同分母和异分母分式的加减法

合集下载

初升高数学衔接课程-- 分式运算 (教师版含解析)

初升高数学衔接课程-- 分式运算 (教师版含解析)

第2章 分式运算【知识衔接】————初中知识回顾————(一)分式的运算规律1、加减法 同分母分式加减法:c b a c b c a ±=± 异分母分式加减法:bc bd ac c d b a ±=±2、乘法:bd ac d c b a =⋅3、除法:bc ad c d b a d c b a =⋅=÷4、乘方:n nn ba b a =)( (二)分式的基本性质1、)0(≠=m bm am b a2、)0(≠÷÷=m mb m a b a ————高中知识链接————比例的性质(1)若d c ba=则bc ad = (2)若d c ba =则d d c b b a ±=±(合比性质) (3)若d c ba =(0≠-db )则d b d bc a c a -+=-+(合分比性质) (4)若d c b a ==…=n m ,且0≠+++n d b 则b a n d b m c a =++++++ (等比性质) 分式求解的基本技巧1、分组通分2、拆项添项后通分3、取倒数或利用倒数关系4、换元化简5、局部代入6、整体代入7、引入参数8、运用比例性质【经典题型】初中经典题型1.若代数式4x x -有意义,则实数x 的取值范围是( ) A . x =0 B . x =4 C . x ≠0 D . x ≠4【答案】D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D .2.化简:,结果正确的是( )A . 1B .C .D .【答案】B 【解析】试题分析:原式==.故选B .3.当x =______时,分式523x x -+的值为零. 【答案】5. 【解析】解:由题意得:x ﹣5=0且2x +3≠0,解得:x =5,故答案为:5.4.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =22. 【答案】21x -,7. 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=()22121x x x x x x ++-⋅+=()2211x x x x x +-⋅+=()()2111x x x x x-+⋅+=21x - 当x =22=(2221-=8-1=7.高中经典题型例1:化简232||211x x x x x +-+-- 解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2 例2:化简:++++3223bab b a a a 442222223223311b a b a a b b a b ab b a a b -+-+--+-+-例3:计算2)(32222233332222-++÷---++nm m n n m m n n m m n n m m n n m m n 解:设a m n =,b nm =,则1=ab ∴原式=2)(32223322-++÷---++b a b a b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(nm n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:计算abbc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222 解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c b a a b c b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+----------- =ac b c a c a b c b c a b a -=---+-+-----2111111 例5:若1=abc ,求111++++++++c ac c b bc b a ab a 解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1 ∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bc b bc bc b b bc b 例6:已知x z y x y z y x z z y x ++-=+-=-+且0≠xyz ,求分式xyzx z z y y x ))()((+++的值 解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。

异分母的分式加减法_例题1.doc.docx

异分母的分式加减法_例题1.doc.docx

《分式的加减法》例题精讲与同步练习【基础知识精讲】1. 分式的通分(1) 把几个异分母的分式分别化为与原来分式相等的同分母的分式叫做通分.(2) 通分的依据是分式的基本性质, 通分的关键是确定最简公分母 . 最简公分母由下面的方法确定:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积; (3) 如果分母是多项式,则首先对多项式进行因式分解 .2. 分式的加减法 (1) 同分母的分式加减法同分母的分式相加减,分母不变,把分子相加减. 即:a b a bc cc(2) 异分母的分式加减法异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 即:acadbcadbcbdbdbdbd3. 分式的混合运算分式的加、减、乘、除、乘方混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号内的,若是同级混合运算按从左到右的顺序进行 .【重点难点解析】1.重点难点分析重点 :是掌握通分的方法和分式的加减运算;难点 :是异分母的分式的加减法运算和分式的四则混合运算2. 典型例题解析.例 1通分x 1 5 xx 7 2,x2,22x 3x3x 2x 6 x解∵x 2+3x+2=(x+1)(x+2)x 2-x-6=(x-3)(x+2) 2x -2x-3=(x-3)(x+1) ∴它们的最简公分母为 (x+1)(x+2)(x-3)∴x 1 ( x 1) ( x 3) 23x 2( x 1)( x 2) (x 3)x=x 2 4x3( x 1)( x 2)( x 3)5 x (5 x) ( x1)x 2 x 6( x 3)( x 2) ( x 1)=x 26x 5( x 1)( x2) ( x3)x 7(x7) (x2)x 2 2x 3 ( x 3)( x 1) ( x 2)=x 2 5x 14(x 1)( x 2)( x 3)例 2计算 3a 2 5a 2a 2 5a 1 2a 2 2a 2 1a 2 1 1 a 2解原式 3a 2 5a2a 2 5a1 2a 22=1a 2 1a 21a 2=(3a 25a)(2a 25a1) (2a 22)a21=3a 2 5a2a 2 5a 1 2a 22a21=3a 23=3a 2 1点评 在做减法时,分避免出错,最好添上一个括号,去括号时注意变号 .例 3计算x 2x2x 2x 25x6x解原式 =x 2x1)( x2) ( x 2)( x3)(x=(x2)( x 3) x( x1)( x1)( x 2)( x 3)=x 2 x 6 x 2 x(x1)( x 2)( x 3)=2x 6(x1)( x 2)( x 3)=-2x6( x1)( x 2)( x3)例 4计算1221x 2 x 1 x 1 x 2分析此 若将 4 个分式同 通分,分子将是很复 的, 算比 麻 . 分 察其特点,把一、四和二、三两个分式分 先相加,由于分子的一次 相加后和 零,使 算 .解原式 =(x2) (x 2) 2( x 1) 2( x 1)( x 2)(x2)(x 1)( x 1)=44(x 2)( x2) ( x 1)( x 1)=4( x 1)( x1) 4(x 2)( x2)( x 2)( x2)( x 1)( x 1)=12(x2)( x 1)( x1)( x 1)例 5算x1 3( x 1)2 .x 4 x 2分析 此 如果直接通分, 运算 必十分复 , 当各分子的次数大于或等于分母的次数,可利用多 式除法,将其分离 整式部分与分式部分的和再加减会使运算 便.解原式 =(x4) 3 3( x 2) 32x 4x 2 =1+x 3(3x 3 ) +24 2=3 3x 4x2=3( x 2) 3( x 4)( x 2)( x 4)=6(x 2)( x 4)【 巧解点 】例 6算1 21 +⋯⋯ +11 2 3n(n 1)分析若先通分,再相加,可以 无从下手,但若注意到1=11 ,先分后合,将使 算容易 行.解11+⋯⋯+n(n 1) nn 111 2 2 3n(n 1)1 1 1 1 1 1 )=( )+(2 )+ ⋯⋯ +(n12 3n1=1-1n 1n=1n【 本 解答】P87A 5(5) B 3(2)算 1.(x-y+4xy)(x+y- 4xy)xyx y2.xy 2x 4 yx 2x y x y x 4y 4x2y2(x y) 24xy ( x y) 2 4 xy解 1. 原式=[ x yx ][x yx ]y y=( x y) 2 (x y)222xy x=(x+y)(x-y)=x-yy2.原式 = xy 2x 4 yx 2y 2x2y 2( x 2 y 2 )(x 2 y 2 ) x 2=xy 2x 2 y xy 2x 2 y xy( y x) x 2y2x2y2x2y2(x y)( xy)=- xyxy注: (1) 中将 x-y ,x+y 看作一个整体通分,比逐一通分 便,注意 一技巧, 算最后果不写成乘 式而是多 式(或 式)(2) 中注意运算 序(先乘除、后加减)最后 果能 分要 分,化 最 分式.【典型 点考 】例 7 算 1-(x-1 2x 2x 1 (武 中考 )x) ÷2x11 x 2解 原式 =1-(x 2x 1 ) 2· (x 1) 2x1x 2 x1=1-(x2-x+1)=-x 2+x例 8当 x=-11,求(1+25x 133 2 x 2 4x 5 2的( 天津中考 )) (1-) ÷ (x 2 3x2) x2解原式(x 1) 3 (x 5)2 (x 2)2 (x 1)2 =1)3 (x 2) 2( x 1)2 (x 5)2(x=x 1x16165当 x=-1 1时,原式 =556 1 6 55=111例 9 设 x+1=5,求 (x-1)2的值.(xx解∵x+ 1=51x11222∴ (x- x )=x +x2-2=(x+ x )-4=25-4=21例 10已知x=m (m ≠0), 求x 2xx x 22 1x 4解∵ x 2 x 11xm即 x+ 1 = 1-1= 1m从而得x mm21 1 m2m 2 2m 1x +x2=( m) -2=m 2∴x 2 = 1=14x 2 1122m 1 x x 2 1mx 2m 2=11 2m点评利用 x和 1互为倒数关系,总能建立起x求值问题简单化 .大连中考题 )的值 . ( 上海中考题 )11(x n+ 1 ) 和(x+ 1) 之间的联系,使某些x nx【同步达纲练习】一、填空题 (6 分× 7=42 分 )1. 化简 1+ 1 +1等于.x 2 x 3x2. 使代数式11 1等于 0 的 x 的值是.x21 x 1x 13. 计算 x28 2 x 7 x2x x 6的值为.x 33 x34.1x的最简公分母是.x 2 ,4 2x45.(x 2-1)(1 1 1 -1)= .x x 16.122 2 =.m 2 93 mm37. ab bc c a.ab bc ac二、计算题 (12 × 4=48 分)8. 计算bc a( a b)(b c) (b c)(c a) (c a)( ab)a ba 2b 29. 计算 1-2ba 2 4ab 4b 2 a10. 计算1 12 4 1 x1 x1 x21 x411. 已知 x=4,y=-3 ,求2xx y的值 .2y 2y 2x 2(x y)( x y)x【素质优化训练】12. 如果 abc=1 ,求证1 111(10 分)ab a 1bc b 1ac c 1【生活实际运用】某人在一环形公路上跑步,共跑两圈,第一圈的速率是 x 米 / 分钟,第二圈的速度是 y 米 / 分钟,(x > y ),则他平均一分钟跑的路程是多少?参考答案:【同步达纲练习】一、 1.112.-1 3.-3 4.2(x+2)(x-2) 5.3-x 26.07.06x2二、 8.09.-b 10.8 1a b11.71 x 8【素质优化训练】12. 左边 =11abc aabab a 1 =右边,即证。

八年级数学上册『分式的运算』计算公式大全

八年级数学上册『分式的运算』计算公式大全
分式的四则运算与乘方
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为: · =
分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为: ÷ = · =
分式的乘方:把分子、分母分别乘方。
式子表示为: =
分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为: ± =
异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为: ± =
整数指数幂
①同底数的幂的乘法:am·an=amn=anbn
④同底数的幂的除法:am÷an=am-n(a≠0);
⑤分式(商)的乘方: = (b≠0)
⑥a-n= (a≠0) ⑦a0=1;(a≠0)
(任何不等于零的数的零次幂都等于1)
分式的四则运算与乘方
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为: · =
分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为: ÷ = · =
分式的乘方:把分子、分母分别乘方。
式子表示为: =
分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为: ± =
异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为: ± =
整数指数幂
①同底数的幂的乘法:am·an=am+n
②幂的乘方:(am)n=amn③积的乘方:;(ab)n=anbn
④同底数的幂的除法:am÷an=am-n(a≠0);
⑤分式(商)的乘方: = (b≠0)
⑥a-n= (a≠0)⑦a0=1;(a≠0)
(任何不等于零的数的零次幂都等于1)

分式的加减(说课稿)

分式的加减(说课稿)

分式的加减(第一课时说课稿)姓名:孙明侠尊敬的各位老师,上午好!今天我说课的课题是《分式的加减》,下面我将从教材、教学目标、教学方法、教学过程这几个方面具体阐述我对这节课的理解和设计。

首先,我对本节教材进行简要分析。

一、说教材本节课是八年级下册第十六章第二节《分式的加减》第一课时,属于数与代数领域的知识。

它是代数运算的基础,主要内容是同分母的分式相加减及简单的异分母的分式相加减。

在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。

而掌握好本节课的知识,将为《分式的加减》第二课时以及《分式方程》的学习做好必备的知识储备。

因此,在分式的学习中,占据重要的地位。

本节课的重点是掌握分式的加减运算法则。

难点是运用法则计算分式的加减。

关键是掌握计算的一般解题步骤。

基于以上对教材的认识,考虑到学生已有的知识,我制定如下的教学目标。

二、说目标根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准制定如下:1知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力。

2过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理3情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,使学生在学知识的同时感受探索的乐趣,体验成功的喜悦。

为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我从教法和学法上谈谈设计思路。

三、说教学方法1教法选择与手段:本课我主要以“复习旧知,导入新知,例题示范,拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研讨,体现以教为主导、学为主体、练为主线的教学过程。

2学法指导:根据学生的认知水平,我设计了“观察思考、猜想归纳、例题学习和巩固提高”四个层次的学法。

最后,我来具体谈一谈本节课的教学过程。

四、说教学过程在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和分层作业。

大同县X中学八年级数学下册第16章分式分式的加减法一教案新版华东师大版1

大同县X中学八年级数学下册第16章分式分式的加减法一教案新版华东师大版1

16 分式的加减法(-)●教学目标(一)教学知识点1、使学生掌握同分母、异分母分式的加减,2、能熟练地进行同分母,异分母分式的加减运算;培养学生分式运算的能力。

3、渗透类比、化归数学思想方法,培养学生的能力。

(二)能力目标:1.经历用字母表示数量关系的过程,进一步发展符号感.2.并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力. (三)情感与价值观目标;1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气. ●教学重点1. 让学生掌握同分母、异分母分式的加减法法则。

2. 能熟练地进行简单的异分母的分式加减法. ●教学难点分式的分子是多项式的分式减法的符号法则,去括号法则应用。

●教学方法启发与探究相结合 ●教学过程一、.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:(出示投影片)问题:从甲地到乙地有两条路,每条路都是3 km ,其中第一条是平路,第二条有1 km 的上坡路、2 km 的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2 v km/h,在下坡路上的骑车速度为3v km/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走第一条路花费的时间比走第二条路少用多少时间?[分析]:根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v23h .所以她走第一条路花费的时间比走第二条路少用(v 1+v 32)-v23 h 代数式(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢? [生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 二、实践与探索(一),同分母的分式的加减法法则:1、计算5251+= 回忆:同分母的分数的加减法法则: 同分母的分数相加减,分母不变,把分子相加减。

人教版数学八年级上册15.2.2分式的加减(第2课时)教学设计

人教版数学八年级上册15.2.2分式的加减(第2课时)教学设计
(四)课堂练习
在学生掌握了分式加减法的基本知识后,我会设计一些课堂练习题,让学生独立完成。这些练习题将涵盖不同难度层次,以便满足不同学生的学习需求。
在学生完成练习题后,我会挑选部分学生的答案进行展示和讲解,针对共性问题进行解答,帮助学生巩固所学知识。
(五)总结归纳
课堂最后,我会组织学生进行总结归纳。首先,让学生回顾本节课所学的分式加减法的运算规则,总结通分、简化分式等关键步骤。然后,我会提问学生:“通过本节课的学习,你们觉得自己在哪些方面有了提高?还有哪些疑问和困惑?”
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握分式加减法的运算规则。
-能够将复杂分式简化为最简形式,并进行加减运算。
-学会根据实际问题构建分式加减模型,解决具体问题。
这些重点内容是学生形成分式加减知识体系的基础,也是提高学生数学能力的关键。
2.教学难点:
-异分母分式的加减运算,特别是通分过程中的技巧和方法。
-分式的简化,尤其是含有复杂多项式的分式的化简。
-将实际问题转化为分式加减运算的过程,需要学生具备较强的抽象思维和数学建模力。
针对难点内容,教学中需要设计梯度性、层次性的教学活动,帮助学生逐步突破。
(二)教学设想
1.创设情境,激发兴趣:
-通过生活中的实例,如购物时计算折扣、比较不同物品的价格等,引出分式加减运算的实际意义,激发学生的学习兴趣。
5.总结反思,形成策略:
-在课堂结束前,组织学生进行自我反思,总结分式加减运算的技巧和方法,形成自己的解题策略。
6.创新评价,鼓励进步:
-采用多元化的评价方式,如口头提问、书面作业、小组展示等,全面评估学生的学习效果,鼓励学生的进步。

分式的加减法数学教案设计

分式的加减法数学教案设计

分式的加减法数学教案设计一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算方法。

2. 培养学生运用分式加减法解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 分式的加减法概念及运算方法。

2. 分式加减法在实际问题中的应用。

三、教学重点与难点:1. 重点:分式的加减法运算方法。

2. 难点:分式加减法在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解分式的加减法概念及运算方法。

2. 运用案例分析法,分析分式加减法在实际问题中的应用。

3. 组织学生进行小组讨论,培养学生的合作能力。

五、教学过程:1. 导入新课:通过复习分数的加减法,引导学生思考分式的加减法。

2. 讲解分式的加减法概念及运算方法:(1)分式的加减法概念:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再按照同分母分式加减法的法则计算。

(2)分式加减法的运算方法:a. 同分母分式相加减:分子相加减,分母保持不变。

b. 异分母分式相加减:先通分,再按照同分母分式加减法的法则计算。

3. 案例分析:分析分式加减法在实际问题中的应用。

(1)例题讲解:分析实际问题,引导学生运用分式加减法解决问题。

(2)学生练习:布置练习题,让学生独立解决实际问题。

4. 小组讨论:组织学生进行小组讨论,分享分式加减法在实际问题中的应用实例。

5. 总结与评价:总结本节课所学内容,对学生的学习情况进行评价。

6. 布置作业:布置课后作业,巩固所学知识。

六、教学评估:1. 课堂问答:通过提问方式检查学生对分式加减法概念的理解程度。

2. 练习题:布置随堂练习,评估学生对分式加减法运算方法的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作能力和解决问题的能力。

七、教学拓展:1. 引入更复杂的分式加减法问题,提高学生的解题能力。

2. 探讨分式加减法在高级数学中的应用,如在微积分、线性代数等领域。

八年级数学优质课《分式的加减》教案

八年级数学优质课《分式的加减》教案

八年级数学优质课《分式的加减》教案教学任务分析教学目标知识技能一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.数学思考在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.解决问题一、会进行同分母和异分母分式的加减运算.二、会解决与分式的加减有关的简单实际问题.三、能进行分式的加、剪、乘、除、乘方的混合运算.情感态度通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.重点分式的加减法.难点异分母分式的加减法及简单的分式混合运算.教学流程安排活动流程图活动内容和目的活动1:问题引入活动2:学习同分母分式的加减活动3:探究异分母分式的加减活动4:发现分式加减运算法则活动5:巩固练习、总结、作业向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.通过练习、作业进一步巩固分式的运算.课前准备教具学具补充材料课件教学过程设计问题与情境师生行为设计意图[活动1]1.问题一:比较电脑与手抄的录入时间.2.问题二;帮帮小明算算时间所需时间为,如何求出的值?3.这里用到了分式的加减,提出本节课的主题.教师通过课件展示问题.学生积极动脑解决问题,提出困惑:分式如何进行加减?通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.[活动2]1.提出小学数学中一道简单的分数加法题目.2.用课件引导学生用类比法,归纳总结同分母分式加法法则.3.教师使用课件展示[例1]4.教师通过课件出两个小练习.教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.学生在教师的'引导下,探索同分母分式加减的运算方法.通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.由两个学生板书自主完成练习,教师巡视指导学生练习.运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.让学生进一步体会同分母分式的加减运算.[活动3]1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.2.教师提出思考题:异分母的分式加减法要遵守什么法则呢?教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.[活动4]1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.2.教师使用课件展示[例2]3.教师通过课件出4个小练习.4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;试用含有R1的式子表示总电阻R5.教师使用课件展示[例4]教师提出要求,由学生说出分式加减法则的字母表示形式.通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.让学生体会运用的公式解决问题的过程.锻炼学生运用法则解决问题的能力,既准确又有速度.提高学生的计算能力.通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.提高学生综合应用知识的能力.[活动5]1.教师通过课件出2个分式混合运算的小练习.2.总结:a)这节课我们学习了哪些知识?你能说一说吗?b)⑴方法思路;c)⑵计算中的主意事项;d)⑶结果要化简.3.作业:a)教科书习题16.2第4、5、6题.学生练习、巩固.教师巡视指导.学生完成、交流.,师生评价.教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.教师布置作业.锻炼学生运用法则进行运算的能力,提高准确性及速度.提高学生归纳总结的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4a 2 4a 2 4ab 4ab 4a 2 2 b (a b) b (a b) ab b2
课堂小结
(1)分式加减运算的方法思路:
异分母 相加减
通分 转化为
同分母
分母不变 转化为
分子(整式)
相加减
相加减
(2)分子相加减时,如果分子是一个多项式,要将分子 看成一个整体,先用括号括起来,再运算,可减少出现符号 错误。 (3)分式加减运算的结果要约分,化为最 简分式(或整 式)。
第五章 分式与分式方程
3 分式的加减法
第1课时 同分母分式的加减法
新课导入
问题一
某人用电脑录入汉字文稿的效率相当于手 抄的3倍,设他手抄的速度为a字/时,那么他录 入3000字文稿比手抄少用多少时间?
3000 3000 a 3a
问题二 帮帮小明算算时间
从甲地到乙地有两条路,每 一条路都是 3km. 其中第一条 是平路,第二条有1km的上坡路, 2km的下坡路.小明在上坡路上 的骑车速度为v km/h, 在平路上 的骑车速度为2 vkm/h, 在下坡路 上的骑车速度为3vkm/h, 那么: (1)当走第二条路时, 他从甲地 到乙地需要多长时间? (2)他走哪条路花费时间少? 少用多长时间?
比如 :
3 1 a 4a
如何计算?
分式加减运算的方法思路:
异分母 相加减
通分 转化为
同分母 相加减
分母不变 转化为
分子(整式)
相加减
分式的加减法法则:
a b ab c c c a c ad bc ad bc b d bd bd ad
例2
x y 计算 : x y yx
示意图
3 ( h) 2v
1 2 (h) 答: (1) v 3v
v
3v
1 2v 2
这是关ቤተ መጻሕፍቲ ባይዱ分式的加 减问题,你行吗?
(2) 走第一条路花费的时间
哪条路用的时间少?
1 2 1 2 3 3000 3000 对于 , , 如何计算呢? v 3v v 3v 2v a 3a
这就需要我们进一步学习: 分式的加减法
a a 3 b b 计算: (1) x x ; ( 2) a b b a ; 3 b b 2 b 解 : (1) 原式 ; x x
分母不同怎么进行加减?
和小学做分数加减一样,通分呗! (2) 原式
a a 2a . ab ab ab
想一想:
(1)异分母的分式加减法要遵守什么法则呢? 小学数学中,异分母的分数如何加减? (通分,将异分母的分数化为同分母的分数) (2)你认为异分母分式的加减应该如何进行?
例1
计算 :
5a 2b 3 3a 2b 5 8 a 2b 2 2 2 ab ab ab
把分子看作 一个整体, 先用括号 括起来!
(5a b 3) (3a b 5) (8 a b) 解:原式= ab2 2 2 2 5a b 3 3a b 5 8 a b = ab2
2 2 2
=
=
a 2b 2 ab a b
注意:结果要 化为最简分式!
想一想:
2 x 4 x 2 x 2 x 4 ? x 2. (1) x2 x2 x2 x2
2
x 2 x 1 x 3 x 2 x 1 x 3 ? ( 2) x 1 x 1 x 1 x 1 x 2 x 1 x 3 x 1 x . x 1
分母不同,先 化为同分母。
2
2
y2 x2 解:原式= x y ( x y )
=
x2 y2 x y x y
x2 y 2 x y
= =x+y
想一想:
计算:
a 3b a b ( 1) ab ab 2 5 2 3 ( 2) 2 2 6a b 3ab 4abc
先找出最简公分母,再 正确通分,转化为同分 母的分式相加减。 分数线有括号的 作用,分子相加 减时,要注意添 括号.
10bc 8ac 9ab 12a 2b 2 c
例3
计算:
先乘方;再 2 乘除;最后 2a 1 a b 解: b a b b 4 加减;有括 号先做括号 2 4a 2 1 a 4 内. 2a 1 a b 2 b a b b 4 b a b b b 4a 2 4a 4a 2 4a(a b) 2 2 2 2 b (a b) b b (a b) b (a b)
相关文档
最新文档