人工蜂群算法详解
《人工蜂群算法及其在语音识别中的应用研究》范文

《人工蜂群算法及其在语音识别中的应用研究》篇一一、引言随着科技的不断发展,人工智能与优化算法的交叉应用越来越广泛。
其中,人工蜂群算法作为一种新型的智能优化算法,已经在多个领域取得了显著的成果。
特别是在语音识别领域,人工蜂群算法的应用显得尤为重要。
本文将详细介绍人工蜂群算法的原理及特性,并探讨其如何有效应用于语音识别系统中。
二、人工蜂群算法的原理及特性人工蜂群算法(Artificial Bee Colony, ABC)是一种基于自然界中蜜蜂采蜜行为的仿生优化算法。
它通过模拟蜜蜂的觅食行为,寻找最优解。
人工蜂群算法具有以下特性:1. 仿生性:人工蜂群算法借鉴了蜜蜂的觅食行为,具有较强的仿生性。
2. 并行性:该算法通过模拟多只蜜蜂的行为,使得搜索过程具有并行性。
3. 自适应性:人工蜂群算法可以根据搜索过程中的反馈信息,自适应地调整搜索策略。
4. 鲁棒性强:该算法对初始解的依赖性较小,具有较强的鲁棒性。
三、人工蜂群算法在语音识别中的应用随着语音识别技术的不断发展,如何提高语音识别的准确性和效率成为了研究的重点。
人工蜂群算法作为一种高效的优化算法,在语音识别中发挥了重要作用。
1. 特征提取:在语音识别中,特征提取是关键的一步。
人工蜂群算法可以通过优化特征参数,提高特征提取的准确性。
例如,通过优化梅尔频率倒谱系数(MFCC)等参数,提高语音信号的表示能力。
2. 模型训练:在语音识别系统中,模型训练是一个复杂的过程。
人工蜂群算法可以用于优化模型参数,提高模型的泛化能力。
例如,通过优化支持向量机(SVM)等分类器的参数,提高语音识别的准确率。
3. 声学模型优化:声学模型是语音识别系统的重要组成部分。
人工蜂群算法可以用于优化声学模型的参数,提高模型的性能。
例如,通过优化隐马尔可夫模型(HMM)的参数,提高语音识别的准确性和鲁棒性。
4. 集成学习:在语音识别中,集成学习是一种常用的方法。
人工蜂群算法可以用于优化集成学习的权重和基分类器的选择,提高集成学习的性能。
人工蜂群算法

⼈⼯蜂群算法算法背景⼈⼯蜂群算法 (Artificial Bee Colony, ABC) 是由 Karaboga 于 2005 年提出的⼀种新颖的基于集群智能的全局优化算法,其直观背景来源于蜂群的采蜜⾏为。
它的主要特点是不需要了解问题的特殊信息,只需要对问题进⾏优劣的⽐较,通过各⼈⼯蜂个体的局部寻优⾏为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。
蜜蜂是⼀种群居昆⾍,虽然单个昆⾍的⾏为极其简单,但是由单个简单的个体所组成的群体却表现出极其复杂的⾏为。
真实的蜜蜂种群能够在任何环境下,以极⾼的效率从⾷物源(花朵)中采集花蜜;同时,它们能适应环境的改变。
搜索流程算法的调⽤过程如下:初始化所有蜜源记录最优蜜源while:雇佣蜂对所有蜜源进⾏邻域搜索(避免饥饿效应)计算轮盘度,判断蜜源质量观察蜂对优质蜜源进⾏邻域搜索(加速算法收敛)记录最优蜜源侦查蜂放弃枯竭蜜源进⾏全局搜索(跳出局部最优)记录最优蜜源end其中雇佣蜂和观察蜂有着相似的逻辑,特别在对指定蜜源进⾏邻域搜索时,两者的逻辑是完全的⼀样的:1. 基于原有蜜源进⾏邻域突变2. 保证邻域突变的有效性3. 若为优质突变,则进⾏蜜源替换4. 若为劣质突变,则进⾏蜜源开采但是算法的设计者们却特意区分出两种不同的逻辑,其原因可以从实现代码中看出。
在进⾏领域搜索时,对指定蜜源的选择和限定是关键所在,它暗⽰了雇佣蜂和观察蜂的区别以及承担的不同⾓⾊。
⾸先对于雇佣蜂的⾓⾊,其指定蜜源的⽅式简单粗暴,对每⼀个蜜源进⾏遍历指定。
通过这种⽅式进⾏邻域搜索,是建⽴整个算法的基础核⼼。
⽽对于观察蜂⾓⾊,它是根据轮盘赌策略进⾏蜜源的指定,也就是说,蜜源越是优质,其被指定的、被进⾏领域搜索的概率就越⾼。
通过这种正向反馈的过程,加速了整个算法的收敛性,可以帮助我们在多个局部中快速找到最优解。
如此看来观察蜂似乎是雇佣蜂的进化版,观察蜂似乎可以完全替代雇佣蜂?其实不然。
观察蜂⾓⾊在进⾏快速收敛、对优质蜜源进⾏了较多照顾的同时,劣质的蜜源可能会被忽略,从⽽产⽣饥饿效应。
人工蜂群算法详解

•
蜂群采蜜行为
待求解问题
食物源位置
可行解
食物源质量
适应度
采蜜速度
收敛速度
食物源质量最大值(最大收益度)
h
最优解
7
1.蜜源初始化
• 初始化时,随机生成SN个可行解(等于雇佣蜂的数量)并
计算适应度函数值。随机产生可行解的公式如下: x ij x m in ,j r a n d ( 0 ,1 ) (x m a x ,j x m in ,j) (1)
h
20
算法实现
更新策略
式中对于引领蜂,完全重走上次的路径,概率等于1.对
于跟随蜂,根据转移因子大小依概率选择路径,启发式因子
ηij= 1/ dij,dij(i,j= 1,2,… ,n)为城市i和城市j之间的 欧式距离;α为表示转移因子ρij重要程度的参数;β为表 示启发式因子ηij重要程度的参数;BS,BF,BL分别为侦察蜂、 跟随蜂及引领蜂集合.
为随机生成且k≠i,φik 为[ - 1, 1]之间的随机数。
h
8
3. 观察蜂选择雇佣蜂的概率
Pi
fit(xi )
SN
fit(xn )
n 1
式中,fit(xi)为第i个解的适应值对应蜜源的丰富程
度。蜜源越丰富,被观察蜂选择的概率越大。
4. 侦察蜂的产生
为防止算法陷入局部最优,当某蜜源迭代limit次没
h
18
算法实现
更新策略
式中:ρkij为第k只蜜蜂从城市i到城市j的转移因 子;γ为除引领蜂走过的路径外,可选城市的总数;σ为转 移强度;μ为可选城市总数;
当可选路径中不含引领蜂走过的路径时,转移因子取 σ/μ,其中,当可选路径中含引领蜂走过的路径且为引领 蜂走过的路径时,转移因子等于τij,若选其它路径,则转移 因子为
优化算法——人工蜂群算法(ABC)

优化算法——人工蜂群算法(ABC)一、人工蜂群算法的介绍手机微信关注公众号ID:datadw 学习数据挖掘,研究大数据,关注你想了解的,分享你需要的。
人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。
人工蜂群算法属于群智能算法的一种。
二、人工蜂群算法的原理1、原理标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。
整个蜂群的目标是寻找花蜜量最大的蜜源。
在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。
假设问题的解空间是维的,采蜜蜂与观察蜂的个数都是,采蜜蜂的个数或观察蜂的个数与蜜源的数量相等。
则标准的ABC算法将优化问题的求解过程看成是在维搜索空间中进行搜索。
每个蜜源的位置代表问题的一个可能解,蜜源的花蜜量对应于相应的解的适应度。
一个采蜜蜂与一个蜜源是相对应的。
与第个蜜源相对应的采蜜蜂依据如下公式寻找新的蜜源:其中,,,是区间上的随机数,。
标准的ABC算法将新生成的可能解与原来的解作比较,并采用贪婪选择策略保留较好的解。
每一个观察蜂依据概率选择一个蜜源,概率公式为其中,是可能解的适应值。
对于被选择的蜜源,观察蜂根据上面概率公式搜寻新的可能解。
当所有的采蜜蜂和观察蜂都搜索完整个搜索空间时,如果一个蜜源的适应值在给定的步骤内(定义为控制参数“limit”) 没有被提高, 则丢弃该蜜源,而与该蜜源相对应的采蜜蜂变成侦查蜂,侦查蜂通过已下公式搜索新的可能解。
其中,是区间上的随机数,和是第维的下界和上界。
2、流程∙初始化;∙重复以下过程:o将采蜜蜂与蜜源一一对应,根据上面第一个公式更新蜜源信息,同时确定蜜源的花蜜量;o观察蜂根据采蜜蜂所提供的信息采用一定的选择策略选择蜜源,根据第一个公式更新蜜源信息,同时确定蜜源的花蜜量;o确定侦查蜂,并根据第三个公式寻找新的蜜源;o记忆迄今为止最好的蜜源;判断终止条件是否成立;三、人工蜂群算法用于求解函数优化问题对于函数其中。
数据挖掘中的人工蜂群算法原理解析

数据挖掘中的人工蜂群算法原理解析数据挖掘是一项重要的技术,它通过从大量数据中发现隐藏的模式和关联,帮助人们做出更加准确的决策。
而在数据挖掘的过程中,人工蜂群算法被广泛应用,它是一种基于自然界蜜蜂群体行为的优化算法,能够有效地解决复杂的优化问题。
人工蜂群算法的原理源于蜜蜂群体的行为。
蜜蜂群体在寻找蜜源的过程中,会通过信息的交流和协作来寻找最佳的解决方案。
人工蜂群算法模拟了这种行为,通过构建虚拟的蜜蜂群体来解决优化问题。
在人工蜂群算法中,蜜蜂被分为三类:工蜂、侦查蜂和观察蜂。
工蜂负责在搜索空间中随机选择解,并通过局部搜索来优化解。
侦查蜂负责在搜索空间中随机选择解,并通过全局搜索来寻找更优的解。
观察蜂负责观察工蜂和侦查蜂的行为,并根据其表现来调整搜索策略。
人工蜂群算法的核心是信息交流和协作。
蜜蜂通过信息素来交流和共享有关解的信息。
信息素是一种虚拟的化学物质,蜜蜂会根据信息素浓度来选择解。
当一个蜜蜂发现一个更优的解时,它会释放更多的信息素,吸引其他蜜蜂前来观察和学习。
这种信息素的传播和积累,最终会导致整个蜜蜂群体向更优的解靠拢。
人工蜂群算法的优势在于其并行性和全局搜索能力。
蜜蜂群体中的每个个体都可以独立地搜索解空间,并通过信息交流来共同寻找最佳解。
这种并行性使得算法能够快速地收敛到最优解。
同时,蜜蜂群体中的侦查蜂能够进行全局搜索,避免陷入局部最优解。
这种全局搜索能力使得算法具有较好的鲁棒性和适应性。
然而,人工蜂群算法也有一些局限性。
首先,算法对参数的选择较为敏感,不同的参数设置可能会导致不同的结果。
其次,算法的收敛速度和最终解的质量与问题的复杂度有关。
对于复杂的优化问题,算法可能需要较长的时间来找到最优解。
此外,算法的性能也受到问题维度的影响,对于高维问题,算法可能会受到维度灾难的困扰。
总的来说,人工蜂群算法是一种强大的优化算法,能够有效地解决复杂的优化问题。
它通过模拟蜜蜂群体的行为,实现了信息交流和协作,从而寻找最佳解决方案。
人工蜂群算法基本原理

人工蜂群算法基本原理
人工蜂群算法(Artificial Bee Colony Algorithm,简称ABC算法)是一种模拟蜜蜂觅食行为的优化算法,通过模拟蜜蜂在搜索过程中的策略和行为来寻找最优解。
ABC算法的基本原理如下:
1. 初始化蜜蜂群体:随机生成一定数量的“雇员蜜蜂”,它们代表搜索空间中的候选解。
2. 雇佣阶段:每个雇员蜜蜂在当前位置周围随机选择一个相邻位置进行搜索,并计算该位置的目标函数值。
如果新的位置比当前位置更优,则蜜蜂将更新自己的位置和目标函数值,否则保持不变。
3. 观察阶段:每个雇员蜜蜂将自己的位置和目标函数值发送给“观察蜜蜂”,观察蜜蜂根据接收到的信息选择最优的解。
4. 搜索阶段:每个观察蜜蜂随机选择一个雇员蜜蜂的位置,并在其周围进行搜索。
如果搜索得到的新位置比当前位置更优,则观察蜜蜂更新自己的位置和目标函数值;否则保持不变。
5. 跟随阶段:每个观察蜜蜂将自己的位置和目标函数值发送给“跟随蜜蜂”,跟随蜜蜂选择最优的解作为当前最优解。
6. 蜜蜂进化阶段:随机选择一个雇员蜜蜂的位置,并随机扰动其位置。
如果扰动后的新位置比原位置更优,则更新雇员蜜蜂的位置和目标函数值。
这一步骤可以增强算法的局部搜索能力。
7. 终止条件检查:检查是否满足终止条件,如达到最大迭代次数或已经找到满意的解。
8. 返回最优解:返回当前找到的最优解作为算法的输出。
通过不断地重复以上步骤,ABC算法能够逐渐收敛到最优解附近的区域,并找到全局最优解。
其特点是简单、易于实现,并且对于大规模和复杂的优化问题有较好的适应性。
人工蜂群算法 算法步骤

人工蜂群算法算法步骤人工蜂群算法是一种基于群智能的优化算法,其灵感来源于蜜蜂群体的觅食行为。
该算法通过模拟蜜蜂之间的信息交流和合作,实现在解空间中的高效搜索。
人工蜂群算法的主要步骤包括初始化、搜索和跟随三个阶段。
首先,在初始化阶段,算法会在解空间中随机生成一组候选解,作为初始的蜜蜂群体。
然后,根据适应度函数计算每个候选解的适应度值,以便评价其优劣。
接下来,在搜索阶段,蜜蜂会根据一定的策略寻找新的解。
例如,有些蜜蜂会选择在已知最优位置附近进行搜索,以期找到更好的解;而另一些蜜蜂则会在整个解空间内随机搜索。
在新位置,会计算每个候选解的适应度值,以判断其优劣。
最后,在跟随阶段,蜜蜂通过信息共享来选择更好的解。
每个蜜蜂可以根据自身的适应度值和邻近蜜蜂的适应度值,来决定是否跟随其他蜜蜂转移到新的位置。
这样,优秀的解可以在群体中迅速传播,从而帮助其他蜜蜂更好地搜索解空间。
人工蜂群算法具有较强的全局搜索能力,能够快速收敛到最优解。
此外,该算法还具有易于实现、鲁棒性强等优点,因此在工程实践中得到了广泛应用。
例如,在人工智能、数据挖掘、优化算法等领域,都可以看到人工蜂群算法的成功应用。
人工蜂群算法的应用领域人工蜂群算法作为一种高效的优化算法,其在各个领域的应用前景广阔。
以下几个方面是人工蜂群算法发挥优势的主要领域。
1.工程优化:在工程领域,人工蜂群算法可以用于求解各种优化问题,如调度问题、路径问题、网络优化等。
通过人工蜂群算法的应用,可以大大提高工程优化问题的求解速度和准确性,从而为企业降低成本、提高效益提供支持。
2.信号处理:在信号处理领域,人工蜂群算法可以应用于信号调制识别、信号滤波等方面。
通过人工蜂群算法的优化,可以提高信号处理的性能,进一步提升信号质量。
3.金融投资:在金融投资领域,人工蜂群算法可以用于优化投资组合、预测金融市场走势等。
通过对海量金融数据进行智能分析,人工蜂群算法可以帮助投资者找到最佳的投资策略,实现资产增值。
人工蜂群算法原理

人工蜂群算法原理人工蜂群算法(Artificial Bee Colony Algorithm,ABC算法)是一种基于蜜蜂群体行为特点而产生的一种全局优化算法,由Dervis Karaboga于2005年首次提出。
该算法模拟了蜜蜂在搜索优秀食源时的行为,具有较强的全局搜索能力和快速收敛的特点,已广泛应用于各种优化问题的求解。
ABC算法的原理基于自然界中蜜蜂群体行为的特点,其核心思想主要包括三个方面:蜜蜂个体的行为模式、信息的传递方式和种群动态的调整机制。
下面将结合这三方面对ABC算法的原理进行详细说明。
1. 蜜蜂个体的行为模式在ABC算法中,蜜蜂的行为主要分为三类:工蜂、观察蜂和侦查蜂。
其中,工蜂主要负责搜索和开发蜜源,观察蜂则负责跟踪和评估不同工蜂发现的蜜源的质量,侦查蜂则负责在整个蜜蜂群体中搜索并发现新蜜源。
具体而言,ABC算法初始化时随机生成一定数量的工蜂群体,每个工蜂代表了一个解向量,即求解问题的一个可行解。
每个工蜂根据自身当前位置的解向量附近进行局部搜索,并且把搜索到的新解向量周围的解向量称为邻居。
在搜索过程中,每个工蜂会计算邻居解向量的适应度值,并将搜索到的更优质的解向量更新为自己的“蜜源”。
2. 信息的传递方式ABC算法中信息的传递主要是通过观察蜂完成的。
观察蜂会不断跟踪和评估工蜂发现的蜜源的质量,并将信息传递给其他工蜂和侦查蜂。
具体而言,在每次迭代中,每个观察蜂会从当前工蜂中随机选择一个进行“观察”,并比较其“蜜源”与其他工蜂的“蜜源”之间的优劣。
如果发现当前工蜂的蜜源更优秀,则该观察蜂就会将该工蜂的蜜源更新到自己的邻居解向量中。
此外,ABC算法还引入了“跟随”的概念,即当某个观察蜂发现一个更优质的解向量时,它会通过一定的概率将该解向量定位为自己的“蜜源”,并使所有的工蜂跟随其所对应的观察蜂进行搜索。
这样一来,整个蜜蜂群体就能够全局地搜索最优解。
3. 种群动态的调整机制ABC算法中种群动态的调整机制主要包括两种方式:工蜂群体的更新和侦查蜂的发现新蜜源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
3
一 、蜜蜂采蜜机理
• 蜂群产生群体智慧的最小搜索模型包含基本的三个组成要 素:食物源、被雇佣的蜜蜂(employed foragers)和未 被雇佣的蜜蜂(unemployed foragers);两种最为基本 的行为模型:为食物源招募(recruit)蜜蜂和放弃 (abandon)某个食物源。
A
9
四、基本ABC算法的流程
• 1: 根据式(1)初始化种群解xi,i =1,…,SN
• 2: 计算种群中各个蜜蜂的适应值
• 3: cycle = 1
• 4: repeat
• 5: 雇佣蜂根据(2)产生新的解vi 并计算适应值
• 6: 雇佣蜂根据贪心策略选择蜜源
• 7: 根据(3)式计算选择蜜源xi的概率Pi • 8: 观察蜂根据概率Pi选择蜜源xi,根据(2)式在该蜜源附
6
三、ABC算法原理
• 在基本ABC算法中,人工蜂群包含3种个体:雇佣蜂、观察 蜂和侦查蜂。
• 每个雇佣蜂对应一个确定的食物源(解向量)并在迭代中 对蜜源的邻域进行搜索。
• 根据蜜源丰富程度(适应值的大小)采用轮盘赌的方式雇 佣观察蜂采蜜(搜索新蜜源)
• 如果蜜源多次更新没有改进,则放弃该蜜源,雇佣蜂转为 侦查蜂随机搜索新蜜源。
• (1)食物源:食物源的价值由多方面的因素决定,如:它 离蜂巢的远近,包含花蜜的丰富程度和获得花蜜的难易程 度。使用单一的参数,食物源的“收益率”
(profitability),来代表以上各个因素。 • (2)被雇用的蜜蜂:也称引领蜂(Leader),其与所采集
的食物源一一对应。引领蜂储存有某一个食物源的相关信 息(相对于蜂巢的距离、方向、食物源的丰富程度等)并 且将这些信息以一定的概率与其他蜜蜂分享。
•
A
7
1.蜜源初始化
• 初始化时,随机生成SN个可行解(等于雇佣蜂的数量)并
计算适应度函数值。随机产生可行解的公式如下: x ij x m in ,j r a n d ( 0 ,1 ) (x m a x ,j x m in ,j) (1)
式中,xi(i=1, 2, . . . , SN)为D维向量,D为优化参数 的个数,j ∈{1, 2, … , D}。
A
4
一 、蜜蜂采蜜机理
• (3)未被雇用的蜜蜂:其主要任务是寻找和开采食物源。 有两种未被雇用的蜜蜂:侦查蜂(Scouter)和跟随蜂 (Follower)。侦察蜂搜索蜂巢附近的新食物源;跟随蜂 等在蜂巢里面并通过与引领蜂分享相关信息找到食物源。 一般情况下,侦察蜂的平均数目是蜂群的5%-20%。
所有城市的任一种排列即是问题的一个解,解空 间由若干解构成,因此初始化解空间就是随机产生多 个不同的城市序列。以n个城市为例,从1到n对其进 行编号,那么完成一次旅行的路径就用1到n的一个排 列组合来表示。
A
8
3. 观察蜂选择雇佣蜂的概率
Pi
fit(xi )
SN
fit(xn )
n 1
式中,fit(xi)为第i个解的适应值对应蜜源的丰富程
度。蜜源越丰富,被观察蜂选择的概率越大。
4. 侦察蜂的产生
为防止算法陷入局部最优,当某蜜源迭代limit次没
有改进时,便放弃该蜜源, 并且将该蜜源记录在禁忌 表中,同时该蜜源对应的雇用蜂转变为侦察蜂按式(1) 随机产生一个新的位置代替原蜜源。
人工蜂群算法 (Artificial Bee Colony,ABC)
A
1
• 人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集 群智能思想的一个具体应用。
• 主要特点是不需要了解问题的特殊信息,只需要对问题进 行优劣的比较,通过各人工蜂个体的局部寻优行为,最终 在群体中使全局最优值突现出来,有着较快的收敛速度。
• 为了解决多变量函数优化问题,Karaboga在2005年提出了 人工蜂群算法ABC模型(artificial bee colony
algorithm)。
A
2
一 、蜜蜂采蜜机理
• 蜜蜂是一种群居昆虫,虽然单个昆虫的行为极其简单,但 是由单个简单的个体所组成的群体却表现出极其复杂的行 为。真实的蜜蜂种群能够在任何环境下,以极高的效率从 食物源(花朵)中采集花蜜;同时,它们能适应环境的改 变。
A
5
二、蜜蜂采蜜过程
• 初始时刻,蜜蜂以侦察蜂的身份搜索。其搜索可以由系统 提供的先验知识决定,也可以完全随机。经过一轮侦查后,
若蜜蜂找到食物源,蜜蜂利用它本身的存储能力记录位置
信息并开始采蜜。此时,蜜蜂将成为“被雇用者”。蜜蜂
在食物源采蜜后回到蜂巢卸下蜂蜜然后将有如下选择:
•
(1)放弃食物源而成为非雇佣蜂。
2. 新蜜源的更新搜索公式
• 蜜蜂记录自己到目前为止的最优值,并在当前蜜源邻域内
展开搜索,基本ABC在蜜源附近搜索新蜜源的公式为:
vij xij ij(xij xkj)
(2)
式中,j∈{ 1, 2, … , D },k∈{ 1, 2, …, SN },k
为随机生成且k≠i,φik 为[ - 1, 1]之间的随机数。
•
(2)跳摇摆舞为所对应的食同一个食物源采蜜而不进行招募。
•
对于非雇佣蜂有如下选择:
•
(1)转变成为侦察蜂并搜索蜂巢附近的食物源。其搜
索可以由先验知识决定,也可以完全随机。
•
(2)在观察完摇摆舞后被雇用成为跟随蜂,开始搜索
对应食物源邻域并采蜜。
A
近产生新的蜜源vi ,并计算新蜜源vi的适应值
• 9: 观察蜂根据贪心策略选择蜜源
• 10: 决定是否存在需要放弃的蜜源,如果存在,根据(1) 式随机产生一个蜜源替代它
• 11: 记录最优解
• 12: cycle = cycle + 1
• 13: until cycle = MCN A
10
五、人工蜂群算法解TSP的实现
• (4)舞蹈区:在群体智慧的形成过程中,蜜蜂间交换信 息是最为重要的一环。舞蹈区是蜂巢中最为重要的信息交 换地。蜜蜂的舞蹈叫做摇摆舞。食物源的信息在舞蹈区通 过摇摆舞的形式与其他蜜蜂共享,引领蜂通过摇摆舞的持 续时间等来表现食物源的收益率,故跟随蜂可以观察到大 量的舞蹈并依据收益率来选择到哪个食物源采蜜。收益率 与食物源被选择的可能性成正比。因而,蜜蜂被招募到某 一个食物源的概率与食物源的收益率成正比。