汽轮机级的工作原理及过程等

合集下载

汽轮机工作原理及结构

汽轮机工作原理及结构

汽轮机工作原理及结构汽轮机是一种热力机械设备,其工作原理是利用高温和高压下的高速蒸汽通过叶轮叶片的作用,驱动轴,从而将热能转化为机械能。

汽轮机具有高效率、大功率、可靠性高等优点,广泛应用于发电、船舶、火车等领域。

本文将介绍汽轮机的工作原理及其结构组成。

### 一、汽轮机的工作原理汽轮机的工作原理基于卡诺循环的热力学理论,并且符合热力学第一、第二定律。

其工作过程可分为四个主要步骤:压缩、加热、膨胀、排放。

下面将对每个步骤进行详细说明:1. 压缩过程:在压缩过程中,汽轮机从外部介质(如空气、燃气等)吸入气体,并将其压缩至较高的压力。

这一步骤一般利用压缩机完成,其主要目的是提高进入汽轮机的工作流体的压力和密度,以便提高膨胀过程的能量转化效率。

2. 加热过程:在加热过程中,压缩后的工作流体进入锅炉或燃烧室,与燃料发生反应并吸收热量。

这使得工作流体的温度和能量进一步增加。

加热过程一般通过燃烧器来完成,通过燃料的燃烧释放的热量将水转化为高温高压的蒸汽。

3. 膨胀过程:在膨胀过程中,高温高压的蒸汽进入汽轮机的叶轮叶片中,使叶轮以高速旋转。

这一过程中,蒸汽的热能被转化为机械能,从而驱动汽轮机的输出轴转动。

4. 排放过程:在排放过程中,膨胀后的工作流体离开汽轮机,并进入冷凝装置或排放系统。

蒸汽在冷凝器中冷却并凝结为水,然后被泵送回锅炉以完成循环。

排放过程的主要目的是回收剩余的热量,并将工作流体恢复为液体状态,以便重新进入压缩过程。

以上四个步骤连续循环进行,从而使汽轮机持续输出机械能,满足各类工业和交通运输领域的需求。

### 二、汽轮机的结构组成汽轮机通常由以下几个主要组成部分构成:压缩机、燃烧器、涡轮机、冷却系统和辅助系统。

下面将对每个部分进行详细介绍。

1. 压缩机:压缩机是汽轮机中的重要组成部分,其主要功能是提高进入汽轮机的工作流体的压力和密度。

压缩机一般采用离心式、轴流式或混流式结构,通过旋转的叶轮将气体压缩并提供给燃烧器。

汽轮机的工作原理讲解

汽轮机的工作原理讲解

汽轮机的工作原理讲解
汽轮机是一种利用燃料燃烧释放的热能,通过燃气在高温和高压条件
下对涡轮叶片进行推动,从而驱动发电机产生电能的热能转换设备。

它的
工作原理基于热力学循环原理,主要包括热能转换、能量变化、动力传递
和工作过程四个方面。

1.热能转换过程:
2.能量变化过程:
高温高压的燃气通过喷嘴进入涡轮,燃气对涡轮叶片的推动力会导致
涡轮旋转。

而涡轮旋转则会转化为机械能,进而传递到轴上。

涡轮上的叶
片被高速旋转的燃气推动,能量逐渐从燃气转移到涡轮上。

3.动力传递过程:
燃气转动涡轮的运动被传递到轴上,然后再传输给发电机、泵或机械
设备等。

涡轮旋转的能量会带动连接在轴上的部件进行工作。

通常情况下,轴会与发电机驱动装置连接,涡轮运动的能量最后会被传递到发电机上,
从而产生电能。

4.工作过程:
具体而言,汽轮机的工作过程通常分为四个过程:加热过程、定容过程、膨胀过程和排气过程。

-加热过程:燃料在燃烧室中燃烧,释放出高温高压的燃气。

-定容过程:高温高压的燃气进入涡轮,将热能转化为机械能,完成
能量的转化。

-膨胀过程:涡轮旋转的机械能被传递到轴上,进而传输给发电机等部件以产生有用功。

-排气过程:燃气经过涡轮之后,被排出汽轮机系统。

总的来说,汽轮机的工作原理是通过燃料的燃烧产生高温高压气体,再利用燃气对涡轮的推动作用将热能转化为机械能,然后通过轴将机械能传递给发电机等部件,最终转化为电能或其他形式的能量输出。

汽轮机广泛应用于发电站、船舶、航空、石化等领域,是一种高效可靠的能源转换装置。

汽轮机工作原理及构造

汽轮机工作原理及构造

汽轮机工作原理及构造汽轮机是一种常用于发电厂和船舶动力系统中的热力机械设备。

它通过燃烧燃料产生高温高压的蒸汽,然后利用蒸汽的能量驱动涡轮机进行旋转,最终将旋转的动能转化为电能或机械动力。

本文将介绍汽轮机的工作原理及构造。

一、汽轮机的工作原理汽轮机的工作原理基于热力学循环和流体力学原理。

一般而言,汽轮机采用的热力学循环是朗肯循环,其主要由以下四个过程组成:压缩、加热、膨胀和冷却。

1. 压缩过程:冷凝器中的凝汽泵将凝结的蒸汽吸入压缩机中,通过压缩使其压力和温度升高。

2. 加热过程:高温高压的蒸汽进入到汽轮机的燃烧室中,其中的燃料燃烧产生高温高压的气体,使蒸汽进一步增加温度和压力。

3. 膨胀过程:高温高压的气体通过喷嘴喷射到涡轮机中,推动涡轮机旋转,由于涡轮机叶片的设计,气体内部的压力和温度降低。

同时,涡轮机的转动也将转动轴上的发电机或其他机械装置带动。

4. 冷却过程:膨胀后的蒸汽进入冷凝器,通过冷凝器中的冷却水吸热,使蒸汽冷凝成水,并回路循环。

二、汽轮机的构造汽轮机的主要构造包括压缩机、燃烧室、涡轮机和冷凝器等组成部分。

下面将对这些部分进行简要介绍。

1. 压缩机:压缩机通常是由多个级数的离心式或轴流式压缩机组成。

其主要作用是将低温低压的蒸汽压缩成高温高压的蒸汽,为燃烧室提供所需的工作介质。

2. 燃烧室:燃烧室是燃烧燃料的地方,其设计可以使燃料尽量充分燃烧,并产生高温高压的气体。

不同类型的汽轮机有不同的燃烧室结构,常见的有环形燃烧室和燃气轮机中的燃烧室。

3. 涡轮机:涡轮机是汽轮机中最核心的部分,它是通过高温高压气体的推动而旋转,将热能转化为机械能。

涡轮机一般包括高压涡轮和低压涡轮。

高压涡轮接受来自燃烧室的高温高压气体推动,低压涡轮接受来自高压涡轮排出的低温低压气体推动。

4. 冷凝器:冷凝器是一个换热器,用于将膨胀后的蒸汽冷凝成水。

冷凝器通常通过冷却水来吸热,使蒸汽冷凝成水,并将冷凝后的水再次引入蒸汽循环中。

汽轮机原理第一章 级的工作原理

汽轮机原理第一章 级的工作原理



冲动式汽轮机的工作原理
冲动式汽轮机转子
反动式汽轮机断面示意图
反动度


表示蒸汽在动叶中膨 胀程度的一个参数 焓降反动度 压力反动度

纯冲动级:

Ω=0,动叶前后的压差为零

反动级: Ω=0.5 冲动级: Ω=0.05~0.2 复速级:
汽轮机的工作过程

一元 稳定 绝热
2 k 1 1/ 2 0 2 k 1 2 2k p0 k k 1 1 1 k k k n n n n 0 k 1 0 k k
An
2 k 1 1/ 2 0 2k p0 k n n k 0 k 1 0
级的轮周效率

Pu1 轮周效率:轮周功和理想能量之比 u E 0
2 2 2 2 2 c0 c2 c2 ca c2 * E0 0 ht 1 ht 1 1 2 2 2 2 2
做功能力:单位质量蒸汽做功
w12 c12 u 2 2c 1u cos 1 c1 cos 1
2 2 w2 c2 u 2 2c 2 u cos 2 c2 cos 2
wu 2 2u

临界速度只和蒸汽滞止参数有关,和流动过程无关
临界压比
a 2k 0 0 2k 0 0 p00 kp11 p00 kp11 k 1 k 1
1
0 0 k p0 0 k
0 1 p1 p1 2 0 2 p1 2 p1 1 0 nc nc 0 0 k 1 1 p0 k 1 p0 p0 k 1
2 2 2

汽轮机级工作原理与过程等

汽轮机级工作原理与过程等
减小漏汽损失的措施是安装 汽封等
6.湿汽损失
湿蒸汽引起的有用功损失,称为湿汽损失。 蒸汽由于凝结成水使作功量减少 高速的蒸汽带动低速的水珠而消耗一部分动能 水珠进入动叶时撞击在进口处的动叶片背弧上,
阻止叶轮旋转 安全上,动叶会被湿汽冲蚀损坏
(二) 级的相对内效率
r
hi E0
E0 E0
h
级的相对内效率表示级的能量转换的完善 程度,是用来衡量级经济性的一个重要指 标,它及级的类型、叶型、反动度、速比、 叶高、蒸汽的性质、级的结构特点等有关。
级汽轮机由于具有效率高、功率大、投资小等 突出优点而得到广泛应用。
三.多级汽轮机的轴向推力及其平衡
1. 轴向推力 汽轮机在运行时,转子需要承受很大
的轴向推力。 对于反动式汽轮机轴向推力可达几百
吨 冲动式汽轮机轴向推力也达到几十吨
之多
2. 轴向推力的平衡
平衡的方法除了在叶轮轮面上开平衡孔外, 主要采用下列两种方法:
中压通流部分配置在一个共同的汽缸内,采用 此种布置的优点是: 1.高温区集中在汽缸中部,两端温度压力较低, 从而减少了对轴承和端部汽封的影响; 2.及分缸设计相比,可缩短主轴长度,减少轴封 漏气;
高中压缸合缸
一. 汽轮机本体的基本特点(续)
5、采用单独阀体结构 把蒸汽室和调节阀从高压缸的缸体上分离出去 布置在汽轮机两侧,使汽缸具有良好的对称性,
温度分布均匀,减少热应力和热变形。 6、多层汽缸结构 太厚的汽缸壁会产生过大的热应力 7、加长低压级叶片长度 提高单机功率的有效途径
单独阀体结构
多层汽缸结构
加长低压级叶片长度
新型
旧型
二. 汽轮机的静止部分
(一)汽缸 汽轮机的外壳,是汽轮机的重要静止部件之一。

第一章 汽轮机级的工作原理

第一章 汽轮机级的工作原理

第一章汽轮机级的工作原理第一节概述汽轮机是将蒸汽工质的热能转变成动能,再将动能转变成机械能的一种热机。

多级汽轮机由若干个级构成,而每个级就是汽轮机做功的基本单元,级是由喷管叶栅和与之相配合的动叶栅所组成。

喷管叶栅将蒸汽的热能转变成动能,动叶栅将蒸汽的动能转变成机械能。

一、蒸汽的冲动原理和反动原理高速汽流通过动叶栅时,发生动量变化对动叶栅产生冲力,使动叶栅转动做功而获得机械能。

由动量定理可知,机械能的大小决定于工作蒸汽的质量流量和速度变化量,质量流量越大,速度变化越大,作用力也越大。

图1—1所示为无膨胀的动叶通道,汽流在动叶汽道内不膨胀加速,而只随汽道形状改变其流动方向,汽流改变流动方向对汽道所产生的离心力,叫做冲动力,这时蒸汽所做的机械功等于它在动叶栅中动能的变化量,这种级叫做冲动级。

蒸汽在动叶汽道内随汽道改变流动方向的同时仍继续膨胀、加速,加速的汽流流出汽道时,对动叶栅将施加一个与汽流流出方向相反的反作用力,此力类似于火箭发射时,高速气体从火箭尾部流出,给火箭一个与流动方向相反的反作用力,这个作用力叫做反动力。

依靠反动力做功的级叫做反动级,如图1—2所示。

现代汽轮机级中,冲动力和反动力通常是同时作用的,在这两个力的台力作用下,使动叶栅旋转而产生机械功。

这两个力的作用效果是不同的,冲动力的做功能力较大,而反动力的流动效率较高,这一点会在以后的讨论中说明。

二、级的反动度为了说明汽轮机级中反动力所占的比例,即蒸汽在动叶中膨胀程度的大小,常用级的反动度Ω表示,它等于蒸汽在动叶栅中膨胀时的理想比焙降厶Ab和整个级的滞止理想比焰降△ht。

之比,即第5页截面上喷管和动叶中的理想比焙降所确定。

平均直径是动叶项部和根部处叶轮直径的平均值。

图1—3是级中蒸汽膨胀在焓熵图上的热力过程线。

o点是级前的蒸汽状态点,o*点是蒸汽等熵滞止到初速等于零的状态点,Pl、F2分别为喷管出口压力和动叶出口压力。

蒸汽从滞止状态o·点在级内等熵膨胀到P,时的比焙降厶AI。

汽轮机工作原理及流程

汽轮机工作原理及流程

汽轮机工作原理及流程
汽轮机是一种利用蒸汽动力的热力机械,其工作原理和流程是由蒸汽的能量转
换为机械能,从而驱动发电机或其他机械设备。

汽轮机工作原理及流程主要包括蒸汽进汽轮机、蒸汽膨胀、蒸汽冷凝和蒸汽排出等过程。

首先,蒸汽进汽轮机。

在汽轮机中,蒸汽从锅炉中产生,经过调节阀进入汽轮
机的高压缸,然后通过叶片的作用使汽轮机转动。

蒸汽的进入使得汽轮机内部产生高速旋转,从而转动发电机或其他机械设备。

其次,蒸汽膨胀。

在汽轮机内部,蒸汽受到叶片的作用,从而产生膨胀,使得
汽轮机转动更加迅速。

蒸汽的膨胀过程是汽轮机工作中非常重要的一环,它直接影响着汽轮机的工作效率和输出功率。

接着是蒸汽冷凝。

在汽轮机工作过程中,蒸汽膨胀后的温度降低,需要通过冷
凝器进行冷凝。

蒸汽在冷凝器内部散发热量,经过冷凝后变成凝结水,然后排出系统。

这一过程是为了保证汽轮机内部循环的蒸汽能够继续被利用,提高能源利用率。

最后是蒸汽排出。

冷凝后的凝结水排出系统,蒸汽的循环过程完成,汽轮机重
新进入下一个循环。

蒸汽排出过程是汽轮机工作流程的最后一环,也是为了保证系统内部蒸汽循环的顺利进行。

总的来说,汽轮机工作原理及流程是一个连续循环的过程,通过蒸汽的进入、
膨胀、冷凝和排出,实现了能量的转换和机械设备的驱动。

汽轮机作为一种重要的能源转换设备,在发电、工业生产等领域有着广泛的应用,其工作原理和流程的理解对于提高能源利用效率和保障设备安全稳定运行具有重要意义。

汽轮机级的工作原理

汽轮机级的工作原理

汽轮机级的工作原理
汽轮机级的工作原理是基于汽轮机的能量转换过程。

汽轮机级通常由一组连续的转子和静子(定子)组成。

以下是汽轮机级的工作原理的一般步骤:
1. 压缩阶段:在压缩阶段,某种工质(例如蒸汽)通过大型风扇或轴向压缩机进入汽轮机级。

风扇或压缩机的工作是将气体压缩至较高压力。

2. 燃烧阶段:在燃烧阶段,压缩后的气体进入燃烧室。

在燃烧室内,燃料(通常是液体燃料或天然气)被注入,并与气体混合。

然后,点燃混合物,产生高温高压的燃烧气体。

3. 扩张阶段:在扩张阶段,高温高压的燃烧气体进入高速旋转的涡轮。

涡轮通常由一系列的叶片组成,当气体通过时会转动。

涡轮的转动产生的动能将一部分能量传递给驱动装置,例如发电机或涡喷引擎。

同时,气体的压力和温度下降。

4. 排气阶段:在最后的排气阶段,气体通过涡轮之后进入排气系统。

在排气系统中,气体通过冷却和减压过程,最终被排放到大气中。

整个汽轮机级循环将不断循环进行,以产生持续的动力输出。

每个级别的性能参数,如压缩比、燃烧温度和涡轮效率等,都会影响整体效率和功率输出。

汽轮机级的设计需要考虑多个因素,如材料、燃料效率和热损失等,以确保高效率和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3动叶栅
静叶(喷嘴)和对应的动叶
所组成;一列固定的喷嘴和
与它配合的动叶片构成了汽
4喷嘴
轮机的基本作功单元,称为 汽轮机的“级”
2020/6/23
1轴 单级冲动式汽轮机工作原理结构立体图
3
一. 汽轮机的工作原理
➢汽轮机内的能量转换
一定压力和温度的蒸汽流经固定不动的喷 嘴,并在其中膨胀,蒸汽的压力、温度不 断降低,速度不断增加,使蒸汽的热能转 化为动能
反动度:表示蒸汽在动叶通道内膨
胀程度大小的指标。
它等于蒸汽在动叶通道中的理想焓 降与喷嘴的滞止理想焓降和动叶通 道中理想焓降之和的比值
级的平直径处(即1/2叶高处)的 反动度用Ωm表示,其表达式为:
m
hb hn* hb
hb hn* hb
hb ht*
2020/6/23
10
2. 级的类型及特点
近代大功率汽轮机都是由若干个级构成的多级 汽轮机,由于级的工作过程在一定程度上反映 了整个汽轮机的工作过程,所以对汽轮机工作 原理的讨论一般总是从汽轮机“级”开始的, 有助于理解和掌握全机的内在规律性。
20ห้องสมุดไป่ตู้0/6/23
18
一、级的作功原理
喷嘴汽道示意图
2020/6/23
• 级是汽轮机中最基本的 工作单位
叶之间装设—列导向叶片,排汽经过导 向叶片后改变方向,进入第二列动叶继 续作功。这种级称为速度级。
复速级:同一叶轮上装有两列动叶片
的双列速度级,又称为复速级。
工作特点:蒸汽主要在喷嘴中膨胀加
速:动叶通道和导向叶片通道中基本不 膨胀,焓降大、效率较低。用于单级汽 轮机和中、小型多级汽轮机的第一级。
2020/6/23
反动力定义:蒸汽在动叶汽道内膨胀时 对动叶的作用力。根据动量守恒定律, 当气体从容器中加速流出时,要对容器 产生—个与流动方向相反的力。
基本特点:蒸汽在动叶流道中不仅要改 变方向,而且还要膨胀加速,从结构上 看动叶通道是逐渐收缩的。
2020/6/23
7
从作用力方面分析原理
蒸汽流经级时先在喷嘴中膨胀压力 降低,速度增加一方面通过速度方 向的改变,产生冲动力F1
• 级由静叶(喷嘴)和对 应的动叶组成
• 工质的热能在喷嘴中先 转变为工质的动能,然 后在动叶中使能转变为 机械能
19
引用热力学第一定律导出的能量方程,方程可表示为
h0
c02 2
h1
c12 2
h0 , h1 —蒸汽进入和流出叶栅的比焓值,焦耳/公斤;
c0 , c1 —蒸汽进入和流出叶栅的速度,米/秒。
蒸汽热能
气流的动能
轴的机械能
喷嘴
动叶
2020/6/23
4
(一)冲动作用原理
冲动力的定义:根据力学知识,当
一运动物体碰到另一个静止的物体 或者运动速度低于它的物体时,就 会受到阻碍而改变其速度的大小或 方向,同时给阻碍它的物体的一个 作用力
特点:蒸汽仅把从喷嘴中获得的动
能转变为机械功,蒸汽在动叶通道 中不膨胀,动叶通道不收缩
第四章 汽轮机设备
2020/6/23
1
第一节 汽轮机概述
汽轮机以蒸汽为工质,将热能转 变为机械能,为发电机发电提供 机械能。
火力发电厂三大主要设备之一, 单机功率大、效率高、运行平稳、 使用寿命长
2020/6/23
2
一、汽轮机的工作原理
“级”是汽轮机中最基本的 2叶轮 工作单元。在结构上它是由
16
调节级
➢ 喷嘴调节:多数汽轮机采用改变第一级喷嘴面 积的方法调节进汽量,称之为喷嘴调节。
➢ 调节级:中、小容量汽轮机的调节级喷嘴调节 汽轮机的第一级称为调节级,一般采用复速级。 大容量汽轮机多采用单列冲动级。
➢ 还把汽轮机的级分为速度级和压力级两种。
2020/6/23
17
第二节 汽轮机的基本作功原理
蒸汽在动叶中继续膨胀,压力降低, 所产生的焓降转化为动能造成动叶 出口的相对速度w2大于进口相对速 度w1,使汽流产生了作用于动叶上 的与汽流方向相反的反动力Fr。
在蒸汽的冲动力和反动力合力作用 下推动动叶旋转作功。
动叶通道是逐渐收缩的
2020/6/23
8
(三)反动度和级类型
2020/6/23
汽轮机的级可分为冲动级和反动级两大类
(1)、冲动级
冲动级又分:纯冲动级、带反动度的冲动级速度级 1) 纯冲动级:反动度为零的级称为纯冲动级 工作特点:是蒸汽只在喷嘴中膨胀,在动叶通道中不膨胀 结构特点:动叶叶型近似对称弯曲,作功能力大,但效率
比带反动度的冲动级低。
2020/6/23
11
2) 带反动度的冲动级
14
4) 反动级
定义:蒸汽在级中的理想焓降平均分配 在喷嘴和动叶通道中的级称为反动级
工作特点:蒸汽在喷嘴和动叶通道中的 膨胀程度相等,作功的力冲动力和反动 力各占一半
结构特点:动叶叶型与喷嘴叶型完全相 同。反动级的效率高于冲动级,但整级 的理想焓降较小。
2020/6/23
15
反动式汽轮机
2020/6/23
2020/6/23
20
二、级内损失和级效率
(一)级的内部损失:在汽轮机通流部分中与流 动、能量转换有直接联系的损失称为汽轮 机级的内部损失
➢级内的损失主要有叶栅损失、余速损失、部
分进汽损失、叶轮摩擦损失、漏汽损失和湿汽 损失等
2020/6/23
21
1.叶栅损失
基本概念
级滞止理想焓降:0点是级前
的蒸汽状态点,0*点是汽流被等 熵滞止到初速等于零的状态,p1、 p2分别为喷嘴出口压力和动叶出 口压力,蒸汽在级内从滞止状态 0*等熵膨胀到p2时的焓降称为级 的滞止理想焓降
级理想焓降:蒸汽在级内从0
点等熵膨胀到p2时的焓降ht 称为级的理想焓降。
9
1. 反动度
现代冲动式汽轮机中广泛采用具有一定反动度的冲动 级,简称为冲动级
工作特点:蒸汽的膨胀主要喷嘴中进行,在动叶通道 中仅有小部分膨胀,产生的反动力较小,主要利用冲 动力作功
结构特点:作功能力比反动级的大,效率又比纯冲动 级高。
2020/6/23
12
冲动式汽轮机
2020/6/23
13
3) 复速级
速度级:为使充分利用余速,在两列动
2020/6/23
5
从作用力方面分析原理
喷嘴出口处:蒸汽以相对速
度w1进入动叶通道,由于受到动 叶的阻碍,汽流方向不断改变, 最后以相对速度w2流出动叶通道, 在流道中蒸汽对动叶产生一个轮 周方向的冲动力F1,该力对动叶 作功使动叶转动
2020/6/23
蒸汽流过无膨胀动叶通道时速度的变化
6
(二)反动作用原理
相关文档
最新文档