probit模型与logit模型

合集下载

probit模型与logit模型

probit模型与logit模型

probit模型与logit模型2013-03-30 16:10:17probit模型是一种广义的线性模型。

服从正态分布。

最简单的probit模型就是指被解释变量Y是一个0,1变量,事件发生地概率是依赖于解释变量,即P(Y=1)=f(X),也就是说,Y=1的概率是一个关于X的函数,其中f(.)服从标准正态分布。

若f(.)是累积分布函数,则其为Logistic模型Logit模型(Logit model,也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销等统计实证分析的常用方法。

逻辑分布(Logistic distribution)公式P(Y=1│X=x)=exp(x’β)/1+exp(x’β)其中参数β常用极大似然估计。

Logit模型是最早的离散选择模型,也是目前应用最广的模型。

Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性;Marley (1965)研究了模型的形式和效用非确定项的分布之间的关系,证明了极值分布可以推导出Logit 形式的模型;McFadden(1974)反过来证明了具有Logit形式的模型效用非确定项一定服从极值分布。

此后Logit模型在心理学、社会学、经济学及交通领域得到了广泛的应用,并衍生发展出了其他离散选择模型,形成了完整的离散选择模型体系,如Probit模型、NL模型(Nest Logit model)、Mixed Logit模型等。

模型假设个人n对选择枝j的效用由效用确定项和随机项两部分构成:Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。

当模型选择集没有发生变化,而仅仅是当各变量的水平发生变化时(如出行时间发生变化),可以方便的求解各选择枝在新环境下的各选择枝的被选概率。

比较线性模型和Probit模型、Logit模型

比较线性模型和Probit模型、Logit模型

研究生考试录取相关因素的实验报告一,研究目的通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。

二,模型设定表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表定义变量。

上图为样本观测值。

1.线性概率模型根据上面资料建立模型用Eviews 得到回归结果如图: Dependent Variable: Y Method: Least Squares Date: 12/10/10 Time: 20:38 Sample: 1 97Included observations: 97 Variable Coefficient Std. Errort-StatisticProb.??C SCORER-squared????Mean dependent var Adjusted R-squared ????. dependent var . of regression ????Akaike info criterion Sum squared resid ????Schwarz criterion Log likelihood ????F-statistic Durbin-Watson stat ????Prob(F-statistic)参数估计结果为: iY ˆ+ i SCORE Se=( t=p=预测正确率:Forecast: YF Actual: YForecast sample: 1 97 Included observations: 97Root Mean Squared Error Mean Absolute Error????? Mean Absolute Percentage Error Theil Inequality Coefficient? ?????Bias Proportion???????? ?????Variance Proportion? ?????Covariance Proportion?模型Dependent Variable: Y Method: ML - Binary Logit (Quadratic hill climbing)Date: 12/10/10 Time: 21:38Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivatives Variable Coefficient Std. Errorz-StatisticProb.??C SCOREMean dependent var ????. dependent var . of regression ????Akaike info criterion Sum squared resid ????Schwarz criterion Log likelihood ????Hannan-Quinn criter. Restr. log likelihood ????Avg. log likelihood LR statistic (1 df) ????McFadden R-squaredProbability(LR stat)Obs with Dep=0 83 ?????Total obs 97Obs with Dep=1 14得Logit 模型估计结果如下p i = F (y i ) =)6794.07362.243(11i x e +--+ 拐点坐标 ,其中Y=+预测正确率Forecast: YF Actual: YForecast sample: 1 97 Included observations: 97Root Mean Squared Error Mean Absolute Error????? Mean Absolute Percentage Error Theil Inequality Coefficient? ?????Bias Proportion???????? ?????Variance Proportion? ?????Covariance Proportion?模型Dependent Variable: Y Method: ML - Binary Probit (Quadratic hill climbing)Date: 12/10/10 Time: 21:40Sample: 1 97Included observations: 97Convergence achieved after 11 iterationsCovariance matrix computed using second derivativesVariable Coefficient Std. Error z-Statistic Prob.??CSCOREMean dependent var ????. dependent var. of regression ????Akaike info criterionSum squared resid ????Schwarz criterionLog likelihood ????Hannan-Quinn criter.Restr. log likelihood ????Avg. log likelihoodLR statistic (1 df) ????McFadden R-squaredProbability(LR stat)Obs with Dep=0 83 ?????Total obs 97Obs with Dep=1 14Probit模型最终估计结果是p i = F(y i) = F+ x i) 拐点坐标,预测正确率Forecast: YFActual: YForecast sample: 1 97Included observations: 97Root Mean Squared ErrorMean Absolute Error?????Mean Absolute Percentage ErrorTheil Inequality Coefficient??????Bias Proportion?????????????Variance Proportion??????Covariance Proportion?预测正确率结论:线性概率模型RMSE= MAE= MAPE=Logit模型 RMSE= MAE= MAPE=Probit模型 RMSE= MAE= MAPE=由上面结果可知线性概率模型的RMSE、MAE、MAPE 均远远大于Logit模型和Probit模型,说明其误差率比Logit模型和Probit模型大很多,所以正确率远远小于Logit模型和Probit模型。

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
.
二、虚拟变量的设置原则
• 引入虚拟变量一般取0和1。
• 对定性因素一般取级别数减1个虚拟变量。例 子1:性别因素,二个级别(男、女)取一个 虚拟变量,D=1表示男(女),D=0表示女 (男)。
• 例子2:季度因素,四个季度取3个变量。
1, 一季度 D1 0, 其它季度
1, 二季度
D2
0,
其它季度
• 同样可以写成二个模型:
y ˆi ˆ0(ˆˆ1)x1iˆkxki D1
y ˆi ˆ0ˆ1x1iˆkxki
D0
• 可考虑同时在截距和斜率引入虚拟变量:
y i 0 0 D i (1 D i 1 ) x 1 i k x k iu i (5.
.
.
• 3、虚拟变量用于季节性因素分析。
•取
1, 当样本 i季为 度第 的数据 Di 0,其它季度的, i数 2,3据 ,4
• 工资模型为:
• Ii01 [S 1 (1 D 1 i D 2 i)S ( i S 1 )] 2 [D 2 i(S 2 S 1 ) D 1 i(S i S 1 ) ]3 D 2 i(S i S 2 ) u i (5.7
.
D2=1
S0
D1=1
S1
S2
.
• 作OLS得到参数估计值后,三个阶段的 报酬回归模型为: Iˆi ˆ0ˆ1Si, Si S1 Iˆi ˆ0ˆ1S1ˆ2(Si S1), S2Si S1 Iˆi ˆ0ˆ1S1ˆ2(S2S1)ˆ3(Si S2), Si S2
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
精品课件
原始模型:
YX (5.8)
• 其中Y为观测值取1和0的虚拟被解释变量,X为 解释变量。
• 模型的样本形式: yi Xii
(5.9)
• 因为E(i)0
,E所(y以i)Xi
• 令: p i P ( y i 1 ) 1 p i P ( y i 0 )
• 于是有: E ( y i) 1 P ( y i 1 ) 0 P ( y i 0 ) p i
其它季度
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
精品课件
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
金融计量经济第五讲
虚拟变量模型和Probit、Logit模 型
精品课件
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
yˆt ˆ ˆxt yˆt ˆ ˆxt ˆ2 yˆt ˆ ˆxt ˆ3 yˆt ˆ ˆxt ˆ4
精品课件
一季度 二季度 三季度 四季度
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066

logit模型与probit模型估计的系数标准误

logit模型与probit模型估计的系数标准误

logit模型与probit模型估计的系数标准误一、引言中文很多论文为了显得高大上,故意写的让人看不懂。

例如在使用PSM模型时,一般都会写使用logit回归0,1虚拟变量,得到倾向得分值。

其实,在使用patch2命令时,可以直接得到相应的结果,这些模型都被大牛编写了外部命令,并进行了发布。

下一章节以一篇论文的形式重现PSM实证过程,重点介绍下patch2的用法和几种匹配模型。

本文主要阐述logit的原理以及如何操作。

面板数据做二元值问题有专门的命令,具体可以help xtlogit。

其实,这些命令的本质是一样的。

后期有机会会更新一些不同命令得到相同结果的操作。

这些内容更新完毕,最后给大家送点福利,以自己的一篇论文的数据和代码说明PSM-DID具体操作过程。

具体更新为:PSM(III)——patch2PSM(IV)——PSM-DID二、二元Logit模型实证分析中,会遇到被解释变量为“是/否”或者政策事件“发生/未发生”的情形。

此时被解释变量可以标记为0或者1。

例如分析企业社会责任息披露的影响因素(披露为1,未披露为0),此时被解释变量就为二值变量或者0-1变量。

对于这样的被解释变量,Stata 连享会推文二元选择模型:probit 还是 logit?一文中采用模特卡罗模拟发现,使用线性概率模型将生成不一致的估计结果。

因此,考虑使用概率模型克服估计有偏的情况,即二元Logit模型。

在分析企业社会责任息披露的影响因素中,被解释变量yi 为企业是否披露息,y i 的取值为0或1,将y i 看作随机变量Y i 的实现值:Y i 取1的概率为π i ,取0的概率为1-π i ,Y i 服从参数为π i 的(0-1)分布,Y i 的分布率为显然,当y i = 1时,Y i 的概率为π i ;当y i = 0时,Y i的概率为1-π i 。

Y i 的期望和方差为,所以,Y i 的期望和方差只取决于π i ,任何影响概率的因素会同时影响均值和方差。

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

第二节 虚拟被解释变量模型
• 问题1:对于商业银行,企业贷款可能出现违约,也就是说一家企 业贷款后有违约和不违约两种可能,如何甄别?(李萌,2005)
• 问题2:证券投资者在特定时期内的投资选择是买或不买,如何确 定这样的选择?(王冀宁等,2003)
• 问题3:上市公司出现经营问题,可能成为ST、PT,是什么原因导 致这样的结果?
6563.76 1597.98
16.904 16.9416 157.922
0
应用例题2:股息税削减对股价的影响
• 背景资料—2005年6月14日,财政部、税务总局发文,规定对个人投资者从
上市公司取得的股息红利所得,暂减按50%计入个应纳税所得额(红利税从 20%降为10%)。
• 利用事件分析法分析该政策对股价有无显著影响,即政策出台前后股票有无 异常收益。时间窗口为发布日及前后各二天。
E( yi ) P( yi 1) X i
• 但因为
i
1 X
Xi i
当yi 1,其概率为X i 当yi 0,其概率为1 X i
• 模型具有明显的异方差性,故而用模型(5.8)直接进行参数估计 是不合适的。
• 另外,由于要求
E( yi ) P( yi 1) Xi 1

难以达到。
Di 0, 其它季度的数据
, i 2,3,4
• •
原 则模 引型 入若 虚为 拟变量后的y模t 型为:
xt
ut
yt xt 2 D2t 3 D3t 4 D4t ut (5.6)
• 回归模型可视为:
yˆt ˆ ˆxt
一季度
yˆt ˆ ˆxt ˆ2 二季度
yˆt ˆ ˆxt ˆ3 三季度
二、虚拟变量的设置原则

170-演示文稿-线性概率模型、Logit模型与Probit模型的比较

170-演示文稿-线性概率模型、Logit模型与Probit模型的比较

尽管线性概率模型有明显的不足,但当 解释变量的观察值中没有极端值时 ( 是 指那些能够使得 Y=1 的概率超出 0 ~ 1 区间的解释变量值,可回过去看看 10.2 中的例子 ) ,使用线性概率模型常常能 得到总体回归函数的较好近似。
《计量经济学》,高教出版社, 2011 年 6 月,王少平、杨继生、欧阳志刚等编著
§10.5 线性概率模型、 Logit 模型与 Probit 模型的比较
• 共同点:线性概率模型、 Logit 模型和 Probit 模型都仅是未知的总体回归模型 E(Y|X)=p(Y=1|X) 的近似
• 不同点:线性概率模型的应用及解释相对较简 单和方便,但它不能描述真实总体回归函数的 非线性,也不能将 Y=1 的概率限制在 0 ~ 1 之 间; Logit 模型和 Probit 模型虽然可以从概率 上描述总体回归函数的非线性,从而将 Y=1 的 概率限制在 0 ~ 1 之间,但模型的估计和回归 系数的解释相对更为困难。
《计量经济学》,高教出版社, 2011 年 6 月,王少平、杨继生、欧阳志刚等编著
• Logit 模型和 Probit 模型的比较: 逻辑分布有相对较平坦的尾部,也就是 说, Logit 的条件概率比 Probit 以更慢 的速度趋近于 0 和 1 。但由于 Logit 使用 相对简单的数学形式,因此,实践中常 常选用它。

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
利润t = 6688.38 + 1322.89 D2t − 217.8D3t + 183.86 D4t + 0.0383(销售)t (3.9) (2.07) (-0.445) (0.28) (3.33)
• 括号内为t统计值。 • 显然,三季度和四季度与一季度差异并不明显,重 新回归,仅考虑二季度,有结果:
例子:佣金与销售额的关系:
• 模型:
Yi = α1 + β1 xi + β 2 ( xi − x* ) Di + ui 其中 : Yi是销售佣金, X i是销售额, X*是销售额基数值. 若X i > X * , 则Di = 1
• 样本回归函数: ˆ ˆ α +β x
ˆ Yi =
1
1 i
xi < x* xi ≥ x*
D1 = , 0, S < S1 , S ≥ S2 D2 = 0, S < S2
• 工资模型为: • I i = β 0 + β1[ S1 + (1 − D1i − D2i )(Si − S1 )]
+ β 2 [ D2i ( S 2 − S1 ) + D1i ( Si − S1 )] + β 3 D2i ( Si − S 2 ) + ui (5.7)
t t
一季度 ˆ β2 ˆ β3 二季度 三季度 四季度
ˆ ˆ ˆ ˆ y t = α + β xt + β 4
例题:美国制造业的利润—销售额行为 • 模型:利润t = α1 + α 2 D2t + α 3 D3t + α 4 D4t + β (销售)t + ut • 利用1965—1970年六年的季度数据,得结果:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

probit模型与logit模型
2013-03-30 16:10:17
probit模型是一种广义的线性模型。

服从正态分布。

最简单的probit模型就是指被解释变量Y是一个0,1变量,事件发生地概率是依赖于解释变量,即P(Y=1)=f(X),也就是说,Y=1的概率是一个关于X的函数,其中f(.)服从标准正态分布。

若f(.)是累积分布函数,则其为Logistic模型
Logit模型(Logit model,也译作“评定模型”,“分类评定模型”,又作Logistic regression,“逻辑回归”)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量
心理学、市场营销等统计实证分析的常用方法。

逻辑分布(Logistic distribution)公式
P(Y=1│X=x)=exp(x’β)/1+exp(x’β)
其中参数β常用极大似然估计。

Logit模型是最早的离散选择模型,也是目前应用最广的模型。

Logit模型是Luce(1959)根据IIA特性首次导出的;Marschark(1960)证明了Logit模型与最大效用理论的一致性;Marley (1965)研究了模型的形式和效用非确定项的分布之间的关系,证明了极值分布可以推导出Logit 形式的模型;McFadden(1974)反过来证明了具有Logit形式的模型效用非确定项一定服从极值分布。

此后Logit模型在心理学、社会学、经济学及交通领域得到了广泛的应用,并衍生发展出了其他离散选择模型,形成了完整的离散选择模型体系,如Probit模型、NL模型(Nest Logit model)、Mixed Logit模型等。

模型假设个人n对选择枝j的效用由效用确定项和随机项两部分构成:Logit模型的应用广泛性的原因主要是因为其概率表达式的显性特点,模型的求解速度快,应用方便。

当模型选择集没有发生变化,而仅仅是当各变量的水平发生变化时(如出行时间发生变化),可以方便的求解各选择枝在新环境下的各选择枝的被选概率。

根据Logit模型的IIA特性,选择枝的减少或者增加不影响其他各选择之间被选概率比值的大小,因此,可以直接将需要去掉的选择枝从模型中去掉,也可将新加入的选择枝添加到模型中直接用于预测。

Logit模型这种应用的方便性是其他模型所不具有的,也是模型被广泛应用的主原因之一。

Logit模型的优缺点
Logit模型的优点是:
(1)模型考察了对两种货币危机定义情况下发生货币危机的可能性,即利率调整引起的汇率
大幅度贬值和货币的贬值幅度超过了以往的水平的情形,而以往的模型只考虑一种情况。

(2)该模型不仅可以在样本内进行预测,还可以对样本外的数据进行预测。

(3)模型可以对预测的结果进行比较和检验,克服了以往模型只能解释货币危机的局限。

虽然Logit模型能够在一定程度上克服以往模型事后预测事前事件的缺陷,综合了FR模型中FR概率分析法和KLR模型中信号分析法的优点,但是,它只是在利率、汇率等几个主要金
融资产或经济指标的基础上预警投机冲击性货币危机,与我们所要求的一般货币危机预警还有所差异。

所以仅用几个指标来定义货币危机从而判断发生货币危机的概率就会存在一定问题,外债、进出口、外汇储备、不良贷款等因素对货币危机的影响同样非常重要。

logit模型也叫Logistic模型,服从Logistic分布。

probit模型服从正态分布。

两个模型都是离散选择模型的常用模型。

但logit模型简单直接,应用更广。

离散选择模型的软件很多,有limdep,elm、nlogit等。

spss18.0中能做2元和多元logit模型。

stata,sas,guass都能做logit模型。

入门级的软件是spss和elm,后者可以做多元logit和分层logit。

但是elm必须购买注册号才能
使用。

logistic回归是直接估计概率,而logit模型对概率做了Logit转换。

不过,SPSS软件好像将以分类自变量构成的模型称为Logit模型,而将既有分类自变量又有连续自变量的模型称为Logistic 回归模型。

至于是二元还是多元,关键是看因变量类别的多少,多元是二元的扩展。

其次,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。

区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。

其实,这两种分布函数的公式很相似,函数值相差也并不大,唯一的区别在于逻辑概率分布函数的尾巴比正态分布粗一些。

但是,如果因变量是序次变量,回归时只能用有序Probit模型。

有序Probit可以看作是Probit的扩展
首先,通常人们将“Logistic回归”、“Logistic模型”、“Logistic回归模型”及“Logit模型”的称谓相互通用,来指同一个模型,唯一的区别是形式有所不同:logistic回归是直接估计概率,而logit模型对概率做了Logit转换。

不过,SPSS软件好像将以分类自变量构成的模型称为Logit模型,而将既有分类自变量又有连续自变量的模型称为Logistic回归模型。

至于是二元还是多元,关键是看因变量类别的多少,多元是二元的扩展。

其次,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。

区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。

其实,这两种分布函数的公式很相似,函数值相差也并不大,唯一的区别在于逻辑概率分布函数的尾巴比正态分布粗一些。

但是,如果因变量是序次变量,回归时只能用有序Probit模型。

有序Probit可以看作是Probit的扩展。

相关文档
最新文档