.(1)证明:△AC’A’的面积是△ABC面积的2倍.(2)能否根据△A’B’C’作出△ABC?并证明你的结论.17.6.10 两块平面镜相交成30°放置,交点为V.一束水平的光从光源S发出,平行于其中一面镜子VW,在另一面镜子UV上的A点处反射,又在镜子VW上的B点处反射,然后在镜子UV上的C 点处反射,经过若干次反射后,光束又返回到S.若SA=AV=1,则光束经过的总路程是多少?17.6.11 一个多边形(不必是凸的)的撞球台,它的相邻两个边都互相垂直.在多边形的顶点处都有进球洞,球洞处装有网袋(假想球洞及球为一点).若顶点A的内角为90°,由A处击出一颗球,此球在台内沿直线不停地滚动并依照“入射角等于反射角”之定律碰撞台边,球若滚经顶点则会坠入袋中,试证:此球永远无法回到A袋中.17.7 面积问题与面积方法17.7.1 如图所示,矩形BCEF 和CAGH 的边FE 、GH 延长交于点P ,P 恰在△ABC 的高CD 的反向延长线上,且PC =CD .若AB =CD =10,则两矩形面积的和为( )A.100B.50C.40D.以上都不对GCDABF EH P17.7.2 已知四边形ABCD 内有一点E .连结AE 、BE 、CE 、DE ,将四边形ABCD 分成四个面积相等的三角形,那么下列命题中,正确的命题是( )甲:ABCD 是凸四边形;乙:E 是对角 AC 的中点或对角线BD 的中点;丙:ABCD 是平行四边形. A.只有甲正确B.只有乙正确C.甲、乙、丙都正确D.甲、乙、丙都不正确 17.7.3 如图所示,若四边形ABCD 为正方形,则图中阴影部分的面积为( )A.17B.29017C.1823G FE D17.7.4 如图所示,ABCDE 是正五边形,AP 、AQ 和AR 是由A 向CD 、CB 和DE 的延长线上所引的垂线.设O 是正五边形的中心,若OP =1,则AO +AQ +AR 等于( )B.4D.5R EODP Q BA17.7.5 如图所示,设凸四边形ABCD 的对角线相交于O ,△AOB 和△COD 的面积分别为S 1和S 2,四边形ABCD 的面积为S .+AB ∥CD .O DCBA17.7.6 在△ABC 中,∠C =30°,BM 是中线,AC =2a ,若沿BM 将三角形对折起来,那么两个小三角形ABM 和BCM 重叠部分的面积恰好等于△ABC 面积的14,试求△ABC 的面积.17.7.7 如图所示,E ,F 为△ABC 边上的点CE 与BF 相交于P .已知△PBC 的面积为12,且△EBP ,△FPC 及四边形AEPF 的面积都相同,求△EBP 的面积.P FECBA17.7.8 如图所示,正方形ABCD 的边长为2,点E ,F 分别为边AB 、AD 的中点,点G 是CF 上的一点,使得3CG =2GF ,求△BEG 的面积.GFEDCBA17.7.9 将一张长20cm 、宽12cm 的长方形纸片沿对角线对折,生成的图形如图a 所示;再将该图形过图a 所示的B 的对折,并使得A 与A ’重合(同时C 与C ’重合),得到四边形ABDC ,如图b 所示.则四边形ABDC 的面积为 cm 2.(b)(a)CDB A C'BA'CA17.7.10 如图所示,ABCD 的面积是1,E 、F 分别是AB 、CD 上的点,AF 与DE 交于G .已知DF b FC a=,cAE d EB =,问:△AEG 的面积是多少? G F E DC BA17.7.11 如图所示,设两个半径均为r 的圆,彼此通过对方的圆心,它们重叠部分的面积是多少?BA17.7.12 三个长方形ABCD 、BEFG 、EOPQ 如图所示排列,它们的长、宽比都是3:2,最大的长方形的面积是17,最小的面积为5.问四边形CDGF 的面积与四边形FGQP 的面积之和是多少?P OQ GFE D CB A17.7.13 如图所示,设△ABC 的面积为1,AD =DE =EC ,BG =GF ,GF a FC=,线段AG 、AF 、BD 、BE相交分△ABC为9个部分.求图中阴影部分的面积.AB。
中考数学总复习-四边形专题模块-矩形的性质及判定讲义教师版

知识点 A 要求 B 要求C要求矩形 会识别矩形掌握矩形的概念、判定和性质,会用矩形的性质和判定解决简单问题 会运用矩形的知识解决有关问题1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角.③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.重点:掌握矩形的性质,并学会应用. 难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.一、矩形的判定【例1】 在矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形【考点】矩形的性质和判定 【题型】填空 【难度】2星 【关键词】 【解析】省略【答案】2BC AB =例题精讲重、难点中考要求中考要求矩形的性质 及判定【例2】 如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.CDB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵90ABC BCD ∠=∠=︒,∴AB ∥CD在Rt ABC ∆和Rt DCB ∆中BC CBAC BD =⎧⎨=⎩∴Rt ABC ∆≌Rt DCB ∆ (HL )∵AB CD =,∴四边形ABCD 是平行四边形 ∵AC BD =,∴四边形ABCD 是矩形【巩固】 矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【考点】矩形的性质和判定 【题型】选择 【难度】1星 【关键词】 【解析】省略 【答案】A【例3】 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.HG OFEDCB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵E 、F 、G 、H 分别是四边的中点∴EF 、GH 为中位线∴EF GH BD ∥∥且12EF GH BD ==∴四边形EFGH 为平行四边形∴四边形EFGH 是矩形.【巩固】 如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.MCDB A【考点】矩形的性质和判定 【题型】解答 【难度】2星 【关键词】 【解析】省略【答案】∵四边形ABCD 是平行四边形,∴AB CD =, 180A D ∠+∠=︒∵M 是AD 的中点,∴AM MD =在ABM ∆和CDM ∆中AM DM MB MC AB CD =⎧⎪=⎨⎪=⎩∴ABM ∆≌CDM ∆ (SSS ),∴A D ∠=∠ ∴90A ∠=︒,∴四边形ABCD 是矩形【例4】 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.NMQPDCBA【考点】矩形的性质和判定 【题型】解答 【难度】4星 【关键词】 【解析】省略【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.【例5】 如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.FED CB A【考点】矩形的性质和判定 【题型】解答 【难度】3星【关键词】2009年,安顺市中考 【解析】省略【答案】⑴ ∵AF BC ∥,AFE DCE ∠=∠E 是AD 的中点,∴AE DE = ∵AFE DCE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF DEC ∆∆≌ ∴AF DC =,∵AF BD = ∴BD CD =(2)四边形AFBD 是矩形∵AB AC =,D 是BC 的中点(利用全等) ∴AD BC ⊥ ∴90ADB ∠=︒∵AF BD =,AF BC ∥∴四边形AFBD 是平行四边形 又90ADB ∠=︒∴四边形AFBD 是矩形.【巩固】 如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!NMFEDCBA【考点】矩形的性质和判定 【题型】解答 【难度】3星 【关键词】 【解析】省略【答案】⑴证明:ED DC DF DC ==,⑵当D 为AC 的中点时,四边形AECF 为矩形【例6】 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD .⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF【考点】矩形的性质和判定,菱形的性质和判定 【题型】解答 【难度】3星【关键词】2009年,襄樊市中考 【解析】省略【答案】⑴ Rt DEC ∆是由Rt ABC ∆绕C 点旋转60︒得到∴AC DC =,60ACB ACD ∠=∠=︒ ∴ACD ∆是等边三角形 ∴AD DC AC ==又∵Rt ABF ∆是由Rt ABC ∆沿AB 所在 直线翻转180︒得到∴AC AF =,90ABF ABC ∠=∠=︒ ∴180FBC ∠=︒∴点F 、B 、C 三点共线 ∴AFC ∆是等边三角形 ∴AF FC AC ==∴AD DC FC AF === ∴四边形AFCD 是菱形. ⑵ 四边形ABCG 是矩形.由⑴可知:ACD ∆是等边三角形,DE AC ⊥于E ∴AE EC =,又∵AG BC ∥∴EAG ECB ∠=∠,AGE EBC ∠=∠ ∴AEG CEB ∆∆≌,∴AG BC =∴四边形ABCG 是平行四边形,而90ABC ∠=︒ ∴四边形ABCG 是矩形.【巩固】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BAGMF E DC BA【考点】平行四边形的性质和判定,矩形的性质和判定,三角形的三线五心 【题型】解答 【难度】6星 【关键词】【解析】过C 作CG AD ⊥于G ,连接EG 、FG .∵AE BC ⊥,FM AE ⊥,∴FM ∥EC∴四边形EMFC 为平行四边形,∴MF EC = 又∵AE BC ⊥,CG AD ⊥且BC ∥AD ∴90EAG AGC GCE AEC ∠=∠=∠=∠=︒ ∴四边形AGCE 为矩形∴EC AG =,EG AC =,∴MF AG = 又∵MF ∥AG∴四边形AGFM 为平行四边形,∴GF AM = ∵AM EF ⊥,∴GF EF ⊥,即90GFE ∠=︒∴GF =∴12AM =【答案】12【例7】 已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥.ABCE FDBCM【考点】矩形的性质和判定,等腰三角形的性质和判定 【题型】解答 【难度】4星 【关键词】【解析】延长BF 交AD 于M ,连结DB .∵四边形ABCD 是矩形,∴AD BC AD BC AC BD ==∥,, ∴M EBF ∠=∠,∵F 是AE 中点,∴AF EF =,在AFM △和EFB △中, ∵M EBF MFA BFE AF EF ∠=∠∠=∠=,,∴AFM EFG ∆∆≌.∴AM BE =,MF BF =,∴AD AM BC BE CE DM +=+== ∵CE AC AC BD ==,,∴DM DB = ∵MF BF =,∴BF DF ⊥【答案】见解析板块二、矩形的性质及应用【例8】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。
2021年广东省中考数学总复习第五章《四边形》

返回思维导图
多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形 正多边形:各个角都相等,各条边都相等的多边形
多边形
多边 形的 性质
1.内角和定理:n(n≥3)边形的内角和等于_(_n_-__2_)_·1_8_0_°_
2.外角和定理:n(n≥3)边形的外角和都等于__3_6_0_°__
3.对角线:过n(n≥3)边形的一个顶点可以引
【课标要求】 理解平行四边形的概念,了解四边形的不稳定性; 探索并证明平行四边形的性质定理;探索并证明平行四边形的判定定理; 了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探 索并掌握多边形内角和与外角和公式.
两组对边分别平行 1.边 两组对边分别相等
2.角:两组对角分别相等 性质
3.对角线:对角线互相平分
4.对称性:平行四边形 是中心对称图形
两组对边分别平行
平行四 平行四 边形与 边形 多边形
两组对边分别相等 边
一组对边平行且相等 判定
角:两组对边分别相等
对角线:对角线互相平分
1.内角和定理 多边形 的性质 2.外角和定理
多
3.对角线
边
形
1.正多边形的各边相等
正多边形
的性质 2.正n边形有n条对称轴
正n(n≥3)边形有 n 条对称轴
4.对称性 当n(n≥3)为奇数时,是轴对称图形,不是中心对称图形
当n(n≥3)为偶数时,既是轴对称图形,又是中心对称图形
返回思维导图
课堂小测
1. 在▱ABCD中,AB=5,BC=3.则▱ABCD的周长是( A)
A. 16
B. 13
C. 10
D. 8
2. 如图,在▱ABCD中,AE⊥CD,E是垂足.若AB=2,AE=3,则▱ABCD的面积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年广东省中考数学总复习第17讲:四边形一.选择题(共39小题)1.(2020•广州)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .1252.(2020•广东)若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .73.(2019•深圳)已知菱形ABCD ,E 、F 是动点,边长为4,BE =AF ,∠BAD =120°,则下列结论正确的有几个( )①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE =∠AFC ;④若AF =1,则GF EG =13.A .1B .2C .3D .44.(2019•广州)如图,▱ABCD 中,AB =2,AD =4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是( )A .EH =HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5.(2019•广州)如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A .4√5B .4√3C .10D .86.(2020•深圳模拟)如图,在正方形ABCD 中,E 是AD 边上一点,M 为BE 中点,将△DEM 绕M 顺时针旋转90°得△GFM ,则下列结论正确的有( )①CM =GM ;②tan ∠BCG =1;③BC 垂直平分FG ;④若AB =4,点E 在AD 上运动,则D ,F 两点距离的最小值是32√2.A .①②B .①②③C .①②④D .①②③④7.(2020•博罗县一模)一个正六边形的外角和是( )A .540°B .450°C .360°D .180°8.(2020•斗门区一模)对角线互相平分且垂直的四边形是( )A .平行四边形B .矩形C .菱形D .等腰梯形9.(2020•梅州模拟)如图,正方形ABCD 中,AC 和BD 是对角线,作AE ∥BD 交CD 延长线于点E ,连接EF 交AD 于点O ,则下列结论:①四边形ABDE 是平行四边形;②DO :BC =1:3;③EC =√2BD ;④S 四边形ODCF =S △AOE ,正确的个数是( )A .1B .2C .3D .410.(2020•盐田区二模)如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF .给出结论:①DE =EF ;②∠CDF =45°;③AM DF =75;④若正方形的边长为2,则点M 在射线AB 上运动时,CF 有最小值√2.其中结论正确的是( )A .①②③B .①②④C .①③④D .②③④11.(2020•大鹏新区一模)已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M在AB 上,且满足△PBC ∽△P AM ,延长BP 交AD 于点N ,连结CM .分析下列结论:①AP ⊥BN ;②BM =DN ;③点P 一定在以CM 为直径的圆上;④正方形内不存在点P 使得PC =√5−12.其中结论正确的个数是( )A .1个B .2个C .3个D .4个12.(2020•龙华区二模)如图,已知四边形ABCD 是边长为4的正方形,E 为CD 上一点,且DE =1,F 为射线BC 上一动点,过点E 作EG ⊥AF 于点P ,交直线AB 于点G .则下列结论中:①AF =EG ;②若∠BAF =∠PCF ,则PC =PE ;③当∠CPF =45°时,BF =1;④PC 的最小值为√13−2.其中正确的有( )A .1个B .2个C .3个D .4个 13.(2020•东莞市一模)在四边形ABCD 中,AC 与BD 相交于点O ,且AD ∥BC ,给出下列条件:①AB∥CD;②AB=CD;③∠DAB=∠DCB;④AD=BC;⑤∠OAD=∠ODA.从中选1个作为条件,能使四边形ABCD为平行四边形的选法有()A.2种B.3种C.4种D.5种14.(2020•白云区模拟)如图,在▱ABCD中,∠BAC=90°,AB=8,BD=20,则BC的长为()A.10B.4√13C.12D.2√34 15.(2020•花都区一模)如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P 是BC边上的一动点,则AP的最小值为()A.4B.4.8C.5D.5.5 16.(2020•白云区模拟)如图,过▱ABCD对角线AC的中点O作两条互相垂直的直线,分别交AB,BC,CD,DA于E,F,G,H四点,则下列说法错误的是()A.EH=HG B.AC与EG互相平分C.EH∥FG D.AC平分∠DAB17.(2020•荔湾区一模)如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中点B 坐标是(4,1),点D坐标是(0,1),点A在x轴上,则菱形ABCD的周长是()A.8B.2√5C.4√5D.12 18.(2020•光明区一模)如图,在▱ABCD中,BD⊥DC,E是BC的中点,以点E为圆心,大于点E到BD的距离为半径画弧,交BD于点M,N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧相交于点F,射线EF分别与BD,AD交于点G,H,若DG 2=3,AB=4,则BC的长为()A.√13B.5C.2√13D.10 19.(2020•南山区模拟)下列叙述正确的是()A.顶角和底边对应相等的两个等腰三角形全等B.对角线相等且垂直的四边形是正方形C.tanβ=1=45°D.不等式﹣2x>4的解集是x<220.(2020•龙岗区二模)如图,在一个三角形的纸片(△ABC)中,∠C=90°,将这个纸片沿直线DE剪去一个角后变成一个四边形ABED,则图中∠1+∠2的度数为()A.180°B.90C.270°D.315°21.(2020•深圳模拟)在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,PE交CD延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=√2;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为1,其中正确的有()A.1个B.2个C.3个D.4个22.(2020•顺德区模拟)如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF的度数是()A.90°B.60°C.45°D.30°23.(2020•湛江模拟)如图,点O为平面直角坐标系的原点,以点O为顶点作矩形OEDC,其中点D的坐标是(2,5),则CE的长是()A.3B.√21C.√29D.7 24.(2020•潮南区模拟)如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是()A.∠ABC=90°B.∠BCD=90°C.AB=CD D.AB∥CD 25.(2020•广东模拟)一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6B.8C.9D.12 26.(2020•清远一模)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.BE平分∠ABC B.AD=BD C.BE⊥AC D.AB=AC 27.(2020•深圳模拟)如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°28.(2020•广东二模)如图,已知▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;②S平行四边形ABCD=BD•CD;③AO=2BO;④S△DOF=2S△EOF.其中成立的个数有()A.1个B.2个C.3个D.4个29.(2020•福田区模拟)如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°30.(2020•宝安区三模)如图,正方形ABCD中,点E,F分别在边CD,BC上,且∠EAF=45°,BD分别交AE,AF于点M,N,以点A为圆心,AB长为半径画弧BD.下列结̂与EF相切;⑤EF 论:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④BD∥MN.其中正确结论的个数是()A.5个B.4个C.3个D.2个31.(2020•高州市模拟)菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行32.(2020•惠州一模)如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.233.(2020•白云区一模)已知一个正多边形的每个外角都等于72°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形34.(2020•东莞市一模)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD35.(2020•禅城区模拟)如果一个多边形的内角和是其外角和的两倍,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形36.(2020•东莞市二模)从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.9 37.(2020•潮州模拟)如图所示,正方形ABCD的对角线相交于点O,则图中共有等腰直角三角形()A.4个B.6个C.8个D.10个38.(2020•惠州一模)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°39.(2020•东莞市一模)一个多边形每个外角都等于30°,这个多边形是()A.六边形B.正八边形C.正十边形D.正十二边形二.填空题(共3小题)40.(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是.41.(2018•广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.42.(2020•白云区一模)如图,△ABC中,∠BAC=90°,AB=12BC=a,点D在边AC上运动(不与点A,C重合),以BD为边作正方形BDEF,使点A在正方形BDEF内,连接EC,则下列结论:①△BCD≌△ECD;②当CD=2AD时,∠ADE=30°;③点F到直线AB的距离为a;④△CDE面积的最大值是38a2.其中正确的结论是(填写所有正确结论的序号)三.解答题(共8小题)43.(2018•广州)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.44.(2020•番禺区一模)如图,正方形ABCD中,AB=√2,点Q是正方形所在平面内一动点,满足DQ=1.(1)当点Q在直线AD上方且AQ=1时,求证:AQ∥BD;(2)若∠BQD=90°,求点A到直线BQ的距离;(3)记S=AQ2﹣BQ2,在点Q运动过程中,S是否存在最大值或最小值?若存在,求出其值,若不存在,说明理由.45.(2020•高州市模拟)(1)课本情境:如图,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C 出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q 之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q 从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?46.(2020•斗门区二模)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的周长和对角线MN的长.47.(2020•中山市一模)如图,已知平行四边形ABCD.(1)若M,N是BD上两点,且BM=DN,AC=2OM,求证:四边形AMCN是矩形;(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四边形ABCD的面积.48.(2020•天河区模拟)如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求tan∠FCN的值;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=3,BC=8,E是线段BC上一动点(不含端点B,C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.当点E由B向C运动时,判断tan∠FCN的值是否为定值?若是,求出该定值;若不是,请说明理由.49.(2020•增城区一模)如图,在△ABC中,∠A=90°,AB=3,AC=4,点M、Q分别是边AB、BC上的动点(点M不与A、B重合),且MQ⊥BC,过点M作MN∥BC.交AC于点N,连接NQ,设BQ=x.(1)是否存在一点Q,使得四边形BMNQ为平行四边形,并说明理由;(2)当BM=2时,求x的值;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.50.(2020•大鹏新区一模)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.(1)求∠AEG的度数;(2)求证:四边形BEGF是平行四边形.。