高中数学第四届全国青年教师优秀课观摩大赛-导数的概念教案

合集下载

高中数学第四届全国高中青年数学教师优秀课观摩大赛 导数在研究函数中的应用教学设计

高中数学第四届全国高中青年数学教师优秀课观摩大赛 导数在研究函数中的应用教学设计

导数在研究函数中的应用教学设计1.3.1函数的单调性与导数解不等式组得f(x)的单调递减区间X∈D练一练:一、基础训练:2、判断下列函数的单调性,并求出单调区间。

(1) f (x)=x3+3x(2) f (x)=x2-2x-3(3) f(x)=sinx-x x∈(0,π)(4) f(x)=e x-x归纳:什么情况下,用“导数法”求函数单调性、单调区间较简便?总结:当遇到三次或三次以上的,或图象很难画出的函数求单调性问题时,应考虑导数法。

四、走近高考1、已知对任意实数x,有f(-x)=-f(x) ,g(-x)=g(x)且x>0时,f /(x)>0,g /(x)>0则x<0时()A、f /(x)>0,g /(x)>0B、f /(x)>0,g /(x)<0C、f /(x)<0,g /(x)>0D、f /(x)<0,g /(x)<0(2007高考福建卷)2、如果函数y=f(x)的图像如右图,那么导函数y=f /(x)的图像可能是()(2008福建高考试题)(四)总结反思――提高认识1、通过这堂课的研究,你明确了?2、你的收获与感受是?(五)布置作业――自主探究习题1.3 A组第1大题(3)(4)第2大题(2)(4)的答案也许是“百花齐放”,图象可能“凸”弯曲,可能“凹”弯曲,也可能是条直线。

教师就学生中主要出现的两类答案进行投影分析,提出“折点”问题,求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例2及四个变式练习:依次涉及二次,三次函数,三角函数,含指数的函数、这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。

选用了此高考题可以进一步加强学生对用“导数法”求单调区间及。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。

2. 掌握导数的计算方法。

3. 能够应用导数解决实际问题,如速度、加速度等。

二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。

2. 难点:导数的计算方法和在实际问题中的应用。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。

2. 使用多媒体课件辅助教学。

五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。

2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。

3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。

4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。

5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。

6. 练习:布置练习题,让学生巩固导数的概念和计算方法。

7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。

8. 作业:布置作业,巩固所学内容。

六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。

针对学生的薄弱环节,加强讲解和练习。

七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。

鼓励学生积极参与讨论,提高解决问题的能力。

八、课时安排本节课安排2课时,共计45分钟。

九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。

2. 导数在其他学科中的应用,如物理、化学等。

六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。

2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。

3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。

《导数的概念》教案

《导数的概念》教案

《导数的概念》教案教案:导数的概念1.教学目标:1.1.知识目标:学生能够了解导数的概念及其基本性质。

1.2.能力目标:学生能够应用导数的概念解决实际问题。

1.3.情感目标:通过对导数的学习,培养学生的分析和解决问题的能力,并培养学生的兴趣和热爱数学的情感。

2.教学重点:2.1.导数的定义和概念。

2.2.导数的基本性质。

3.教学难点:3.1.导数的基本性质的理解和应用。

3.2.导数的计算和应用。

4.教学过程:4.1.导入(10分钟):引入导数的概念,通过一个简单的例子说明导数的作用和意义。

4.2.导数的定义(20分钟):4.2.1.简单介绍导数的定义和符号表示。

4.2.2.讲解导数的物理意义和几何意义。

4.2.3.通过实例和图像说明导数的计算。

4.3.导数的基本性质(30分钟):4.3.1.导数的定义区间和存在性。

4.3.2.导数的唯一性和连续性。

4.3.3.导数的运算法则。

4.4.导数的应用(30分钟):4.4.1.导数在函数图像的研究中的应用。

4.4.2.导数在最值问题中的应用。

4.4.3.导数在速度和加速度中的应用。

4.5.小结(10分钟):对导数的概念及其应用进行总结,并布置相应的作业。

5.教学手段:5.1.板书与讲解相结合的教学方法。

5.2.生动形象的实例和图像辅助讲解。

5.3.教师提问和学生互动的教学方式。

6.教学资源:教材、黑板、彩色粉笔、投影仪等。

7.教学评价:7.1.反馈评价:学生在课堂上积极参与,课堂气氛活跃。

7.2.笔试评价:设计一套综合性的习题,考查学生对导数概念理解和应用的能力。

7.3.直观评价:观察学生在计算和解决实际问题时运用导数的能力和方法。

8.教学延伸:8.1.导数的计算和应用在微积分的后续学习中具有重要的作用,学生还需继续加深对导数概念和应用的理解。

8.2.练习不同类型的导数计算题目,提高运算能力和分析解决问题的能力。

8.3.进一步了解导数的发展与应用,拓宽数学知识的广度。

导数概念教案

导数概念教案

导数概念教案教案标题:导数概念教案教学目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。

教学准备:1. 教材:包含导数概念和计算方法的相关章节;2. 教具:黑板、白板、彩色粉笔或马克笔、计算器;3. 学具:练习题集、实际问题案例。

教学过程:引入:1. 引导学生回顾函数的概念和图像特征;2. 提问学生是否知道如何描述函数在某一点的变化情况;3. 引出导数的概念,并解释导数是描述函数变化速率的工具。

讲解导数的定义:1. 介绍导数的定义:函数f(x)在点x处的导数表示函数在该点的变化率,记作f'(x)或dy/dx;2. 解释导数的几何意义:导数是函数曲线在某一点处的切线斜率;3. 通过几个示例图形化展示导数的概念。

计算导数的方法:1. 讲解导数的计算方法:使用极限的概念,计算函数在某一点的导数;2. 指导学生通过求导法则计算导数:常数法则、幂法则、和差法则、乘法法则和除法法则;3. 给予学生一些练习题,巩固导数计算方法。

应用导数解决问题:1. 引导学生思考导数在实际问题中的应用:如速度、加速度、最优化问题等;2. 通过实际问题案例,让学生应用导数解决相关问题;3. 强调导数在实际问题中的重要性和实用性。

总结:1. 总结导数的概念和意义;2. 强调导数的计算方法和应用;3. 鼓励学生继续练习和应用导数,提高数学问题解决能力。

教学延伸:1. 鼓励学生自主学习更多导数的性质和应用;2. 引导学生进一步探究导数的图像和曲线变化特征;3. 提供更多的实际问题案例,让学生应用导数解决更复杂的问题。

教学评估:1. 教师观察学生对导数概念的理解和计算方法的掌握情况;2. 课堂练习题的完成情况和准确度;3. 学生在实际问题解决中的应用能力。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。

教学内容:第一章:导数的定义1.1 引入导数的概念1.2 导数的定义及其几何意义1.3 导数的计算法则第二章:导数的计算2.1 基本导数公式2.2 导数的四则运算2.3 高阶导数第三章:导数的应用3.1 函数的单调性3.2 函数的极值3.3 曲线的切线与法线第四章:导数与实际问题4.1 运动物体的瞬时速度与加速度4.2 函数的优化问题4.3 导数在经济学中的应用第五章:导数的进一步应用5.1 曲线的凹凸性与拐点5.2 函数的单调区间与最大值、最小值5.3 函数的渐近线教学步骤:1. 引入导数的概念:通过生活中的例子,如物体运动的瞬时速度,引出导数的定义。

2. 讲解导数的定义及其几何意义:解释导数的定义,并通过图形演示导数的几何意义。

3. 导数的计算法则:讲解基本导数公式,引导学生掌握导数的计算方法。

4. 导数的应用:通过实例讲解函数的单调性、极值等概念,并引导学生运用导数解决实际问题。

5. 总结与拓展:总结本章内容,提出进一步的学习要求和思考题。

教学评价:1. 课堂讲解:评价教师的讲解是否清晰、生动,能否引导学生理解和掌握导数的概念和计算方法。

2. 课堂练习:评价学生是否能够正确计算导数,并应用导数解决实际问题。

3. 课后作业:评价学生是否能够独立完成作业,并对导数的应用有深入的理解。

教学资源:1. 教案、PPT等教学资料;2. 数学软件或计算器;3. 实际问题案例。

教学建议:1. 注重引导学生从实际问题中抽象出导数的概念,提高学生的学习兴趣和积极性;2. 通过图形演示导数的几何意义,帮助学生直观理解导数的概念;3. 鼓励学生进行课堂练习和课后作业,及时巩固所学知识;4. 结合实际问题,引导学生运用导数解决实际问题,提高学生的应用能力。

第六章:导数与函数的单调性6.1 单调增函数与单调减函数6.2 利用导数判断函数的单调性6.3 单调性在实际问题中的应用第七章:函数的极值与导数7.1 极值的概念7.2 利用导数求函数的极值7.3 极值在实际问题中的应用第八章:曲线的切线与法线8.1 切线方程的求法8.2 法线方程的求法8.3 切线与法线在实际问题中的应用第九章:导数与函数的图像9.1 凹凸性的定义与判断9.2 拐点的定义与判断9.3 利用导数分析函数的图像特点第十章:导数在经济、物理等领域的应用10.1 导数在经济学中的应用10.2 导数在物理学中的应用10.3 导数在其他领域的应用案例分析教学步骤:6.1-6.3:通过具体例子讲解单调增函数与单调减函数的概念,引导学生利用导数判断函数的单调性,并应用于实际问题。

导数的概念教案及说明

导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。

二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。

三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。

五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。

教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。

六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。

七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。

《导数的概念》教学设计(高效课堂教学模式)数学优质课评选活动参赛课例

《导数的概念》教学设计(高效课堂教学模式)数学优质课评选活动参赛课例

导数的概念(高效课堂教学模式)
一、教材分析
《导数的概念》是高中新教材人教A 版选修2-2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础.
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数.
问题1 高台跳水的平均速度--→瞬时速度
--
根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点. 二、 教学目标
1、通过实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景;
2、理解导数的概念,会用定义求导数;
3、通过导数概念的形成过程,体验逼近、类比、从特殊到一般的数学思想方法. 三、 重点、难点
重点:导数概念的形成,导数内涵的理解.
难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵. 通过逼近的方法,引导学生观察来突破难点. 四、 教学设计。

导数的概念教案

导数的概念教案

导数的概念教案教案标题:导数的概念教案教案目标:1. 理解导数的概念及其在数学中的作用;2. 能够计算简单函数的导数;3. 掌握导数的基本性质。

教案内容:引入导数的概念(10分钟):1. 通过简单的例子引出导数的概念,如一个物体在一段时间内移动的速度;2. 引导学生思考物体移动速度的变化情况,并提问他们是否可以用数学的方式表示和计算物体的速度。

导数的定义(15分钟):1. 介绍导数的定义:函数在某一点的导数是该点的切线斜率;2. 引导学生理解切线的概念,并通过具体函数的图形展示切线的斜率如何表示导数。

导数的计算(20分钟):1. 通过具体函数的例子,逐步教授导数的计算方法,如用极限法求导、使用导数公式等;2. 练习不同类型函数的导数计算,包括多项式、指数、对数、三角等函数。

导数的基本性质(15分钟):1. 介绍导数的基本性质,如常数函数的导数为0、导数的线性性质、导数的乘积法则和商法则等;2. 引导学生通过具体例子理解和应用导数的基本性质。

综合练习(20分钟):1. 提供一些综合性的导数计算题目,并鼓励学生尝试自己解答;2. 老师对学生的解答进行点评和纠正,加深对导数概念和计算方法的理解。

总结和拓展(10分钟):1. 总结导数的概念、计算方法和基本性质;2. 引导学生思考导数在实际生活和其他学科中的应用,并鼓励他们自主学习和探索更多有关导数的知识。

教学资源:1. 教学课件或投影仪;2. 教材、作业本和练习题。

评估方式:1. 教师通过课堂参与度、问题回答情况和练习题完成情况来评估学生的学习情况;2. 可以设计小组或个人综合性评估题目,考察学生对导数概念和计算方法的整体掌握情况。

教学反思:在教案中,关键是引导学生理解导数的概念及其作用,同时通过具体例子和计算方法让学生掌握导数的计算和基本性质。

在教学过程中,要注重与学生的互动和思维激发,鼓励学生积极参与问题解答和练习,加深对导数的理解。

另外,要结合实际生活和其他学科的应用,让学生认识到导数在数学中的重要性和广泛应用的价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第四届全国青年教师优秀课观摩大赛-导数的概念教案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
说课课题:导数的概念(第三课时)
一、【教材分析】
1. 本节内容:
《导数的概念》这一小节分“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”四个部分展开,大约需要4个课时.第一、二课时学习“曲线的切线”,“瞬时速度”,今天说的是第三课时的内容导数概念的形成.
2. 导数在高中数学中的地位与作用:
导数作为微积分的核心概念之一,在高中数学中具有相当重要的地位和作用.
从横向看,导数处于一种特殊的地位.它是解决函数、不等式、数列、几何等多章节相关问题的重要工具,它以更高的观点和更简捷的方法简化中学数学的许多问题.
从纵向看,导数是对函数知识的深化,对极限知识的发展,同时为以后研究导数的几何意义及应用打下必备的基础,具有承前启后的重要作用.
二、【学情分析】
1. 有利因素:学生已较好地掌握了函数极限的知识,又刚刚学过曲线的切线、瞬时速度,并积累了大量的关于函数变化率的经验;另外,我班学生思维比较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础.
2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;
再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.
三、【目标分析】
1. 教学目标
(1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法.
(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.
(3)情感、态度与价值观目标:
①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.
②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.
2. 教学重、难点
【确定依据】依据教学大纲的要求,结合本节内容和本班学生的实际
重点:导数的定义和用定义求导数的方法.
难点:对导数概念的理解.
【难点突破】本课设计上从瞬时速度、切线的斜率两个具体模型出发,由特殊到一般、从具
体到抽象利用类比归纳的思想学习导数概念;把新知的核心“可导”和“导数”两个问题结合起来,利用转化的思想与学生已有的极限知识相联系,将问题化归为考察
一个关于自变量x∆的函数
x x
x
f
x
F
∆∆

)
(
)
(0+
=当0

x∆时极限是否存在以及极限是什么的问题.
四、【教学法分析】
1. 教法、学法:引导发现式教学法,类比探究式学习法
教学中遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的“四主”原则.以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念.引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.
2. 教学手段:多媒体辅助教学
【设计意图】通过多媒体弥补传统教学的不足,增强教学效果的直观性,帮助学生更好地理解无限逼近思想,揭示导数本质.
五、【教学过程分析】
【确定依据】为更好落实教学目标, 把数学知识的“学术形态”转化为数学课堂的“教学形态”,,为学生创设探究空间,让学生充分经历、体验数学知识再发现的过程,从中获取知识,发展思维,感受探索的乐趣.
(一)教学环节
(二)教学过程
(三)板书设计(板书附后)
【设计意图】本课使用了电脑投影屏幕,黑板上的板书保留勾勒本课知识发展的主要线索,呈现完整的知识结构体系,用彩色粉笔突出重点,强化学生对新信息的纳入,同时对新学的符号语言的规范使用进行示范.
板书设计:
六、【教学反思】
一个概念的形成是螺旋式上升的,对新概念的抽象不仅是对结果的抽象,更是对方法和过程的抽象.本课设计上,把数学知识的“学术形态”转化为数学课堂的“教学形态”,返璞归真,从两个反应概念现实原型的具体问题出发,引出函数在一点处的导数再到开区间内的导函数,引导学生经历了一个完整的数学概念发生、发展的探究过程.提出问题、观察归纳、概括抽象,拓展概念让学生充分经历了具体到抽象,特殊到一般,感性到理性,直观到严谨的知识再发现过程,教师作为学生学习的组织者、引导者、合作者创设机会和空间,激活学生思维的最近发展区,倡导学生积极参与,自主探究,发现知识,培养能力.把可导与连续的关系,设计成弹性化的选作题,既不影响主体知识建构,又能使学有余力的学生得到进一步的发展.以上,体现了以学生的发展为本,不是教教材而是用教材教;教学中不是重结论,而是重过程和方法;不是采用接受式的学习方式,而是
采用探究、交流的方式;不是统一要求,而是因材施教尊重个体差异.这样的设计符合学生认知规律,促进了个性化学习,更好地实现了教学目标.。

相关文档
最新文档