线性规划例题集锦

合集下载

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述假设有一家生产玩具的工厂,该工厂生产两种类型的玩具:A型和B型。

工厂有两个车间可供使用,分别是车间1和车间2。

每一个车间生产一种类型的玩具,并且每一个车间每天的生产时间有限。

玩具A的生产需要1个小时在车间1和2个小时在车间2,而玩具B的生产需要3个小时在车间1和1个小时在车间2。

每一个车间每天的生产能力分别是8个小时和6个小时。

每一个玩具A的利润为100元,而玩具B的利润为200元。

现在的问题是,如何安排每一个车间每天的生产时间,以使得利润最大化?二、数学建模1. 定义变量:设x1为在车间1生产的玩具A的数量(单位:个);设x2为在车间2生产的玩具A的数量(单位:个);设y1为在车间1生产的玩具B的数量(单位:个);设y2为在车间2生产的玩具B的数量(单位:个)。

2. 建立目标函数:目标函数为最大化利润,即:Maximize Z = 100x1 + 200y13. 建立约束条件:a) 车间1每天的生产时间限制:x1 + 3y1 ≤ 8b) 车间2每天的生产时间限制:2x1 + y1 ≤ 6c) 非负约束条件:x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0三、求解线性规划问题使用线性规划求解器,可以求解出最优的生产方案。

1. 求解结果:根据线性规划求解器的结果,最优解为:x1 = 2, x2 = 0, y1 = 2, y2 = 0即在车间1生产2个玩具A,在车间2生产2个玩具B,可以实现最大利润。

2. 最大利润:根据最优解,可以计算出最大利润:Z = 100x1 + 200y1= 100(2) + 200(2)= 600元因此,在给定的生产时间限制下,最大利润为600元。

四、结果分析根据线性规划求解结果,我们可以得出以下结论:1. 最优生产方案:根据最优解,最优生产方案为在车间1生产2个玩具A,在车间2生产2个玩具B。

2. 最大利润:在给定的生产时间限制下,最大利润为600元。

八种 经典线性规划例题(超实用)

八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将【l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选B'三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D~五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2 .C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()"A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。

工厂有两个生产车间:车间1和车间2。

生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。

每一个车间的加工时间和加工费用都是不同的。

我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。

二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。

假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品:产品A和产品B。

每个产品的生产需要消耗不同的资源,且每个产品的利润也不同。

公司希望通过线性规划来确定生产计划,以最大化利润。

产品A需要消耗3个单位的资源1和4个单位的资源2,每个单位的产品A的利润为5。

产品B需要消耗6个单位的资源1和2个单位的资源2,每个单位的产品B的利润为8。

公司拥有的资源1和资源2的总量分别为30和20。

二、数学模型设x为生产产品A的数量,y为生产产品B的数量。

目标是最大化利润,即最大化5x + 8y。

约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0。

三、线性规划求解使用线性规划求解器求解上述问题。

输入目标函数和约束条件后,求解器将自动计算出最优解。

给定目标函数为:5x + 8y约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0求解结果如下:最大利润为:120生产产品A的数量为:5生产产品B的数量为:3四、解释结果根据求解结果,最大利润为120,生产5个产品A和3个产品B可以实现最大利润。

同时,根据约束条件,生产数量不能为负数,因此生产数量均为非负数。

五、敏感性分析敏感性分析用于确定目标函数系数的变化对最优解的影响程度。

在本例中,我们将分别增加产品A和产品B的利润,观察最优解的变化情况。

1. 增加产品A的利润:假设每个单位的产品A的利润增加1,即每个单位的产品A的利润为6。

重新求解线性规划问题,得到最大利润为130,生产产品A的数量为6,生产产品B的数量为2。

可以看出,增加产品A的利润对最优解有正向影响,最大利润和产品A的数量均增加。

2. 增加产品B的利润:假设每个单位的产品B的利润增加1,即每个单位的产品B的利润为9。

重新求解线性规划问题,得到最大利润为135,生产产品A的数量为4,生产产品B的数量为4。

可以看出,增加产品B的利润对最优解有正向影响,最大利润和产品B的数量均增加。

线性规划经典例题

线性规划经典例题

线性规划经典例题【问题描述】某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的生产时间,产品B每件需要3小时的生产时间。

产品A的利润为200元/件,产品B的利润为300元/件。

每天的生产量不能超过100件。

工厂希翼最大化每天的利润。

【数学建模】设工厂每天生产的产品A的件数为x,产品B的件数为y。

根据题目条件,可以得到以下数学模型:目标函数:最大化利润Maximize Z = 200x + 300y约束条件:1. 生产时间限制:2x + 3y ≤ 82. 产量限制:x + y ≤ 1003. 非负性约束:x ≥ 0,y ≥ 0【求解过程】将目标函数和约束条件转化为标准形式,得到如下线性规划模型:Maximize Z = 200x + 300ysubject to2x + 3y ≤ 8x + y ≤ 100x ≥ 0,y ≥ 0使用线性规划求解器进行求解,得到最优解。

【求解结果】经过计算,得到最优解为:x = 50(产品A的件数)y = 16.67(产品B的件数,近似值)此时,工厂每天的最大利润为:Z = 200 * 50 + 300 * 16.67 = 33333.33 元(近似值)【结果分析】根据最优解,工厂每天应该生产50件产品A和16.67件产品B,以达到每天最大利润33333.33元。

由于生产时间和产量限制,工厂无法达到每天生产更多的产品。

【结论】根据线性规划模型的最优解,工厂每天生产50件产品A和16.67件产品B,可以获得每天最大利润33333.33元。

这个结果可以作为工厂生产计划的参考,以实现最大化利润的目标。

【备注】以上的数学模型和求解结果仅为示例,实际问题中的数值和约束条件可能有所不同。

为了得到准确的结果,需要根据具体情况进行调整和求解。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某工厂生产两种产品A和B,产品A每单位利润为10元,产品B每单位利润为8元。

工厂有两个车间,分别是车间1和车间2。

每天车间1生产A产品需要2小时,B产品需要1小时;车间2生产A产品需要1小时,B产品需要3小时。

每天车间1的工作时间为8小时,车间2的工作时间为10小时。

工厂需要决定每天在两个车间分别生产多少单位的A和B产品,以最大化利润。

二、数学模型设每天在车间1生产的A产品单位数为x1,B产品单位数为y1;车间2生产的A产品单位数为x2,B产品单位数为y2。

根据题目要求,可以得到以下约束条件:车间1的工作时间约束:2x1 + 1y1 ≤ 8车间2的工作时间约束:1x2 + 3y2 ≤ 10产品A的产量约束:x1 + x2 ≤ A总产量产品B的产量约束:y1 + y2 ≤ B总产量非负约束:x1, y1, x2, y2 ≥ 0目标函数为利润的最大化:10x1 + 8y1 + 10x2 + 8y2三、求解过程1. 确定决策变量和目标函数决策变量:x1, y1, x2, y2目标函数:10x1 + 8y1 + 10x2 + 8y22. 确定约束条件车间1的工作时间约束:2x1 + 1y1 ≤ 8车间2的工作时间约束:1x2 + 3y2 ≤ 10产品A的产量约束:x1 + x2 ≤ A总产量产品B的产量约束:y1 + y2 ≤ B总产量非负约束:x1, y1, x2, y2 ≥ 03. 求解最优解利用线性规划求解方法,将目标函数和约束条件输入线性规划求解器,得到最优解。

四、数值计算与结果分析假设A总产量为100单位,B总产量为80单位。

将上述条件带入线性规划求解器,得到最优解如下:x1 = 20,y1 = 0,x2 = 60,y2 = 20根据最优解,工厂每天在车间1生产20单位的A产品,不生产B产品;在车间2生产60单位的A产品和20单位的B产品。

此时,工厂的利润最大化为:10 * 20 + 8 * 0 + 10 * 60 + 8 * 20 = 1160 元。

线性规划典型例题(老师)

线性规划典型例题(老师)

二元一次不等式与简单的线性规划问题典型例题一例1 画出不等式组⎪⎩⎪⎨⎧≤+-≤-+≤-+-.0330402y x y x y x ,,表示的平面区域.分析:采用“图解法”确定不等式组每一不等式所表示的平面区域,然后求其公共部分.解:把0=x ,0=y 代入2-+-y x 中得0200<-+-∴ 不等式02≤-+-y x 表示直线02=-+-y x 下方的区域(包括边界), 即位于原点的一侧,同理可画出其他两部分,不等式组所表示的区域如图所示. 说明:“图解法”是判别二元一次不等式所表示的区域行之有效的一种方法.典型例题二例2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x .分析:原不等式等价于⎩⎨⎧≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求⎪⎪⎩⎪⎪⎨⎧≤->∈∈>>.3,32,,,0,0y x y z y z x y x .解:依照二元一次不等式表示的平面区域,知332≤<-y x 表示的区域如下图:对于332≤<-y x 的正整数解,先画出不等式组.⎪⎪⎩⎪⎪⎨⎧≤->∈∈>>.3,32,,,0,0y x y z y z x y x 所表示的平面区域,如图所示.容易求得,在其区域内的整数解为)1,1(、)2,1(、)3,1(、)2,2(、)3,2(.说明:这类题可以将平面直角坐标系用网络线画出来,然后在不等式组所表示的平面区域内找出符合题设要求的整数点来.典型例题三例3 求不等式组⎪⎩⎪⎨⎧+-≤-+≥111x y x y 所表示的平面区域的面积.分析:本题的关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积.而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论. 解:不等式11-+≥x y 可化为)1(-≥≥x x y 或)1(2-<--≥x x y ;不等式1+-≤x y 可化为)0(1≥+-≤x x y 或)0(1<+≤x x y . 在平面直角坐标系内作出四条射线)1(-≥=x x y AB :, )1(2-<--=x x y AC : )0(1≥+-=x x y DE :,)0(1<+=x x y DF :则不等式组所表示的平面区域如图由于AB 与AC 、DE 与DF 互相垂直,所以平面区域是一个矩形.根据两条平行线之间的距离公式两平行直线距离公式d=|C1-C2|/根号(A^2+B^2)可得矩形的两条边的长度分别为22和223.所以其面积为23.典型例题四例4 若x 、y 满足条件⎪⎩⎪⎨⎧≤+-≥+-≤-+.0104010230122y x y x y x ,,求y x z 2+=的最大值和最小值.分析:画出可行域,平移直线找最优解.解:作出约束条件所表示的平面区域,即可行域,如图所示.作直线z y x l =+2:,即z x y 2121+-=,它表示斜率为21-,纵截距为2z的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点时,z 取得最大值,当l 过点B 时,z 取得最小值. ∴ 18822max =⨯+=z ∴ 2222min =⨯+-=z说明:解决线性规划问题,首先应明确可行域,再将线性目标函数作平移取得最值.典型例题五例5 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域.分析:首先要将三点中的任意两点所确定的直线方程写出来,然后结合图形考虑三角形内部区域应怎样表示。

运筹学习题集(第一章)

运筹学习题集(第一章)

运筹学习题集(第一章)判断题判断正误,如果错误请更正第1章线性规划1.任何线形规划一定有最优解。

2.若线形规划有最优解,则一定有基本最优解。

3.线形规划可行域无界,则具有无界解。

4.在基本可行解中非基变量一定为0。

5.检验数λj表示非基变量Xj增加一个单位时目标函数值的改变量。

6.minZ=6X1+4X2|X1-2X|︳<=10 是一个线形规划模型X1+X2=100X1>=0,X2>=07.可行解集非空时,则在极点上至少有一点达到最优解.8.任何线形规划都可以化为下列标准型Min Z=∑C j X j∑a ij x j=b1, i=1,2,3……,mX j>=0,j=1,2,3,……,n:b i>=0,i=1,2,3,……m9.基本解对应的基是可行基.10.任何线形规划总可用大M 单纯形法求解.11.任何线形规划总可用两阶段单纯形法求解。

12.若线形规划存在两个不同的最优解,则必有无穷多个最优解。

13.两阶段中第一阶段问题必有最优解。

14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。

15.人工变量一旦出基就不会再进基。

16.普通单纯形法比值规则失效说明问题无界。

17.最小比值规则是保证从一个可行基得到另一个可行基。

18.将检验数表示为λ=C B B-1A-的形式,则求极大值问题时基本可行解是最优解的充要条件为λ》=0。

19.若矩阵B为一可行基,则|B|≠0。

20.当最优解中存在为0的基变量时,则线形规划具有多重最优解。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第1章线性规划1.线形规划具有无界解是指:A可行解集合无界B有相同的最小比值C存在某个检验数λk>0且a ik<=0(i=1,2,3,……,m) D 最优表中所有非基变量的检验数非0。

2.线形规划具有多重最优解是指:A 目标函数系数与某约束系数对应成比例B最优表中存在非基变量的检验数为0 C 可行解集合无界 D 存在基变量等于03. 使函数Z=-X1+X2-4X3增加的最快的方向是:A (-1,1,-4)B (-1,-1,-4)C (1,1,4)D (1,-1,-4-)4. 当线形规划的可行解集合非空时一定A 包含原点X=(0,0,0……) B 有界C 无界D 是凸集5. 线形规划的退化基本可行解是指 A 基本可行解中存在为0的基变量 B 非基变量为C非基变量的检验数为0 D 最小比值为06. 线形规划无可行解是指 A 进基列系数非正 B 有两个相同的最小比值 C 第一阶段目标函数值大于0 D 用大M 法求解时最优解中含有非0的人工变量 E可行域无界7. 若线性规划存在可行基,则 A 一定有最优解 B 一定有可行解 C 可能无可行解 D 可能具有无界解 E 全部约束是〈=的形式8. 线性规划可行域的顶点是 A 可行解 B 非基本解 C 基本可行解 D 最优解 E 基本解9. minZ=X1-2X2,-X1+2X2〈=5,2X1+X2〈=8,X1,X2〉=0,则 A 有惟一最优解 B 有多重最优解 C 有无界解 D 无可行解 E 存在最优解10.线性规划的约束条件为 X1+X2+X3=32X1+2X2+X4=4X1,X2,X3,X4〉=0 则基本可行解是 A (0,0,4,3)B (0,0,3,4)C (3,4,0,0)D (3,0,0,-2)计算题1.1 对于如下的线性规划问题MinZ= X 1+2X 2s.t. X 1+ X 2≤4-X 1+ X 2≥1X 2≤3X 1, X 2≥0的图解如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Zmax 2 5 2 12, Zmin 2 1 1 3.
A
B
O1
5
x=1
2x+y=0
3x+5y-25=0
x
(2)若z=2x-y,求z的最值.
解:画出可行域如图:
画直线2x-y=0并平移得点A使Z最大,点 C使Z最小。
x 4y 3 0

可得A为(5,2)
3x 5y 25 0
4
A
2
6
4
2
O
2
4x
R
2
B
x3
此类问题转化为可行域内的点到定点的斜率.
返回首页
关闭程序
x y 6 0
例3 已知 x, y 满足不等式 x y 0 ,
y
6
x 3
x y 0
4
A
求:(1). z x2 y2最大值和最小值;
2
(2). z x2 2x y2最大值和最小值;
6
4
2
O
2
解: (1) z x2 y2 表示可行域内任一点
x
因为kQA 2 , kQB 0,
z 所以 的范围为 ( , 2][0, ).
返回首页
关闭ห้องสมุดไป่ตู้序
(2).z y 2 表示可行域内任一点与定点
x 1
R(-1,-2)连线的斜率,
因为
kRA
5 2
,
kRB
1 2
,
z 所以 的范围为( , 5][ 1 , ). 22
点评:
x y6 0
C
y
6
x y 0
(x,y)到原点的距离的由平图方可,得点A使Z
最大,点B 使Z最小。
x 4y 3 0

求出A 为(5,2)。
3x 5y 25 0
x 1 由 x 4 y 3 0 求出B为(1,1)。
(3)若z=x2+y2,求z的最值.
y
5C
B
O1
x=1
x-4y+3=0
A
3x+5y-25=0
5
x
zmin 2, zmax 29.
效益最大。
7
7
x y 6 0
例4 已知 x, y 满足不等式 x y 0 ,
y
6
x 3
x y 0
4
A
x y6 0
C
求:(1). z y 3 的范围;
x
2
6
4
2
O
2
4x
(2).
z
y2 x 1
的范围.
2
Q
B
x3
解: (1) z y 3 表示可行域内任一点与定点Q(0,-3)连线的斜率,
( x, y ) 到原点 O (0,0) 的距离的平方.
x y6 0
C
2 N4 x B
x3
过 O 向直线 BC、AC 作垂线,垂足非别为 N、A.
易知, C (3,9) 到 O 距离最大,此时zmax 32 92 90 , zmin 02 02 0.

解:设每份盒饭中面食为x百克,米食为y百克,费用z元。 目标函数为:z=0.5x+0.4y
线性约束条件为:
6x 3y 8 4x 7 y 10 x 0, y 0
画出可行域如图:
画出直线 0.5x+0.4y=0 并平移得点A使Z最
小。
0.5x+0.4y=0 A
求出点A 为 13 ,14
15 15
例1.已知x、y满足
3xx45y
≤ 3, y ≤ 25.
x ≥ 1.
解:画出可行域如图:
z
y, x
表示可行域内的点
(x,y)与原点连线的斜由率图,可得点C使
Z最大,点A使Z最小。
x 4y 3 0

求出A 为(5,2)。
3x 5y 25 0
x 1 由 3x 5y 25 0 可得C为(1,4.4)
例1.已知x、y满足
3xx45y
≤ 3, y ≤ 25.
x ≥ 1.
解:画出可行域如图:
(1)若z=2x+y,求z的最值.
画出直线 2x+y=0 并平移得点A使Z最大, y
点B使Z最小。
由 x 4 y 3 0 求出A 为(5,2)。
5C
3x 5y 25 0
x-4y+3=0
x 1 由 x 4 y 3 0 求出B为(1,1)。
解:设每天生产甲产品x吨,乙产品y吨,可得产值z千元。
目标函数为:z=7x+9y
4x 6y 180 线性约束条件为: 3x 6 y 150
5x 3y 150
画出可行域如图:
画出直线7x+9y=0 并平移得点P使Z最小。
求出点P

(150 ,100) 77
所以每天生产甲产品 150吨,乙产品100 吨时,
S
1 2
|
BC
|
h
1 3.4 4 6.8. 2
4 2 2 1 1 10
y 5C
B
O1
x=1
x-4y+3=0
A
3x+5y-25=0
5
x
❖ [例1] 某校食堂以面食和米食为主,面食每百 克含蛋白质6个单位,含淀粉4个单位,售价0.5 元;米食每百克含蛋白质3个单位,含淀粉7个单 位,售价0.4元.学校要给学生配制成盒饭,每 盒至少有8个单位的蛋白质和10个单位的淀粉, 应如何配制盒饭,才既科学又使费用最少?
x 1 由 3x 5y 25 0 可得C为(1,4.4)
zmax 25 2 8
zmin 21 4.4 2.4
y 5C
B
O1
x=1
x-4y+3=0
A
3x+5y-25=0
5
x
例1.已知x、y满足
3xx45y
≤ 3, y ≤ 25.
x ≥ 1.
解:画出可行域如图:
z x2 y2 表示可行域内的点
❖ 解析:这是一个最优化问题,应先设出目标变量和 关键变量并建立目标函数,然后根据目标函数的类 型,选择合适的方法求最值。目标函数往往是一元 二次函数或分式函数或三角函数或二元函数。如是 一元二次函数一般用配方法求最值,如是三角函数 一般用化一角一函数的方法求最值,如是分式函数 一般用基本不等式法求最值,如是二元函数一般用 线性规划法求最值,有时也可用基本不等式法求最 值。
(4)若 z y , 求z 的最值.
x
y 5C
B
O1
x=1
x-4y+3=0
A
3x+5y-25=0
5
x
zmax
kOC
4.4 1
4.4,
zmax
kOA
2 5
0.4.
例1.已知x、y满足
3xx45y
≤ 3, y ≤ 25.
x ≥ 1.
(5)求可行域的面积和 整点个数.
解:画出可行域如图:
求A出为(5,2),B为(1,1), C为( 1 , 4.4)。
所以每份盒饭中有面食 13百克,米食为14 百克,费
用最省。
15
15
[例2] 某工厂生产甲、乙两种产品,每生产 1 t产品需要的电力、煤、劳动力及产值. 如下表所示:
品 种
电力(千 度)
煤(吨)
劳动力( 人)
产值(千 元)

4
3
5
7

6
6
3
9
❖ 该厂的劳动力满员150人,根据限额每天用 电不超过180千度,用煤每天不得超过150 t ,问每天生产这两种产品各多少时,才能 创造最大的经济效益?
相关文档
最新文档