高二数学期末复习直线和圆的方程(附答案)

合集下载

高二数学圆的方程练习-(附答案)

高二数学圆的方程练习-(附答案)

高二数学圆的方程练习【同步达纲练习】A 级一、选择题1.若直线4x-3y-2=0与圆x 2+y 2-2ax+4y+a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7B.-6<a <4C.-7<a <3D.-21<a <192.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y+3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2)C.(4,1)D.(2 +2,2-3)4.若直线x+y=r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.直线x-y+4=0被圆x 2+y 2+4x-4y+6=0截得的弦长等于( ) A.8B.4C.22D.42二、填空题6.过点P(2,1)且与圆x 2+y 2-2x+2y+1=0相切的直线的方程为 .7.设集合m={(x,y)x 2+y 2≤25,N={(x,y)|(x-a)2+y 2≤9},若M ∪N=M ,则实数a 的取值范围是 .8.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内一点则过点P 的最短弦所在直线方程是 ,过点P 的最长弦所在直线方程是 .三、解答题9.已知圆x 2+y 2+x-6y+m=0和直线x+2y-3=0交于P 、Q 两点,若OP ⊥OQ(O 是原点),求m 的值.10.已知直线l:y=k(x-2)+4与曲线C :y=1+24x 有两个不同的交点,求实数k 的取值范围.AA 级一、选择题1.圆(x-3)2+(y+4)2=2关于直线x+y=0的对称圆的标准方程是( )A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)=2D.(x-3)2+(y-4)2=22.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( )A.|a |<1B.|a |<51 C.|a |<121D.|a |<1313.关于x,y 的方程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示一个圆的充要条件是( )A.B=0,且A=C ≠0B.B=1且D 2+E 2-4AF >0C.B=0且A=C ≠0,D 2+E 2-4AF ≥0D.B=0且A=C ≠0,D 2+E 2-4AF >0 4.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0)D.(5,-1)5.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( )A.-51<k <-1 B.-51<k <1 C.- 31<k <1D.-2<k <2二、填空题6.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .7.若方程a 2x 2+(2a+3)y 2+2ax+a+1=0表示圆,则实数a 的值等于 .8.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是 . 三、解答题9.求圆心在直线2x-y-3=0上,且过点(5,2)和(3,-2)的圆的方程.10.光线l 从点P(1,-1)射出,经过y 轴反射后与圆C :(x-4)2+(y-4)2=1相切,试求直线l 所在的直线方程.【素质优化训练】一、选择题1.直线3x+y-23=0截圆x 2+y 2=4得的劣弧所对的圆心角为(全国高考题)( )A.6πB.4π C.3π D.2π 2.对于满足x 2+(y-1)2=1的任意x,y ,不等式x+y+d ≥0恒成立,则实数d 的取值范围是( )A.[2-1,+∞]B.(-∞,2-1)C.[2 +1,+∞]D.(-∞, 2 +1)3.若实数x ,y 满足x 2+y 2=1,则12--y y 的最小值等于( )A.41 B.43C.23 D.24.过点P(1,2)的直线l 将圆x 2+2-4x-5=0分成两个弓形,当大、小两个弓形的面积之差最大时,直线l 的方程是( )A.x=1B.y=2C.x-y+1=0D.x-2y+3=05.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过( )A.1.8米B.3米C.3.6米D.4米 二、填空题6.若实数x,y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是 .7.若集合A={(x 、y)|y=-|x |-2},B={(x,y)|(x-a)2+y 2=a 2}满足A ∩B= ,则实数a 的取值范围是 .8.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题9.令圆x 2+y 2-4x-6y+12=0外一点P(x,y)向圆引切线,切点为M ,有|PM |=|PO |,求使|PM |最小的P 点坐标.10.已知圆C :(x+4)2+y 2=4和点A(-23,0),圆D 的圆心在y 轴上移动,且恒与圆C外切,设圆D 与y 轴交于点M 、N ,求证:∠MAN 为定值.11.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.12.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线l 与m 所在直线方程.13.AB 是圆O 的直径,且|AB |=2a,M 是圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.参考答案:【同步达纲练习】A 级1.B2.C3.B4.D5.C6.x=2或3x-4y-2=07.-2≤a ≤28.x+y-3=0,x-y-3=09.m=3 10.(125,43) AA 级1.B2.D3.D4.D5.B6.(- 2a ,0), 2a7.-18.(- 103,101)9.(x-2)2+(y-1)2=10 10.3x+4y+1=0或4x+3y-1=0【素质优化训练】1.C2.A3.B4.D5.C6.107.-2(2+1)<a <2(2+1)8.θ=arccot22 或π-arccot22, 89.P(1312,1318) 10.60° 11.M 的轨迹方程为(λ2-1)(x 2+y 2)-4λ2x+(1+4x 2)=0,当λ=1时,方程为直线x=45. 当λ≠1时,方程为(x-1222-λλ)2+y 2=222)1(31-+λλ它表示圆,该圆圆心坐标为(1222-λλ,0)半径为13122-+λλ12.l 的方程为:3x+4y-3=0或4x+3y+3=0 M 的方程为3x-4y-3=0或4x-3y+3=0 13.x 2+(y ±2a )2=(2a )2轨迹是分别以CO ,CD 为直径的两个圆.。

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。

以下是圆的方程专题练习,请考生查缺补漏。

一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。

A。

$-2$B。

$-1$C。

$1$D。

$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。

A。

$-0.25$B。

$1$C。

$-1$D。

$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。

A。

$(-3,1)$B。

$(3,1)$C。

$(3,-1)$D。

$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。

A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。

A。

$\left[\frac{3}{4},1\right]$B。

$\left[\frac{3}{4},+\infty\right)$C。

$(1,+\infty)$D。

$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。

高中数学选修一第二章 直线和圆的方程 章末测试(解析版)

高中数学选修一第二章 直线和圆的方程 章末测试(解析版)

第二章 直线和圆的方程章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1C .0D .1【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1C .-1D .1或-1【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( )A .(3,1)-B .(3,1)C .(3,1)-D .(3,1)--【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=,故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B. 4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.(2020·黑龙江高一期末)若曲线y y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( )A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =,由图可知, ()3401422k -<≤=--,故选:A 6.(2020·浙江柯城。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高二数学选一人教A版第二章直线和圆的方程+答案解析(附后)

高二数学选一人教A版第二章直线和圆的方程+答案解析(附后)

3ngk2nmn高二数学选一人教A版第二章直线和圆的方程2.3直线的交点坐标与距离公式2.3.3点到直线的距离公式2.3.4两条平行直线间的距离一、单选题(本大题共5小题,共25分。

在每小题列出的选项中,选出符合题目的一项)1.已知,,,则点M到直线NF的距离为( )A. B. C. D.2.点到直线的距离大于3,则实数a的取值范围为( )A. B.C. 或D. 或3.过点,且与点,的距离相等的直线的方程是( )A. B.C. 或D. 或4.点到直线的距离是( )A. 3B.C. 1D.5.直线与直线的距离为( )A. B. C. D.二、填空题(本大题共6小题,共30分)6.点到直线的距离为__________.7.已知点到直线的距离为,则__________.已知点到直线的距离不大于3,则a的取值范围是__________.8.若点到直线的距离等于4,则a的值为__________.9.直线与直线的距离为,则c的值为__________.10.已知动点P在直线上运动,动点Q在直线上运动,且,则的最小值为__________.11.两直线和平行,则它们之间的距离为__________.三、解答题(本大题共7小题,共84分。

解答应写出文字说明,证明过程或演算步骤)12.本小题12分求点到直线的距离的最大值.13.本小题12分已知的顶点为,AB边上的中线CM所在直线的方程为,AC边上的高BH所在直线的方程为求顶点B,C的坐标;求的面积.14.本小题12分已知直线恒过定点若直线l经过点A,且坐标原点到l的距离等于2,求l的方程.15.本小题12分已知两条平行直线与直线,求与间的距离.16.本小题12分已知直线l在两坐标轴上的截距相等且不为零,点到直线l的距离为,求直线l的方程.17.本小题12分如图所示,在平面直角坐标系中,已知矩形ABCD的长为3,宽为2,边AB,AD分别在x轴,y轴的正半轴上,点A与坐标原点重合.将该矩形折叠,使点A落在线段DC上,已知折痕EF所在直线的斜率为求折痕EF所在直线的方程;若点P为BC的中点,求的面积.18.本小题12分已知平行四边形ABCD的两条对角线AC,BD交于点,其中,求点D的坐标及AD所在直线的方程;求平行四边形ABCD的面积.答案和解析1.【答案】B【解析】【分析】本题考查点到直线距离公式,先求出N,F所在直线方程,属于基础题【解答】解析易知直线NF的斜率,故直线NF的方程为,即,所以点M到直线NF的距离为,故选2.【答案】C【解析】【分析】本题考查点到直线距离公式,列不等式求解即可,属于基础题【解答】根据题意得,即,解得或,故选3.【答案】C【解析】【分析】本题考查点到直线距离公式;根据题意分析直线斜率存在,设出直线方程,结合点到直线的距离公式,进而得到结果。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

2014届高二第一学期期末数学复习--直线与圆答案

直线与圆【知识梳理】1.圆的方程:(1)圆心为C(a 、b),半径为r 的圆的标准方程为_________________.(2)圆的一般方程x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F>0),圆心为 , 半径r = .(3)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是 . (4)圆x 2+y 2=r 2的参数方程为__________.2.过两圆的公共点的圆系方程:设⊙C 1:x 2+y 2+D 1x +E 1y +F 1=0,⊙C 2:x 2+y 2+D 2x +E 2y +F 2=0,则经过两圆公共点的圆系方程为 .3.直线与圆的位置关系:相切⇔d =r ⇔△=0,相交⇔ ⇔ ,相离⇔ ⇔ 4.圆与圆的位置关系:外离⇔d > R +r ; 外切⇔ ;相交⇔ 内切⇔ ;内含⇔ 。

5. 圆的切线方程:圆x 2+y 2=r 2上一点p(x 0, y 0)处的切线方程为l: 。

【基础过关】1.经过A(6,5),B(0,1)两点,且圆心在直线3x +10y +9=0上的圆方程为 。

2.若方程02)2(222=++++a ax y a x a 表示圆,则a 的值为 。

3.若直线y =x +k 与曲线x =21y -恰有一个公共点,则k 的取值范围是 。

4.已知以)3,4(-C 为圆心的圆与圆122=+y x 的相切,则圆C 的方程为 。

【典型例题】例1.在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为C 。

(1)求实数b 的取值范围; (2)求圆C 的方程; (3)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.【变式】在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为D .问是否存在b 使三个交点构成的三角形为圆D 的内接直角三角形?若存在,求出b 的值;若不存在,说明理由.例2.已知圆x 2+y 2+x-6y+m=0和直线x+2y-3=0交于P ,Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径。

2023-2024学年高二数学单元速记——直线与圆的方程(压轴题专练)(解析版)

第二章直线与圆的方程(压轴题专练)一、选择题1.已知m ∈R ,若过定点A 的动直线1l :20x my m -+-=和过定点B 的动直线2l :240mx y m ++-=交于点P (P 与A ,B 不重合),则以下说法错误的是()A .A 点的坐标为()2,1B .PA PB ⊥C .2225PA PB +=D .2PA PB +的最大值为5【答案】D【分析】根据定点判断方法、直线垂直关系、勾股定理、三角函数辅助角求最值即可得解.【详解】因为1:20l x my m -+-=可以转化为(1)20m y x -+-=,故直线恒过定点A ()2,1,故A 选项正确;又因为2l :240mx y m ++-=即()42y m x -=-+恒过定点B ()2,4-,由1:20l x my m -+-=和2:420l mx y m +-+=,满足()110m m ⨯+-⨯=,所以12l l ⊥,可得PA PB ⊥,故B 选项正确;所以()()22222221425PA PB AB +==++-=,故C 选项正确;因为PA PB ⊥,设,PAB ∠θθ=为锐角,则5cos ,5sin PA PB θθ==,所以()()252cos sin 5PA PB θθθϕ+=+=+,所以当()sin 1θϕ+=时,2PA PB +取最大值,故选项D 错误.故选:D.2.设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .6【答案】D【分析】根据动直线方程求出定点,A B 的坐标,并判断两动直线互相垂直,进而可得22||||18PA PB +=,最后由基本不等式222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭即可求解.【详解】解:由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以()()22222||||||120318PA PB AB +==--+-=,因为222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭,所以6P A PB +≤,当且仅当||||3PA PB ==时取等号.故选:D.3.在平面直角坐标系内,设()11,M x y ,()22,N x y 为不同的两点,直线l 的方程为0ax by c ++=,1122ax by c ax by c δ++=++,下面四个命题中的假命题为()A .存在唯一的实数δ,使点N 在直线l 上B .若1δ=,则过M ,N 两点的直线与直线l 平行C .若1δ=-,则直线经过线段M ,N 的中点;D .若1δ>,则点M ,N 在直线l 的同侧,且直线l 与线段M ,N 的延长线相交;【答案】A【分析】根据题意对δ一一分析,逐一验证.【详解】解:对于A ,1122ax by c ax by cδ++=++化为:112222()0(0)ax by c ax by c ax by c δ++-++=++≠,即点2(N x ,2)y 不在直线l 上,因此A 不正确.对于B ,1δ=,则1212()()0a x x b y y -+-=,即过M ,N 两点的直线与直线l 的斜率相等,又点2(N x ,2)y 不在直线l 上,因此两条直线平行,故B 正确;对于C ,1δ=-,则1122()0ax by c ax by c +++++=,化为1212022x x y y a b c ++++=,因此直线l 经过线段MN 的中点,故C 正确;对于D ,1δ>,则2112222()()()0ax by c ax by c ax by c δ++⨯++=++>,则点M ,N 在直线l 的同侧,故D 正确;故选A【点睛】本题考查了直线系方程的应用、平行直线的判定、点与直线的位置关系,考查了推理能力与计算能力,属于难题.4.我国著名数学家华罗庚曾说“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.”事转化为点(),x y 与点(),a b 之间的距离的几何问题.已知点()11,M x y 在直线1:2l y x =+,点()22,N x y 在直线2:l y x =上,且1MN l ⊥)A .2B .2C D .5【答案】D【分析】根据两点距离公式将目标函数转化为点()11,M x y 到点()0,4A 的距离与点()22,N x y 到点()5,0B 的距离和,过点A 作1AC l ⊥,垂足为C ,证明AM CN =,由CN NB CB +≥求目标函数最小值.表示点()11,M x y 到点()0,4A 的距离,表示点()22,N x y 到点()5,0B 的距离,MA NB +=+,过点A 作1AC l ⊥,垂足为C ,因为直线1l 的方程为20x y -+=,()0,4A ,所以AC ==又直线1:2l y x =+与直线2:l y x =平行,1MN l ⊥,所以MN =所以//,MN AC MN AC =,所以四边形AMNC 为平行四边形,所以AM CN =,CN NB +=+,又CN NB CB +≥,当且仅当,,C N B 三点共线时等号成立,所以当点N 为线段CB 与直线2l 的交点时,CB ,因为过点()0,4A 与直线1l 垂直的直线的方程为4y x =-+,联立42y x y x =-+⎧⎨=+⎩,可得13x y =⎧⎨=⎩,所以点C 的坐标为()1,3,所以CB =,5,故选:D.将问题转化为两点之间的距离问题.5.已知圆C 是以点(2,M 和点(6,N -为直径的圆,点P 为圆C 上的动点,若点()2,0A ,点()1,1B ,则2PA PB -的最大值为()A B .4C .8+D【答案】A【分析】由题设可知圆C :22(4)16x y -+=,在坐标系中找到(4,0)D -,应用三角线相似将2PA 转化到||PD ,再利用三角形的三边关系确定目标式的最大值即可.【详解】由题设,知:(4,0)C 且||8MN ==,即圆C 的半径为4,∴圆C :22(4)16x y -+=,如上图,坐标系中(4,0)D -则24OD AC CP OC ====,∴12AC PC CP DC ==,即△APC △PCD ,故12PA PD =,∴2||||PA PB PD PB -=-,在△PBD 中||||||PD PB BD -<,∴要使||||PD PB -最大,,,P B D 共线且最大值为||BD 的长度.∴||BD ==故选:A【点睛】关键点点睛:首先求出圆C 方程,找到定点D 使AC PC CP DC =,进而将2PA 转化到其它线段,结合三角形三边关系求目标式的最值.6.过点()8,4A -作抛物线28y x =的两条切线1l ,2l ,设1l ,2l 与y 轴分别交于点B ,C ,则ABC ∆的外接圆方程为()A .2264160x y x y ++--=B .226160x y x ++-=C .2256120x y x y ++--=D .224160x y y +--=【答案】A【解析】设切线方程为l :()84x t y +=-,与抛物线联立,表示线段AB 的中垂线方程,可求解圆心坐标和半径,表示圆的方程即可.【详解】设过点()8,4A -的抛物线2:8E y x =的切线方程为l :()84x t y +=-,即84x ty t =--(*),代入28y x =得288(48)0y ty t -++=,由0∆=得2240t t --=,(1)所以方程(1)有两个不相等的实数根1t ,2t ,且122t t +=,124t t =-,在(*)中令0x =得180,4B t ⎛⎫+ ⎪⎝⎭,280,4C t ⎛⎫+ ⎪⎝⎭,设ABC ∆的外接圆圆心为点()100,O x y ,则()0122B C y y y =+=,下求0x :线段AB 中点横标04x '=-,纵标0144y t '=+,线段AB 的中垂线方程为1144(4)y t x t --=-+,令2y =得211021424t t x t -++=,由(1)知21124t t +=,故03x =-,设ABC ∆的外接圆半径为R ,则229R =,所以ABC ∆的外接圆方程为22(3)(2)29x y ++-=,即2264160x y x y ++--=.故选:A【点睛】本题考查了直线和抛物线的位置关系,圆的方程,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7.已知平面内两个定点A ,B 及动点P ,若PBPA λ=(0λ>且1λ≠),则点P 的轨迹是圆.后世把这种圆称为阿波罗尼斯圆.已知()0,0O,0,2Q ⎛ ⎝⎭,直线1:230l kx y k -++=,直线2:320l x ky k +++=,若P 为1l ,2l 的交点,则32PO PQ +的最小值为()A .B.6-C.9-D.3【答案】A【分析】由直线方程可得12l l ⊥,则点P 的轨迹是以CD 为直径的圆,除去D 点,得到P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,可得)332PQ y =+≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PQ PA =,结合AQ =()3222PO PQ PA PQ AQ +=+≥,进而求解.【详解】由已知1:230l kx y k -++=过定点()2,3C -,2:320l x ky k +++=过定点()2,3D --,因为1l k k =,21l k k=-,所以121l l k k ⋅=-,即12l l ⊥,所以点P 的轨迹是以CD 为直径的圆,除去D 点,故圆心为()2,0-,半径为3,则P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,易知O 、Q 在该圆内,又32PO =即)332PO y ==≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PO PA =,又2AQ =,所以()3322222PO PQ PO PQ PA PQ AQ ⎛⎫+=+=+≥= ⎪⎝⎭所以32PO PQ +的最小值为故选:A.8.已知点P 为直线l :20x y +-=上的动点,过点P 作圆C :2220x x y ++=的切线PA ,PB ,切点为,A B ,当PC AB ⋅最小时,直线AB 的方程为()A .3310x y ++=B .3310x y +-=C .2210x y ++=D .2210x y +-=【答案】A【分析】先利用圆切线的性质推得,,,A P B C 四点共圆,AB CP ⊥,从而将PC AB ⋅转化为2PA ,进而确定PC l ⊥时PC AB ⋅取得最小值,再求得以PC 为直径的圆的方程,由此利用两圆相交弦方程的求法即可得解.【详解】因为圆C :2220x x y ++=可化为()2211x y ++=,所以圆心()1,0C -,半径为1r =,因为PA ,PB 是圆C 的两条切线,则,PA AC PB BC ⊥⊥,由圆的知识可知,,,,A P B C 四点共圆,且AB CP ⊥,PA PB =,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⨯= ,又PA =所以当PC 最小,即PC l ⊥时,PC AB ⋅取得最小值,此时PC 的方程为1y x =+,联立120y x x y =+⎧⎨+-=⎩,解得13,22x y ==,即13,22P ⎛⎫ ⎪⎝⎭,故以PC 为直径的圆的方程为13(1)022x x y y ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭,即,221031222x x y y +-+=-,又圆22:20C x x y ++=,两圆的方程相减即为直线AB 的方程:3310x y ++=.故选:A.【点睛】关键点睛:本题解决的关键是将PC AB ⋅转化为2PA ,从而确定PC AB ⋅最小时P 的坐标,从而利用两圆相减可得相交弦方程的技巧得解.9.(多选)已知O 为坐标原点,()3,1A ,P 为x 轴上一动点,Q 为直线l :y x =上一动点,则()A .APQ △周长的最小值为B .AP AQ +的最小值为1C .AP PQ +的最小值为D OP +的最小值为4【答案】BCD【分析】设A 关于直线l :y x =的对称点为()11,3A ,A 关于x 轴的对称点为()23,1A -,对于A :根据对称性可得1212PQ QA PA PQ QA PA A A ++=++≥,进而可得结果;对于B :根据点到直线的距离分析判断;对于C :因为2AP PQ A P PQ +=+,结合点到直线的距离分析判断;对于D :根据题意分析可得)2OP A P CP+=+,结合点到直线的距离分析判断.【详解】设()3,1A关于直线l:y x=的对称点为()11,3A,()3,1A关于x轴的对称点为()23,1A-,可知12,QA QA PA PA==,对于选项A:可得APQ△周长1212PQ QA PA PQ QA PA A A++=++≥=当且仅当12,,,A P Q A四点共线时,等号成立,所以APQ△周长的最小值为A错误;对于选项B:设()3,1A到x轴,直线l:0x y-=的距离分别为12,d d,则121,d d==,可得121AP AQ d d+≥+=,所以AP AQ+的最小值为1B正确;对于选项C:因为2AP PQ A P PQ+=+,设()23,1A-到直线l:0x y-=的距离为3d=可得23A P PQ d +≥=所以AP PQ +的最小值为C 正确;对于选项D :作PC l ⊥,垂足为C ,因为直线l 的斜率1k =,则45COP ∠=︒,可得CP =,则23AP CP A P CP d +=+≥=,)2234OP A P OP A P CP d ⎫++=⎪⎪⎭,OP +的最小值为4,故D 正确;故选:BCD.二、填空题10.设R m ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值.【答案】9【分析】根据直线方程求出定点,然后根据直线垂直,结合基本不等式求解即可;【详解】由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以22222||||||(12)(03)18PA PB AB +==--+-=,因为2218||2PA PB PA PB =+≥⋅,所以9PA PB ⋅≤,当且仅当||||3PA PB ==时取等号.【点睛】根据直线方程求定点,判断直线垂直,将问题转化为基本不等式是本题的难点和突破点.11.若恰有三组不全为0的实数对(a ,)b满足关系式|1||431|a b a b t ++=-+=t 的所有可能的值为.【答案】52或75t ==,然后对t 进行分类讨论即可求解.【详解】由已知得0t >t ==,看成有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,又5AB ==,(1)当||522AB t ==,此时易得符合题意的直线l 为线段AB 的垂直平分线68230x y --=以及与直线AB 平行的两条直线86110x y ++=和86390x y +-=;(2)当||522AB t <=时,有4条直线l 会使得点(1,1)A 和(4,3)B -到它们的距离相等,注意到l 不过原点,所以当其中一条直线过原点时,会作为增根被舍去.设点A 到l 的距离为d ,①作为增根被舍去的直线l ,过原点和A ,B 的中点5(,1)2M -,其方程为250x y +=,此时52t d ==,符合;②作为增根被舍去的直线l ,过原点且与AB 平行,其方程为430x y +=,此时7552t d ==<,符合;综上,满足题意的实数t 为52或75故答案为:52或75t ==,将问题转化为有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,然后分类讨论即得.12.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为.【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l PQ =()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l B '点,有()3,1B ',连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而AB '==,所以AP PQ QB ++的最小值为AB PQ '+【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程.(2)转化与划归思想是解决距离最值问题中一种有效的途径.(3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.13.在平面直角坐标互中,给定()()1,2,3,4M N 两点,点P 在x 轴的正半轴上移动,当MPN ∠最大值时,点P 的横坐标为【答案】3【分析】根据条件结合圆的性质,转化为求圆的半径最小,利用数形结合,即可求解.【详解】过点,,M N P 三点的圆的圆心在线段MN 的中垂线5y x =-上,其中MPN ∠为弦MN 所对的圆周角,所以当圆的半径最小时,MPN ∠最大,设圆心坐标为(,5)E a a -,又由点P 在x 轴上移动,当圆和x 轴相切时,MPN ∠取得最大值,设切点为(,0)P a ,圆的半径为5a -,所以圆的方程为222()(5)(5)x a y a a -++-=-,代入点(1,2)M 代入圆的方程,可得222(1)(25)(5)a a a -++-=-,整理得2250a a +-=,解得3a =或5a =-(舍去),所以点P 的横坐标的为3.故答案为:3.14.在平面直角坐标系xOy 中,已知圆()()221:2C x a y a -+-+=,点(0,2)A ,若圆C 上的点M 均满足2210MA MO +>,则实数a 的取值范围是.【答案】a<0或3a >【分析】将条件2210MA MO +>坐标化,先转化为22(1)4x y +->恒成立,即圆C 上所有动点到定点(0,1)B 距离的最小值大于2,再转化为(0,1)B 与圆心C 距离的不等关系求解可得.【详解】设(,)M x y ,由点(0,2)A ,2210MA MO +> 222222(2)2(22)10x y x y x y y ∴+-++=+-+>即点M 满足22(1)4x y +->2,设点(0,1)B ,即2MB >恒成立则min 2MB >,圆上所有点到定点(0,1)B 最小值大于2,又圆(,2)C a a -,半径为1,圆上所有点到定点(0,1)B 最小值即为:1BC -.12BC ∴->.即3BC =,化简得230a a ->,解得a<0或3a >.故答案为:a<0或3a >.15.已知P 为直线60x y ++=上一动点,过点P 作圆22:66140C x y x y +--+=的切线,切点分别为A ,B ,则当四边形PACB 面积最小时,直线AB 的方程为.【答案】6=0x y +【分析】求得四边形PACB 面积最小时P 点的坐标,再根据圆与圆的位置关系求得直线AB 的方程.【详解】圆22:66140C x y x y +--+=,即()()22233=2x y -+-,所以圆心为()3,3C ,半径2r =,1=2=22PACB S PA r PA ⎛⎫⨯⨯ ⎪⎝⎭所以当CP 最小,也即CP 垂直60x y ++=时,四边形PACB 面积最小,直线60x y ++=的斜率为1-,则此时直线CP 的斜率为1,则直线CP 的方程为y x =,由60y xx y =⎧⎪⎨++=⎪⎩,解得3x y ==-即(3P --,对应PC ,=PA PB以P 为圆心,半径为((2233=12x y -++-+,即()()226622x y x y ++++-,由()()2222661406622x y x yx y x y ⎧+--+=⎪⎨++++-⎪⎩,两式相减并化简得26=0x y ++-,也即直线AB 的方程为26=0x y ++-.故答案为:26=0x y ++-【点睛】研究直线和圆的位置关系问题,主要思路是数形结合的数学思想方法,直线和圆有关的相切问题,连接圆心和切点的直线,与切线相互垂直.与四边形面积的最值有关问题,可先求得面积的表达式,再根据表达式来求最值.16.设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 在两坐标轴上的截距相等,则直线l 的方程为;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,则△OMN 的面积取最小值时,直线l 对应的方程为.【答案】x -y =0或x +y -2=0x +y -2=0【详解】(1)①当直线l 经过坐标原点时,可得a +2=0,解得a =-2.所以直线l 的方程为-x +y =0,即x -y =0;②当直线l 不经过坐标原点,即a ≠-2且a ≠-1时,由条件得221a a a +=++,解得a =0,所以直线l 的方程为x +y -2=0.综上可得直线l 的方程为x -y =0或x +y -2=0.(2)在(a +1)x +y -2-a =0(a >-1)中,令0x =,得2y a =+;令0y =,得21a x a +=+.所以2(,0),(0,2)1a M N a a +++.由于1a >-,得210a a +>+>.所以22121(2)1(1)2(1)1(2)212121OMNa a a a S a a a a ∆++++++=⋅⋅+=⋅=⋅+++111[(1)2][22]2212a a =+++≥=+.当且仅当111a a +=+,即a =0时等号成立.此时直线l 的方程为x +y -2=0.答案:(1)x -y =0或x +y -2=0(2)x +y -2=0【点睛】用基本不等式求最值时,首先要判断是否满足了使用基本不等式的条件,若满足则可直接利用基本不等式求出最值;若不满足,则需要对代数式进行适当的变形,此时要特别注意“拆”、“拼”、“凑”等变形的技巧,通过变形使得代数式满足基本不等式中“正”、“定”、“等”的条件.三、解答题17.现有一组互不相同且从小到大排列的数据:012345,,,,,a a a a a a ,其中00a =.为提取反映数据间差异程度的某种指标,今对其进行如下加工:记()015011,,5n n n n T a a a x y a a a T=+++==+++ ,作函数()y f x =,使其图像为逐点依次连接点(),(0,1,2,,5)n n n P x y n = 的折线.(1)求(0)f 和(1)f 的值;(2)设1n n P P -的斜率为(1,2,3,4,5)n k n =,判断12345,,,,k k k k k 的大小关系;(3)证明:当(0,1)x ∈时,()f x x <;(4)求由函数y x =与()y f x =的图像所围成图形的面积.(用12345,,,,a a a a a 表示)【答案】(1)(0)0f =,(1)1f =(2)12345k k k k k <<<<(3)见解析(4)124512345225()a a a a a a a a a --++++++【分析】(1)运用代入法进行求解即可;(2)根据斜率公式,结合已知进行判断即可;(3)要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=,根据已知定义,结合放缩法进行证明即可.(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积,求出1S ,再由112S S =-求解即可.【详解】(1)0015(0)0a f a a a ==+++ ,015015(1)1a a a f a a a +++==+++ ;(2)[]01011111()()5155n n n n n n n n a a a a a a y y T k a n n x x T ---+++-+++-===--- (1,2,,5)n = ,因为12345a a a a a <<<<,所以12345k k k k k <<<<;(3)由于()f x 的图像是连接各点(),(0,1,2,,5)n n n P x y n = 的折线要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=事实上,当1(,)n n x x x -∈时,1111()()()()()n n n n n n f x f x f x x x f x x x -----=-+-11111111()()n n n n n n n n n n n n n n n n x x x x x x x x f x f x x x xx x x x x x x x ------------=+<+=----下面证明(),(1,2,3,4)n n f x x n <=对任何n (1,2,3,4)n =,15()n a a ++ 1[(5)]()n n n a a =+-++ 11()(5)()n n n a a n a a =+++-++ 1()(5)n n n a a n na ≤+++- []1()(5)n n n a a n a =+++-< 115()n n n a a a a nT++++++= 所以1()5n n n a a nf x x T ++=<= ,综上,(),(1,2,3,4)n n f x x n <=(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积则1011012212332111()()()()()()222S y y x x y y x x y y x x =+-++-++-3443455411()()()()22y y x x y y x x ++-++-123451(2222)10y y y y y =++++[]112123123411()()()510a a a a a a a a a a T =++++++++++123411(432)105a a a a T=++++直线y x =与()y f x =的图像所围成图形的面积为1245112345221.25()a a a a S S a a a a a --++=-=++++【点睛】关键点睛:在证明()f x x <,(0,1)x ∈时,关键在于将其转化为证明(),(1,2,3,4)n n f x x n <=,结合题设定义进行证明.18.已知曲线():,0T F x y =,对坐标平面上任意一点(),P x y ,定义[](),=F P F x y ,若两点P ,Q ,满足[][]0F P F Q ⋅>,称点P ,Q 在曲线T 同侧;[][]0F P F Q ⋅<,称点P ,Q 在曲线T 两侧.(1)直线l 过原点,线段AB 上所有点都在直线l 同侧,其中()1,1A -,()2,3B ,求直线l 的倾斜角的取值范围;(2)已知曲线()(,3450F x y x y =+-=,O 为坐标原点,求点集[][]{}0S P F P F O =⋅>的面积;(3)记到点()0,1与到x 轴距离和为5的点的轨迹为曲线C ,曲线()22:,0=+--=T F x y x y y a ,若曲线C 上总存在两点M ,N 在曲线T 两侧,求曲线C 的方程与实数a 的取值范围.【答案】(1)33[0,arctan (,)24ππ ;(2)83S π=(3)()()222480:24120y x x C y x x ⎧=-≥⎪⎨=+<⎪⎩,52⎡⎢⎣⎦.【分析】(1)由题意设出直线方程为y kx =,通过新定义,得到[][](1)(23)0⋅=--->F A F B k k ,求出斜率范围,进而可求出倾斜角范围;(2)先由题意得到点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,求出23AOB π∠=,进而可求出结果;(3)先设曲线C 上的动点为(,)x y5=y ,化简整理,即可得出轨迹方程;再由新定义,将[][]0⋅<F M F N 化为(6)(24)0--<a a ,进而可得出结果.【详解】(1)由题意,显然直线l 斜率存在,设方程为y kx =,则(),0=-=F x y kx y ,因为()1,1A -,()2,3B ,线段AB 上所有点都在直线l 同侧,则[][](1)(23)0⋅=--->F A F B k k ,解得312-<<k ;故倾斜角的范围是33[0,arctan (,)24ππ ;(2)因为[]0<F O ,所以[](345)0=+-F P x y ,故2234504x y x y +-<⎧⎨+<⎩,点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,则O 到AB 的距离为1,故23AOB π∠=,因此,所求面积为:2214182223223ππ=⋅⋅+⋅=S(3)设曲线C 上的动点为(,)x y 5=y ,化简得曲线C 的方程为:228(3),0312(2),20x y y x y y ⎧=-≤≤⎨=+-≤≤⎩,其轨迹为两段抛物线弧;当03≤≤y 时,[]2(,)9246,24=-+-∈--F x y y y a a a ;当20-≤≤y 时,[]2(,)11246,24=++-∈--F x y y y a a a ,故若有[][]0⋅<F M F N ,则(6)(24)0--<a a ,解得624<<a .【点睛】本题主要考查新定义下直线与圆的综合,熟记直线与圆位置关系,以及直线斜率与倾斜角的概念等即可,属于常考题型.19.如图,已知A ,(0,0)B,(12,0)C ,直线:(20l k x y k --=.(1)证明直线l 经过某一定点,并求此定点坐标;(2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程.【答案】(1)证明见解析,定点坐标为(2,;170y +-=;(3)2100x +-=.【分析】(1)整理得到(2))0k x y -+-=,从而得到方程组,求出定点坐标;(2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S = 得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到123P P k =,由对称性得3PK k =-,写成直线方程.【详解】(1)直线:(20l k x y k --=可化为(2))0k x y -+-=,令200xy -=⎧⎪-=,解得2x y =⎧⎪⎨=⎪⎩l 经过的定点坐标为(2,;(2)因为A ,(0,0)B ,(12,0)C ,所以||||||12AB AC BC ===,由题意得直线AB 方程为y =,故直线l 经过的定点M 在直线AB 上,所以||8AM =,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =⨯⨯,所以3||||94AD AC ==,设00(,)D x y ,所以34AD AC =,即003(6,(6,4x y --=-,所以0212x =,0y =21(2D ,将D 点坐标代入直线l的方程,解得k =所以直线l170y +-=;(3)设P 关于BC的对称点1(2,P -,关于AC 的对称点2(,)P m n ,直线AC12612x -=-,即)12y x =-,直线AC的方程为12)y x =-,所以(1221222n m n m ⎧-⋅=-⎪-⎪⎨++⎫⎪=-⎪⎪⎭⎩,解得14,m n ==2P ,由题意得12,,,P K I P四点共线,123P P k =,由对称性得3PK k =-,所以入射光线PK的直线方程为2)y x ---,即2100x -=.20.在平面直角坐标系xOy 中,已知圆M 过坐标原点O 且圆心在曲线y x =上.(1)设直线l :43y x =+与圆M 交于C ,D 两点,且OC OD =,求圆M 的方程;(2)设直线y =与(1)中所求圆M 交于E ,F 两点,点P 为直线5x =上的动点,直线PE ,PF 与圆M 的另一个交点分别为G ,H ,且G ,H 在直线EF 两侧,求证:直线GH 过定点,并求出定点坐标.【答案】(1)22(1)(4x y -+=(2)证明见解析【分析】(1)由||||OC OD =,知OM l ⊥,运用两直线垂直的条件:斜率之积为1-,解方程可得t ,讨论t 的取值,求得圆心到直线的距离,即可得到所求圆的方程;(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,求得E ,F 的坐标,PE 和PF 的方程,联立圆的方程,运用韦达定理,3PE PF k k =.设PE k m =,则3PF k m =.设直线GH 的方程为y kx b =+,代入圆的方程,运用韦达定理,可得k ,b 的关系,即可得到所求定点.(1)圆M 过坐标原点O 且圆心在曲线y x =上,设M t ⎛ ⎝⎭由||||OC OD =,知OM l ⊥.所以2OM k t =1t =±.当1t =时,圆心M 到直线:4l y =+的距离1)d =小于半径,符合题意;当1t =-时,圆心(1,M -到直线:4l y =+的距离1)d =大于半径,不符合题意.所以,所求圆M 的方程为22(1)(4x y -+-=.(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,又知(E -,F ,所以06PE y k =,02PF y k =.显然3PE PF k k =,设PE k m =,则3PF k m =.从而直线PE 方程为:(1)y m x +,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(1)(22)30m x m x m ++-+-=,所以212311m x m --⨯=+,即21231m x m -=+;同理直线PF 方程为:3(3)y m x -,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(19)(542)8130m x m x m +-++-=,所以222813319m x m -⨯=+,即22227119m x m -=+.所以22212224232713221199101m m m x x m m m m --+=+=+++++;222122242327111231199101m m m x x m m m m --=⋅=-+++⋅++.消去参数m 整理得121227()200x x x x -++=.①设直线GH 的方程为y kx b =+,代入22(1)(4x y -+=,整理得222(1)(22)0k x kb x b ++--+-=.所以122221kb x x k --+=-+,21221b x x k -⋅=+.代入①式,并整理得22(71030b k b k +-+-+=,即(250b k b k ++-=,解得2b k =或5b k -.当2b k =时,直线GH 的方程为(2)y k x =-;当5b k =时,直线GH 的方程为(5)y k x =-,过定点第二种情况不合题意(因为G ,H 在直径EF 的异侧),舍去.所以,直线GH 过定点.21.如图所示,已知圆222:()0O x y r r +=>上点(1,)a 处切线的斜率为圆O 与y 轴的交点分别为A B 、,与x 轴正半轴的交点为D ,P 为圆O 的第一象限内的任意一点,直线BD 与AP 相交于点M ,直线DP 与y 轴相交于点N .(1)求圆O 的方程;(2)试问:直线MN 是否经过定点?若经过定点,求出此定点坐标;若不经过,请说明理由.【答案】(1)224x y +=;(2)(2,2).【分析】(1)根据切线斜率得切点与圆心连线斜率,解得a,再代入圆方程得r,即得结果,(2)先设直线AP 方程,分别解得P 坐标,M 坐标,以及N 坐标,再求出直线MN 方程,最后根据方程求定点.【详解】(1)由题意得2211413a a r ⋅=-∴==+=∴22:4O x y += (2)设:2(10)AP y kx k =+-<<()222221404y kx k x kx x y =+⎧⇒++=⎨+=⎩222422,11k k P k k ⎛⎫-+⇒- ⎪++⎝⎭()()0,2,2,0B D - ∴直线:2BD y x =-2422,211y x k M y kx k k =-⎧---⎛⎫⇒⎨ ⎪=+--⎝⎭⎩由,,D P N 三点共线得:2222222002222140221121N N k y k k k y k k k k k -+---+-++=⇒==--+++-+∴21MN kk k =+直线MN 为:22211k k y x k k -+=+++即:()()2220y x k y -++-=由2022202y x y x y -==⎧⎧⇒⎨⎨-+==⎩⎩∴直线MN 过定点()2,2.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.22.已知圆C 经过()0,1A ,()()4,0B a a >两点.(1)如果AB 是圆C 的直径,证明:无论a 取何正实数,圆C 恒经过除A 外的另一个定点,求出这个定点坐标.(2)已知点A 关于直线3y x =-的对称点A '也在圆C 上,且过点B 的直线l 与两坐标轴分别交于不同两点M 和N ,当圆C 的面积最小时,试求BM BN ⋅的最小值.【答案】(1)证明见解析,定点为()4,1(2)min 8BM BN ⋅=【分析】(1)设点(),P x y 是圆C 上任意一点,由AB 是圆C 的直径,得0AP BP ⋅= ,从而可求出圆C 的方程,即可得出结论;(2)根据题意可得点C 在直线3y x =-上,要使圆C 的面积最小,则圆C 是以AA '为直径的圆,从而可求出圆C 的方程,进而可求得B 点的坐标,设出直线l 的方程,分别求出,M N 的坐标,再根据两点间距离公式结合基本不等式即可得解.【详解】(1)设点(),P x y 是圆C 上任意一点,因为AB 是圆C 的直径,所以0AP BP ⋅= ,即()()()()(),14,410x y x y a x x y y a -⋅--=-+--=,所以圆C 的方程为:()()()410x x y y a -+--=,则4x =,1y =时等式恒成立,故定点为()4,1,所以无论a 取何正实数,圆C 恒经过除A 外的另一个定点,定点坐标为()4,1;(2)因点A 关于直线3y x =-的对称点A '也在圆C 上,所以点C 在直线3y x =-上,又圆C 的面积最小,所以圆C 是以AA '直径的圆,设过点A 与直线3y x =-垂直的直线方程为1y x =-+,由方程组31y x y x =-⎧⎨=-+⎩得()2,1C -,则AC =所以圆C 的方程为()()22218x y -++=,当4x =时,1a =或3a =-,又0a >,所以1a =,即()4,1B ,由题意知直线l 斜率存在且不为零,设直线l 的方程为()14y k x -=-,当0x =时14y k =-,当0y =,时14x k =-,所以||||448BM BN ⋅=,(当且仅当221k k =,即1k =±时取等号)则当1k =±时,min 8BM BN ⋅=。

高二数学期末复习之圆的方程

高二数学期末复习之圆的方程一.典型例题1.求与直线 y=x 相切,圆心在直线 y=3x 上且被 y 轴截得的弦长为22的圆的方程.[解析]:设圆心坐标为0)r(r ),3,(001>半径为x x O ,则r x x =-23002x r =⇒,又2202)2(,22r x AB =+∴= 22202020±=⇒=+⇒x x x ,2=∴r即圆的方程为:4)23()2(4)23()2(2222=-+-=+++y x y x 或2.求经过点)1,2(-A ,和直线1=+y x 相切,且圆心在直线x y 2-=上的圆方程.2. [解析]: 由题意知:过A (2,-1)且与直线:x +y=1垂直的直线方程为:y=x -3,∵圆心在直线:y=-2x 上, ∴由 32-=-=x y x y ⇒21-==y x 即)2,1(1-o ,且半径2)21()12(221=+-+-==AO r ,∴所求圆的方程为:2)2()1(22=++-y x3.已知直线l :y=k(x +22)与圆O :x 2+y 2=4相交于A 、B 两点,O 是坐标原点,三角形ABO 的面积为S .(1)试将S 表示成k 的函数,并求出它的定义域;(2)求S 的最大值,并求取得最大值时k 的值.3. [解析]:(1)22222114)122(42122,022:k k k kAB k kd k y kx l l O +-=+-=∴+=∴=+-→ 2221)1(2421k k k d AB S l O +-=⋅=∴→,定义域:01120≠<<-⇒<<→k k d l O 且.(2)设23)2)(1()1(),1(12222-+-=--=-≥=+t t t t k k t t k 则81)431(224231242324222+--=-+-=-+-⋅=∴t t t t t t S ,222124,3334,431max =⋅=±===∴S k t t 时,即当,∴S 的最大值为2,取得最大值时k=33±.4.设圆1C 的方程为2224)23()2(m m y x =--++,直线l 的方程为2++=m x y . (1)求1C 关于l 对称的圆2C 的方程;(2)当m 变化且0≠m 时,求证:2C 的圆心在一条定直线上,并求2C 所表示的一系列圆的公切线方程. [解析]:(1)圆C 1的圆心为C 1(-2,3m+2)设C 1关于直线l 的对称点为C 2(a ,b )则⎪⎩⎪⎨⎧++-=++-=+--2222231223m a b m a m b 解得:⎩⎨⎧+=+=112m b m a∴圆C 2的方程为2224)1()12(m m y m x =--+--(2)由⎩⎨⎧+=+=112m b m a 消去m 得a -2b+1=0, 即圆C 2的圆心在定直线:x -2y+1=0上.设直线y=kx+b 与圆系中的所有圆都相切,则m kbm m k 21)1()12(2=+++-+即0)1()1)(12(2)34(22=-++-+-+--b k m b k k m k∵直线y=kx+b 与圆系中的所有圆都相切,所以上述方程对所有的m )0(≠m 值都成立,所以有: ⎪⎩⎪⎨⎧=-+=-+-=-- 0)1(0)1)(12(20342b k b k k k ⇒⎪⎩⎪⎨⎧=-=4743b k ,所以2C 所表示的一系列圆的公切线方程为:4743+-=x y 二.巩固练习 (一)、选择题1.原点必位于圆:0)1(22222=-+--+a y ax y x )1(>a 的 (C ) A .内部 B .圆周上 C .外部 D .均有可能 2.“点M在曲线y =|x |上”是“点M到两坐标轴距离相等”的(C )A .充要条件B .必要不充分条件C .充分不必要条件D .非充分非必要条件3.从动点)2,(a P 向圆1)3()3(22=+++y x 作切线,其切线长的最小值是( A )A . 4B .62C .5D .264.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =(B )A .21±B .22±C .2221-或D .2221或- 5.圆422=+y x 截直线0323=-+y x 所得的弦长是 ( A )A .2B .1C .3D .32 6.若圆)0(022222>=++-+k y kx y x 与两坐标轴无公共点,那么实数k 的取值范围是( B )A .20<<kB .21<<kC . 10<<kD .2>k 7.若直线)2(-=x k y 与曲线21x y -=有交点,则 ( C ) A .k 有最大值33,最小值33- B .k 有最大值21,最小值21-C .k 有最大值0,最小值 33-D .k 有最大值0,最小值21-8.直线y = x + b 与曲线x =21y -有且仅有一个公共点,则b 的取值范围是 (B )A .|b|=2B .211-=≤<-b b 或C .21≤≤-bD .以上都错 9.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有 ( C )A .1个B .2个C .3个D .4个 10.直线0323=-+y x 与圆 θθsin 23cos 21+=+=y x (θ为参数)的位置关系是 ( C )A . 相离B .相切C . 相交但不过圆心D . 相交且过圆心11.已知圆C : θθsin 22cos 2+=+=y a x (a>0,为参数θ)及直线l :03=+-y x ,若直线l 被C 截得的弦长为32,则a =( C )A .2B .22-C .12-D .12+12.过两圆:x 2 + y 2 + 6 x + 4y = 0及x 2+y 2+ 4x + 2y – 4 =0的交点的直线的方程 ( A )A .x +y+2=0B .x +y-2=0C .5x +3y-2=0D .不存在 (二)、填空题13.过P (1,2)的直线l 把圆05422=--+x y x 分成两个弓形当其中劣孤最短时直线l 的方程为 032=+-y x14.斜率为3,且与圆 x 2 + y 2=10 相切的直线方程是 103±=x y .15.已知BC 是圆2522=+y x 的动弦,且|BC|=6,则BC 的中点的轨迹方程是______.1622=+y x16.若实数x ,y 满足xy y x 则,3)2(22=+-的最大值是 .3高二数学期末复习之椭圆一.典型例题例1 求适合条件的椭圆的标准方程. (1)长轴长是短轴长的2倍,且过点 ;(2)在 轴上的一个焦点与短轴两端点的联线互相垂直,且焦距为6.(1)或 .(2)例2.求焦点在坐标轴上,且经过和两点的椭圆的标准方程.例3在椭圆上求一点,使,其中,是椭圆的两焦点.方案一:由题意得,,解方程得,或.再设,则有或,解方程即可.方案二:设,由椭圆的第二定义得,,,,∴,,.例4.的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹.的轨迹方程为,其轨迹是椭圆(除去轴上两点).例5.已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.或例6. 求椭圆上的点到直线的距离的最小值.例7. 已知点在圆 上移动,点 在椭圆 上移动,求的最大值.设椭圆上一点 ,又 ,于是.而∴当 时, 有最大值5.故 的最大值为6例8. 已知椭圆 及直线 .(1)当 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为 ,求直线的方程.解:(1)把直线方程代入椭圆方程得,即 ., 解得.(2)设直线与椭圆的两个交点的横坐标为,,由(1)得, .根据弦长公式得.解得.因此,所求直线的方程为.例9. 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程.解:如图所示,椭圆的焦点为,.点关于直线的对称点的坐标为(-9,6),直线的方程为.解方程组得交点的坐标为(-5,4).此时最小.所求椭圆的长轴,因此,所求椭圆的方程为.例10. 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程.解:设弦两端点分别为,,线段的中点,则①-②得.由题意知,则上式两端同除以,有,将③④代入得.⑤(1)将,代入⑤,得,故所求直线方程为.⑥将⑥代入椭圆方程得,符合题意,故即为所求.(2)将代入⑤得所求轨迹方程为:.(椭圆内部分)(3)将代入⑤得所求轨迹方程为.(椭圆内部分)(4)由①+②得,⑦将③④平方并整理得,⑧,⑨将⑧⑨代入⑦得,⑩再将代入⑩式得,即.二.巩固练习1.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是( D )A.B.(0,2)C.D.(0,1)2.过点(3,-2)且与有相同焦点的椭圆方程是(A )A. B.C.D.3.已知椭圆的焦点,,是椭圆上一点,且是,的等差中项,则椭圆的方程是( C ).A.B.C.D.4.已知,是椭圆上的动点,是线段上的点,且满足,则动点的轨迹方程是( B ).A.B.C.D.5.对于椭圆,下列说法正确的是( D ).A.焦点坐标是B.长轴长是5C.准线方程是 D.离心率是6.离心率为、且经过点的椭圆的标准方程为( D ).A.B.或C.D.或7.椭圆的左、右焦点为,,以为圆心作圆过椭圆中心并交椭圆于点,,若直线是⊙的切线,则椭圆的离心率为( D ).A.B.C. D.8.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是( D )A.B.C.D.9.直线与椭圆恒有公共点,则的取值范围是(C)A.B.C.D.10.已知椭圆的方程为,如果直线与椭圆的一个交点在轴上的射影恰好是椭圆的右焦点,则的值为( B )A.2 B.C.D.811.点是椭圆上一点,以点以及焦点、为顶点的三角形的面积等于1,则点的坐标为_________.或或或.12.点是椭圆上一点,是其焦点,若,则的面积为_________________.13.已知,是椭圆内的点,是椭圆上的动点,则的最大值为______________,最小值为___________.,14.如图在中,,,则以为焦点,、分别是长、短轴端点的椭圆方程是______________.15.已知是椭圆上一点,若到椭圆右准线的距离是,则到左焦点的距离为_____________.16.若椭圆的离心率为,则它的长半轴长是______________.1或217.若椭圆上存在点到两焦点的连线互相垂直,则椭圆离心率的取值范围是_____________.18.设椭圆上动点到定点的距离最小值为1,则的值为_________19.已知直线交椭圆于,两点,点坐标为(0,4),当椭圆右焦点恰为的重心时,求直线的方程.设,,由及为的重心有,得,,.所以中点为(3,-2).又、在椭圆上,故,.两式相减得到,可得即为的斜率,由点斜式可得的方程为.20.椭圆中心在原点,焦点在轴上,离心率,它与直线交于,两点,且,求椭圆方程.20.设椭圆方程为,由可得.由直线和椭圆方程联立消去可得.设,得,即,化简得,由韦达定理得,解出,故所求椭圆方程为.21.椭圆上有一点,使(为坐标原点,为椭圆长轴右端点),试求椭圆离心率的取值范围.21.由已知,设,则、,由得,化简得.因为在一、四象限,所以,于是,易求出,所以.22.已知,为椭圆上的两点,是椭圆的右焦点.若,的中点到椭圆左准线的距离是,试确定椭圆的方程.由椭圆方程可知、两准线间距离为.设,到右准线距离分别为,,由椭圆定义有,所以,则,中点到右准线距离为,于是到左准线距离为,,所求椭圆方程为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学期末复习直线和圆的方程
一、选择题
1. 直线1l 的倾斜角130α=,直线12l l ⊥,则直线2l 的斜率为( ) A 3- B
3 C 33-
D 33
2. 直线经过点(2,0)A -,(5,3)B -,则直线的倾斜角( ) A 450 B 1350 C -450 D -1350
3. 一条直线经过点1(2,3)P -,倾斜角为45α=,则这条直线方程为( )
A 50x y ++=
B 50x y --=
C 50x y -+=
D 50x y +-= 4. 已知直线l 与x 轴的交点(,0)a ,与y 轴的交点(0,)b ,其中0,0a b ≠≠, 则直线l 的方程为( ) A
1x y a b -= B 1x y a b +=- C 1x y a b -=- D 1x y
a b
+= 5.直线l 的方程260x y -+= 的斜率和它在x 轴与y 轴上的截距分别为( ) A
1,6,32- B 1,6,32 C 2,6,3- D 1
,6,32
-- 6. 经过点)4,1(-A 且与直线0532=++y x 平行的直线方程为( )
A 23100x y -+=
B 01032=++y x
C 23100x y +-=
D 23100x y --= 7. 过点(2,1)A ,且与直线0102=-+y x 垂直的直线l 的方程为( ) A 20x y += B 20x y -= C 02=-y x D 20x y +=
8. 直线1l :23y x =-+,2l :2
3
-=x y 的夹角为( ) A arctan3- B arctan3π- C arctan3π+ D arctan3
9若实数x 、y 满足等式 3)2(2
2=+-y x ,那么x
y 的最大值为( )
10.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( ) A .(x -5)2+(y +7)2=25 B .(x -5)2+(y +7)2=17或(x -5)2+(y +7)2=15 C .(x -5)2+(y +7)2=9 D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9 11.已知圆x 2+y 2=r 2在曲线|x|+|y|=4的内部,则半径r 的范围是( ) A.0<r<22 B.0<r<2 C.0<r<2 D.0<r<4 12.由曲线y =|x |与x 2+y 2=4所围成的图形的最小面积是( ) A.
4
π B.π C.
4

D.
2
3π 二、填空题
13. 经过原点且经过022:1=+-y x l ,022:2=--y x l 交点的直线方程为 . 14. 平行线0872=+-y x 和 0672=--y x 的距离为
15.无论m 取何实数时,直线(m-1)x-(m+3)y-(m-11)=0恒过定点,则定点的坐标为
16满足不等式组⎪⎪⎩⎪
⎪⎨⎧≥≥≤+≤+0
0625y x y x y x 的点中,使目标函数y x k 86+=取得最大值的点的坐标是_____
三、解答题
17.过点(2,1)M 作直线l ,分别交x 轴、y 轴的正半轴于点,A B ,若ABC ∆的面积S 最小,试求直线l 的方程。

18.过)3,0(),0,4(--B A 两点作两条平行线,求满足下列条件的两条直线方程: (1)两平行线间的距离为4;
(2)这两条直线各自绕A 、B 旋转,使它们之间的距离取最大值。

19.已知圆x2+y2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b对称,
(1)求k、b的值;(2)若这时两圆的交点为A、B,求∠AOB的度数.
20.若动圆C与圆(x-2)2+y2=1外切,且和直线x+1=0相切.求动圆圆心C的轨迹E的方程.
21.已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点.若存在,求出直线l的方程;若不存在,说明理由.
22.设圆满足(1)y轴截圆所得弦长为2.(2)被x轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
高二数学期末复习直线和圆的方程
一选择题
A ,
B ,
C ,
D ,A ,B ,C ,D ,D , D ,A ,B 二、填空题 13 x y =
14
53 15 75,22⎛⎫
⎪⎝⎭
16 (0,5) 三、解答题
17.解:设直线l 的方程为1(2)y k x -=-, 令0x =,得k y 21-=,故(0,12)B k -,
令0y =,得k k x 12-=
,故21
(,0)k A k -, 由题意知,21
120,0k k k
-->>,所以0k <,
∴ABC ∆的面积12S =k k 12-(12)k -2(21)2k k -=-
=1
2(2)2k k
+--, ∵0k < ,∴11
2(2)()222k k k k --=-+-≥,从而4S ≥,
当且仅当122k k -=-,即21-=k (2
1
=k 舍去)时,min 4S =,
所以,直线l 的方程为1
1(2)2
y x -=--,即240x y +-=.
18.解:(1)当两直线的斜率不存在时,方程分别为0,4=-=x x ,满足题意, 当两直线的斜率存在时,设方程分别为)4(+=x k y 与3-=kx y , 即:04=+-k y kx 与03=--y kx ,由题意:
41
3
42=++k k ,解得24
7=
k , 所以,所求的直线方程分别为:028247=+-y x , 072247=--y x
综上:所求的直线方程分别为:028247=+-y x ,072247=--y x 或0,4=-=x x .
(2)由(1)当两直线的斜率存在时,=d 1
342++k k ,∴2
22
162491
k k d k ++=+,
∴222
(16)2490d k k d --+-=,R k ∈ ∴0∆≥,即02524≤-d d ,
∴2
25d ≤,∴05d <≤,∴max 5d =,当5=d ,3
4=
k . 当两直线的斜率不存在时,4=d , ∴max 5d =,
此时两直线的方程分别为01634=+-y x ,0934=--y x .
19.解:(1)圆x 2+y 2+8x-4y=0可写成(x+4)2+(y-2)2=20.
∵圆x 2+y 2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b 对称, 0
2-
(2)圆心(-4,2)到2x-y+5=0的距离为d=
55
5
2)4(2=+--⨯.
而圆的半径为25,∴∠AOB=120°.
20.若动圆C 与圆(x-2)2+y 2=1外切,且和直线x+1=0相切.求动圆圆心C 的轨迹E 的方程.
解:设动圆的圆心C 的坐标为(x ,y ),则x-(-1)+1=22)2(y x +-,即x+2=22)2(y x +-,整理得y 2=8x.所以所求轨迹E 的方程为y 2=8x.
21解:假设存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点.设l 的方程为y =x +b ,A (x 1,y 1),B (x 2,y 2).
由OA ⊥OB 知,k OA ·k OB =-1,即
2
2
11x y x y ⋅=-1,∴y 1y 2=-x 1x 2. 由⎩⎨⎧=-+-++=0
442,2
2y x y x b x y ,得2x 2+2(b +1)x +b 2+4b -4=0,
∴x 1+x 2=-(b +1),x 1·x 2=2
2
b +2b -2,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2
=2
2
b +2b -2-b (b +1)+b 2=2
2
b +b -2
∵y 1y 2=-x 1x 2 ∴2
2
b +b -2=-(2
2
b +2b -2) 即b 2+3b -4=0.∴b =-4或b =1.
又Δ=4(b +1)2-8(b 2+4b -4)=-4b 2-24b +36=-4(b 2+6b -9)
当b =-4时,Δ=-4×(16-24-9)>0; =1时,Δ=-4×(1+6-9)>0
故存在这样的直线l ,它的方程是y =x -4或y =x +1,即x -y -4=0或x -y +1=0.
22.解:设圆的圆心为P (a ,b ),半径为r ,则P 到x 轴,y 轴的距离分别为|b |、|a |,由题设知圆P 截x 轴所得劣弧所对圆心角为90°,故圆P 截x 轴所得弦长为
2r =2b .
∴r 2=2b 2
①又由y 轴截圆得弦长为2,∴r 2=a 2+1

由①、②知2b 2-a 2=1.又圆心到l :x -2y =0的距离d =
5
|
2|b a -,∴5d 2=(a -2b )2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1.当且仅当a =b 时“=”号成立,
∴当a =b 时,d 最小为55
,由⎩⎨⎧=-=122
2a b b a 得⎩
⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由①得r =2. ∴(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2为所求.。

相关文档
最新文档