粉末冶金工艺过程
粉末冶金工艺过程及参数

粉末冶金工艺过程及参数粉末冶金工艺是一种主要用于加工金属及其合金零件,也称为粉末冶金或粉末加工工艺。
它是一种利用粉末金属材料在热能和机械能诱导作用下,经历一系列过程最终形成三维物体,或相当于三维产品,用以取代传统金属切削加工技术的新型数控加工技术。
粉末冶金工艺的工艺过程一般包括:设计──混合──压缩──烧结──焊接──精加工──热处理等。
1、设计从技术上说,首先要完成零件的设计,该设计包括零件的外观形状及内部结构,也就是说要确定每个零件的尺寸大小、几何参数,以及加工方法、表面质量要求等。
2、混合粉末冶金工艺使用粉末金属材料,需要对不同粒径和形状的金属粉末进行混合称重,以保证零件表面抛光度和抗腐蚀性能,并符合相关技术标准,使零件能够达到效果。
3、压缩粉末冶金工艺需要将金属粉末以及一般填充料压缩到特定的形状和尺寸。
压缩的方式又可分为压块法和注型法,压块法是将金属粉末和填充料混合然后经过压缩和烧结从而形成块状的零件,而注型法则是将金属粉末和填充料均匀地注入模具,在模具内进行压实和烧结,从而成型。
4、烧结烧结是粉末冶金工艺中最重要也是最关键的一步。
烧结是给零件提供形状和尺寸,同时还可以改善部件的力学性能、物理性能和物理性能。
它的烧结参数有温度、时间、压力、含气量等,具体的参数要根据零件的材料特性和要求而确定。
5、焊接焊接是在烧结后把多个零件组合在一起,使之成为一个整体零件,焊接可以在零件表面形成一个均匀的钎焊层,从而改善零件的力学性能,并且可以把不同物料,如钢、镍和铝等,进行组合。
6、精加工精加工指的是将零件的表面处理成符合要求的精度,使其精度达到一定的精度。
一般来说,可以采用两种方法,用机械加工方法或用化学抛光方法,来达到精度的要求。
7、热处理热处理是指将零件在一定温度和一定时间的作用下,利用物理或化学变化,改变或增强零件的物理性能,从而提高零件的使用性能。
粉末冶金工艺是一种重要的加工工艺,由于它比传统加工方法具有更高的效率、更低的成本,可以根据客户的要求制造唯一的三维零件,所以它在工业制造中越来越受到重视。
粉末冶金工艺过程

粉末冶金工艺过程粉末冶金工艺是一种高科技的金属成形技术,在有些特殊的条件下,粉末冶金技术可以得到可靠的金属部件。
一、粉末冶金工艺流程:1、晶料粉末制备:将晶料磨成粉之后,采用机械、电烧、化学或催化反应制备粉末物料,运用特殊工艺可得到可湿性的粉末材料。
2、制备表面活性剂:通过机械分散或化学合成得到表面活性剂,可以有效地促进粉末粒子间的亲和作用。
3、粉体团聚:将团聚剂和粉末物料添加到适当的容器中,加热或搅拌使物料粒子间形成聚集体,改变物料粒子结构形成粉体团聚体。
4、烧结:将粉体团聚体放入容器中,通过加热或压缩烧结成金属部件,冷却后可得到比较稳定的形态。
二、粉末冶金工艺优势:1、重量轻:由于原材料粒子细小,重量较轻,可以制造出体积小、重量轻的零件。
2、抗腐蚀性能强:采用粉末冶金工艺,用高纯度的洁净物质作为原材料,因此产品抗腐蚀性能好。
3、降低产品成本:因为粉末冶金工艺可以在很短的时间内完成工艺,从而可以降低产品成本。
4、灵活性强:粉末冶金工艺有一定的非结晶结构,可以为用户提供很多不同形状和功能的部件。
三、粉末冶金工艺的应用:1、汽车类:在汽车的制造中,可以用粉末冶金工艺制造汽车零部件,也可以制造高强度、轻量的结构件,以满足现代汽车的性能需求。
2、航空航天类:在航空航天领域,粉末冶金技术可以用于制造发动机、燃烧室和其他部件,以满足不断变化的性能要求。
3、电子信息类:粉末冶金技术可用于制造高精度、高密度的零部件,以满足电子信息产品的性能和稳定性需求。
4、聚合物类:在聚合物类,我们可以根据不同的应用需求,利用粉末冶金工艺,高效地制造复杂的高分子结构。
总结:粉末冶金工艺是一种高科技的金属成形技术,其具有重量轻、抗腐蚀性能强、降低产品成本、灵活性强等优势;应用于汽车、航空航天、电子信息、聚合物等领域,是一种被广泛使用的金属成形技术。
粉末冶金的工艺流程

常州汇丰粉末冶金有限公司—粉末冶金,含油轴承,烧结粉末冶金,粉末冶金含油轴承粉末冶金的工艺流程来源:常州汇丰粉末冶金有限公司近年来,通过不断引进国外先进技术与自主开发创新相结合,中国粉末冶金产业和技术都呈现出高速发展的态势,是中国机械通用零部件行业中增长最快的行业之一。
全球制造业正加速向中国转移,汽车行业、机械制造、金属行业、航空航天、仪器仪表、五金工具、工程机械、电子家电及高科技产业等迅猛发展,为粉末冶金行业带来了不可多得的发展机遇和巨大的市场空间。
那么粉末冶金的生产工艺流程是什么呢?下面我们具体来了解一下:1、生产粉末。
粉末的生产过程包括粉末的制取、粉料的混合等步骤。
为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。
2、压制成型。
粉末在500~600MPa压力下,压成所需形状。
[1]3、烧结。
在保护气氛的高温炉或真空炉中进行。
烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。
烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。
4、后处理。
一般情况下,烧结好的制件可直接使用。
但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。
后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。
目前粉末冶金分为粉末冶金多孔材料、粉末冶金减摩材料、粉末冶金摩擦材料、粉末冶金结构零件、粉末冶金工模具材料、和粉末冶金电磁材料和粉末冶金高温材料等。
广泛应用于(汽车、摩托车、纺织机械、工业缝纫机、电动工具、五金工具.电器.工程机械等)各种粉末冶金(铁铜基)零件。
粉末冶金工艺流程

粉末冶金工艺流程
粉末冶金是采用通过把金属材料分解为粉末形式,然后采用合金工艺进行成型制造的一种新型加工金属技术。
它利用传统冶金方法和粉末冶金工艺,以及最新推出的金属热回压成型工艺,将金属以三维形状成型,从而制造出符合要求的金属零件。
这种工艺在当今技术革新中发挥了十分重要的作用,它不仅具有节约材料和节能等优点,还能够实现密密麻麻的构造设计。
粉末冶金的工艺流程大致可以分为:粉末服务、粉末搅拌、成型压制、焊接和表面处理几个步骤。
其中,粉末加工是粉末冶金工艺的第一步,也是最重要的步骤,包括选料、粉碎、筛选、干燥和粉碎,并采用特殊装置将粉末服务于粉末搅拌机中。
粉末服务完成之后,将在粉末搅拌机中进行搅拌,以将不同成分的粉末混合在一起,形成复合粉末。
然后,采用成型压制工艺将粉末冶金以三维形状压制成型,实现金属零件的成型。
这种工艺有效提高了材料利用率,节省了材料和能源消耗。
最后,采用焊接工艺将一系列零件组装在一起,形成整体,然后对产品的外表和内部进行表面处理,使其表面光洁,均匀,以及防腐功能,以满足用户的各种要求。
综上所述,粉末冶金工艺是一种复杂的制造工艺,其中包括粉末加工、粉末搅拌、成型压制、焊接和表面处理等几个步骤,根据产品的功能和使用要求,可以选择不同的加工工艺,所制成的产品具有良好的性能,节约能源和节能,能够满足各个领域的需求。
粉末冶金成型步骤的工艺

粉末冶金成型步骤的工艺
粉末冶金成型步骤的工艺一般包括以下几个环节:
1. 粉末制备:选择适当的原料进行粉末制备,常见的制备方法包括研磨、纳米合成、球磨等。
2. 混合和分散:将不同的粉末按照一定比例进行混合,并进行分散处理,以确保粉末颗粒的均匀分布。
3. 压制:将混合好的粉末放入模具中,运用高压进行压实,使粉末形成初步的形状。
4. 烧结:经过压制后的零件在高温下进行烧结,使粉末颗粒发生结合,并形成密实的结构。
5. 后处理:根据需要,可以进行热处理、表面处理、精加工等步骤,以提高材料的性能和尺寸精度。
6. 检验和加工组装:对成品进行质量检验,包括密度、尺寸、力学性能等指标的检测,然后进行加工和组装,制成最终的产品。
需要注意的是,粉末冶金成型工艺可以根据不同的材料和产品要求做适当的调整
和改进。
粉末冶金 工艺流程

粉末冶金工艺流程
《粉末冶金工艺流程》
粉末冶金是一种利用金属和非金属粉末为原料,通过混合、压制、烧结等工艺制造制品的技术。
它可以制备出形状复杂、密度均匀的零部件,且能够生产高性能的工程材料。
粉末冶金工艺流程主要包括原料准备、粉末混合、成型、烧结、后处理等几个关键步骤。
首先是原料的准备。
在这一步骤中,需要选用高质量的金属和非金属粉末作为原料。
这些粉末经过精细加工和筛分后,将不同种类的粉末按一定比例混合,并添加一定量的润滑剂和成型剂,以保证后续成型和烧结过程顺利进行。
接着是粉末混合。
混合过程中需要充分摧破粉末之间的颗粒结合力,使其能够均匀地混合在一起。
一般采用机械混合或化学混合等方法,确保混合后的粉末具有均匀的成分和颗粒大小。
然后是成型。
成型是将混合后的粉末通过压制或注射成型等方法变成所需形状的工件。
这一步骤需要根据产品的设计要求选择适当的成型工艺和设备,确保成型后的工件具有理想的密度和形状。
接下来是烧结。
烧结是将成型后的粉末物体在一定温度下进行高温处理,使其颗粒之间发生固相结合,形成致密坚固的结构。
通过控制烧结温度和时间,能够获得理想的晶粒尺寸和结构,从而提高产品的强度和硬度。
最后是后处理。
后处理过程包括清理、调整尺寸、表面处理等环节,以确保最终产品的质量和性能符合要求。
总的来说,粉末冶金工艺流程包括原料准备、粉末混合、成型、烧结和后处理几个重要步骤,通过这些步骤可以制备出形状复杂、密度均匀的工程材料和零部件。
粉末冶金技术在航空航天、汽车、数控机床等领域有广泛的应用,为工业生产提供了重要的支持。
粉末冶金的工艺流程

粉末冶金的工艺流程
《粉末冶金工艺流程》
粉末冶金是一种通过粉末冶金压制和烧结的方法制造金属零件的工艺。
工艺流程主要包括原料准备、混合、压制和烧结等步骤。
首先,原料准备是整个工艺流程的第一步。
根据产品的具体要求,选择合适的金属粉末作为原材料。
通常情况下,金属粉末的颗粒大小和化学成分都会对最终产品的性能产生影响,因此在原料准备阶段需要对原料进行严格的筛选和配比。
接下来是混合阶段。
将选取好的金属粉末进行混合,以确保各种原料能够均匀分布在整个混合料中。
这样可以保证在后续的压制和烧结过程中,能够获得均匀的产品质量。
然后是压制阶段。
将经过混合的金属粉末放入模具中,使用高压机对其进行压制成所需形状的零件。
这一步骤既要注意成型压力的控制,也要对模具进行精确的设计,以确保最终产品的形状和尺寸符合要求。
最后是烧结阶段。
经过压制成型的零件被放入烧结炉中进行高温烧结。
在烧结过程中,金属粉末会发生固相扩散和界面扩散现象,形成致密结构。
烧结温度、时间和气氛都会对最终产品的性能产生影响,因此需要对烧结工艺进行严格控制。
总的来说,粉末冶金工艺流程包括原料准备、混合、压制和烧
结等步骤,其中每一个环节都需要严格控制,才能够获得高质量的金属零件。
随着技术的不断进步和工艺的不断完善,粉末冶金已经成为了一种重要的金属加工工艺,为各个行业提供了高质量、高性能的零部件。
粉末冶金工艺的基本工序

粉末冶金工艺的基本工序粉末冶金是一种通过将金属或非金属粉末加工成形并进行烧结或热处理得到工程部件的冶金工艺。
它具有高效、节能、环保等优点,被广泛应用于汽车、航空航天、电子、能源等领域。
粉末冶金工艺的基本工序包括粉末制备、混合、成型、烧结和后处理等环节。
下面将详细介绍每个工序。
一、粉末制备:粉末制备是粉末冶金的基础,它对最终产品的质量和性能具有重要影响。
粉末制备的方法有机械研磨法、物理法、化学法和电化学法等。
其中,机械研磨法是最常用的方法,通过冲击、研磨、剪切等力对大块金属材料进行粉碎。
物理法主要包括气体凝聚法、物理雾化法和电子束熔化法等,通过物理能量使金属材料融化并以凝固的形式得到粉末。
化学法通过溶解、沉淀、还原等化学反应来制备粉末。
电化学法通过电解或电化学反应将金属从溶液中析出。
二、混合:混合是将不同种类或不同规格的粉末按一定比例进行混合,以获得均匀的混合料。
混合的目的是将粉末的组成、性质和粒度分布均匀一致,以提高成形和烧结过程中的一致性。
混合的方法有干法混合和湿法混合两种。
干法混合是将干燥的粉末放入混合机中进行混合。
湿法混合是将粉末和液体混合剂放入混合机中,通过湿法混合剂的作用将粉末牢固地粘结在一起。
三、成型:成型是将混合后的粉末按一定的形状、尺寸和密度进行塑性变形或压力下的固化。
常用的成型方法有压制成型、注射成型和挤压成型等。
压制成型是将粉末放入模具中,在压力的作用下形成预定的形状。
注射成型是将粉末和有机溶剂混合后注入注射机中,通过注射机的压力将混合料注入模具中,再通过挥发有机溶剂或烧结将成品得到。
挤压成型是将粉末放入铝箱中,在挤压机的作用下将粉末挤压出来形成一定的形状。
四、烧结:烧结是将成型的粉末在高温下进行热处理,使其粒界扩散、晶粒生长和颗粒结合,形成致密的金属或陶瓷材料。
烧结的温度、时间和气氛都是影响烧结效果的关键因素。
常用的烧结方法有真空烧结、氢气烧结和氮气烧结等。
真空烧结是在真空条件下进行热处理,可以消除气氛中的杂质和氧化物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末冶金工艺过程2007-11-27 13:33粉末冶金材料是指不经熔炼和铸造,直接用几种金属粉末或金属粉末与非金属粉末,通过配制、压制成型,烧结和后处理等制成的材料。
粉末冶金是金属冶金工艺与陶瓷烧结工艺的结合,它通常要经过以下几个工艺过程:一、粉料制备与压制成型常用机械粉碎、雾化、物理化学法制取粉末。
制取的粉末经过筛分与混合,混料均匀并加入适当的增塑剂,再进行压制成型,粉粒间的原子通过固相扩散和机械咬合作用,使制件结合为具有一定强度的整体。
压力越大则制件密度越大,强度相应增加。
有时为减小压力合增加制件密度,也可采用热等静压成型的方法。
二、烧结将压制成型的制件放置在采用还原性气氛的闭式炉中进行烧结,烧结温度约为基体金属熔点的2/3~3/4倍。
由于高温下不同种类原子的扩散,粉末表面氧化物的被还原以及变形粉末的再结晶,使粉末颗粒相互结合,提高了粉末冶金制品的强度,并获得与一般合金相似的组织。
经烧结后的制件中,仍然存在一些微小的孔隙,属于多孔性材料。
三、后处理一般情况下,烧结好的制件能够达到所需性能,可直接使用。
但有时还需进行必要的后处理。
如精压处理,可提高制件的密度和尺寸形状精度;对铁基粉末冶金制件进行淬火、表面淬火等处理可改善其机械性能;为达到润滑或耐蚀目的而进行浸油或浸渍其它液态润滑剂;将低熔点金属渗入制件孔隙中去的熔渗处理,可提高制件的强度、硬度、可塑性或冲击韧性等。
粉末冶金工艺的优点1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。
2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。
用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。
3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。
4、粉末冶金法能保证材料成分配比的正确性和均匀性。
5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成.(林里粉末)粉末冶金是制取金属粉末,及采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成材料和制品的工艺技术。
它是冶金和材料科学的一个分支学科。
粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。
粉末冶金发展历史:粉末冶金方法起源于公元前三千多年。
制造铁的第一个方法实质上采用的就是粉末冶金方法。
而现代粉末冶金技术的发展中共有三个重要标志:1、克服了难熔金属熔铸过程中产生的困难。
1909年制造电灯钨丝,推动了粉末冶金的发展;1923年粉末冶金硬质合金的出现被誉为机械加工中的革命。
2、三十年代成功制取多孔含油轴承;继而粉末冶金铁基机械零件的发展,充分发挥了粉末冶金少切削甚至无切削的优点。
3、向更高级的新材料、新工艺发展。
四十年代,出现金属陶瓷、弥散强化等材料,六十年代末至七十年代初,粉末高速钢、粉末高温合金相继出现;利用粉末冶金锻造及热等静压已能制造高强度的零件。
粉末冶金工艺的优点:1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。
2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。
用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。
3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。
4、粉末冶金法能保证材料成分配比的正确性和均匀性。
5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。
粉末冶金工艺的基本工序是:1、原料粉末的制备。
现有的制粉方法大体可分为两类:机械法和物理化学法。
而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。
其中应用最为广泛的是还原法、雾化法和电解法。
2、粉末成型为所需形状的坯块。
成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。
成型的方法基本上分为加压成型和无压成型。
加压成型中应用最多的是模压成型。
3、坯块的烧结。
烧结是粉末冶金工艺中的关键性工序。
成型后的压坯通过烧结使其得到所要求的最终物理机械性能。
烧结又分为单元系烧结和多元系烧结。
对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。
除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。
4、产品的后序处理。
烧结后的处理,可以根据产品要求的不同,采取多种方式。
如精整、浸油、机加工、热处理及电镀。
此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。
粉末冶金材料和制品的今后发展方向:1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。
2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。
3、用增强致密化过程来制造一般含有混合相组成的特殊合金。
4、制造非均匀材料、非晶态、微晶或者亚稳合金。
5、加工独特的和非一般形态或成分的复合零部件。
6.松装烧结成形粉末未经压制而直接进行烧结,如将粉末装入模具中振实,再连同模具一起入炉烧结成形,用于多孔材料的生产;或将粉末均匀松装于芯板上,再连同芯板一起入炉烧结成形,再经复压或轧制达到所需密度,用于制动摩擦片及双金属材料的生产。
将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(40℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
7.爆炸成形借助于爆炸波的高能量使粉末固结的成形方法。
爆炸成形的特点是爆炸时产生压力很高,施于粉末体上的压力速度极快。
如炸药爆炸后,在几微秒时间内产生的冲击压力可达106MPa(相当于107个大气压),比压力机上压制粉末的单位压力要高几百倍至几千倍。
爆炸成形压制压坯的相对密度极高,强度极佳。
如用炸药爆炸压制电解铁粉,压坯的密度接近纯铁体的理论密度值。
爆炸成形可加工普通压制和烧结工艺难以成形的材料,如难熔金属、高合金材料等,还可压制普通压力无法压制的大型压坯。
除上述方法外,还有注射成形及热等静压制新技术等新的成形方法。
2.烧结的机理烧结是粉末或压坯在低于其主要组分熔点温度以下的热处理过程,目的是通过颗粒间的冶金结合以提高其强度。
随着温度升高,粉末或压坯中产生一系列的物理、化学变化:水和有机物的蒸发或挥发、吸附气体的排除、应力消除以及粉末颗粒表面氧化物的还原等,接着粉末表层原子间的相互扩散和塑性流动。
随着颗粒间接触面的增大,会产生再结晶和晶粒长大,有时出现固相的熔化和重结晶。
以上各过程常常会相互重叠,相互影响,使烧结过程变得十分复杂。
烧结过程中制品显微组织的变化如图7.1.3所示。
2粉末冶金工艺2.1粉末制备金属粉末的制备方法分为两大类:机械法和物理化学法。
还有新研制的机械合金化法,汞齐法、蒸发法、超声粉碎法等超微粉末制造技术。
制备方法决定着粉末的颗粒大小、形状、松装密度、化学成分、压制性、烧结性等。
2.2粉末的预处理粉末的预处理包括粉末退火、分级、混合、制粒、加润滑剂等。
1.退火粉末的预先退火可以使氧化物还原,降低碳和其它杂质的含量,提高粉末的纯度;同时,还能消除粉末的加工硬化、稳定粉末的晶体结构。
退火温度根据金属粉末的种类而不同,通常为金属熔点的0.5~0.6K。
通常,电解铜粉的退火温度约为300,电解铁粉或电解镍粉的约为700℃,不能超过900℃。
退火一般用还原性气氛,有时也用真空或惰性气氛。
2.分级将粉末按粒度大小分成若干级的过程。
分级使配料时易于控制粉末的粒度和粒度分布,以适应成形工艺要求,常用标准筛网筛分进行分级。
3.混合指将两种或两种以上不同成分的粉末均匀化的过程。
混合基本上有两种方法:机械法和化学法,广泛应用的是机械法,将粉末或混合料机械的掺和均匀而不发生化学反应。
机械法混料又可分为干混和湿混,铁基等制品生产中广泛采用干混;制备硬质合金混合料则常使用湿混。
湿混时常用的液体介质为酒精、汽油、丙酮、水等。
化学法混料是将金属或化合物粉末与添加金属的盐溶液均匀混合;或者是各组元全部以某种盐的溶液形式混合,然后经沉淀、干燥和还原等处理而得到均匀分布的混合物。
常需加入的添加剂,用于提高压坯强度或防止粉末成分偏析的增塑剂(汽油、橡胶溶液、石蜡等),用于减少颗粒间及压坯与模壁间摩擦的润滑剂(硬质酸锌、二硫化钼等)。
4.制粒将小颗粒的粉末制成大颗粒或团粒的工序,常用来改善粉末的流动性。
常用的制粒设备有振动筛、滚筒制粒机、圆盘制粒机等。
2.3成形成形是将粉末转变成具有所需形状的凝聚体的过程。
常用的成形方法有模压、轧制、挤压、等静压、松装烧结成形、粉浆浇注和爆炸成形等。
1.模压即粉末料在压模内压制。
室温压制时一般需要约1吨/厘米2以上的压力,压制压力过大时,影响加压工具;并且有时坯体发生层状裂纹、伤痕和缺陷等。
压制压力的最大限度为12—15吨/厘米2。
超过极限强度后,粉末颗粒发生粉碎性破坏。
图7.2.1常用的模压方法1、8—固定模冲2、6—固定阴模3—粉末4、5、7、10—运动模冲9—浮动阴模常用的模压方法有单向压制、双向压制、浮动模压制等。
⑴单向压制即固定阴模中的粉末在一个运动模冲和一个固定模冲之间进行压制的方法,如图7.2.1(a)所示。
单向压制模具简单,操作方便,生产效率高,但压制时受摩擦力的影响,制品密度不均匀,适宜压制高度或厚度较小的制品。
⑵双向压制阴模中粉末在相向运动的模冲之间进行压制的方法,如图7.2.1(b)所示。
双向压制比较适宜高度或厚度较大的制品。
双向压制压坯的密度较单向压制均匀,但双向同时加压时,压坯厚度的中间部分密度较低。
⑶浮动压制浮动阴模中的粉末在一个运动模冲和一个固定模冲之间进行压制,如图7.2. 1(c)。
阴模由弹簧支承,处于浮动状态,开始加压时,由于粉末与阴模壁间摩擦力小于弹簧支承力,只有上模冲向下移动;随着压力增大,当二者的摩擦力大于弹簧支承力时,阴模与上模冲一起下行,与下模冲间产生相对移动,使单向压制转变为压坯的双向受压,而且压坯双向不同时受压,这样压坯的密度更均匀。