各种三角形边长的计算公式-三角形三边公式

合集下载

三角形对边长度计算公式

三角形对边长度计算公式

三角形对边长度计算公式三角形是几何学中的基本图形之一,它由三条边和三个顶点组成。

计算三角形的各边长度是解决三角形相关问题的基本步骤之一。

下面就来介绍一下三角形对边长度计算公式。

一、直角三角形的计算公式直角三角形是指其中一个角为90度的三角形。

在直角三角形中,我们可以利用勾股定理来计算三边的长度。

勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。

公式表达为:c² = a² + b²,其中a和b为直角边的长度,c 为斜边的长度。

二、一般三角形的计算公式一般三角形是指除了直角三角形以外的其他三角形。

在一般三角形中,我们可以利用余弦定理和正弦定理来计算三边的长度。

1. 余弦定理余弦定理是指在任意三角形中,任意一条边的平方等于其他两条边的平方和减去这两条边的乘积与两边夹角的余弦的乘积。

公式表达为:c² = a² + b² - 2abcosC,其中a、b为两边的长度,C为夹角的度数。

2. 正弦定理正弦定理是指在任意三角形中,任意一条边的长度与其对应的角的正弦之比等于另外两条边长度与其对应的角的正弦之比。

公式表达为:a/sinA = b/sinB = c/sinC,其中a、b、c为三边的长度,A、B、C为对应的角的度数。

通过利用余弦定理和正弦定理,我们可以根据已知的边长和角度来计算三角形的其他边长。

三、实际应用三角形的计算公式在实际应用中有着广泛的应用。

例如,在建筑工程中,我们需要计算三角形的边长来确定建筑物的尺寸和结构。

在导航和地理测量中,我们可以利用三角形的计算公式来确定地点的坐标和距离。

在飞行和航海中,我们可以利用三角形的计算公式来确定航线和飞行距离。

除了计算三角形的边长,我们还可以利用三角形的计算公式来解决其他相关问题。

例如,我们可以利用三角形的计算公式来计算三角形的面积、角度和高度等。

总结:三角形对边长度计算公式是解决三角形相关问题的基本工具。

各种三角形边长的计算公式-三角形三边公式

各种三角形边长的计算公式-三角形三边公式

各种三角形边长的计算公式解三角形解直角三角形(斜三角形特殊情况):勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.解斜三角形:在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB=c/SinC=2R(R为三角形外接圆半径)(2)余弦定理a^2=b^2+c^2-2bc*CosAb^2=a^2+c^2-2ac*CosBc^2=a^2+b^2-2ab*CosC注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bCcosb=(a^2+c^2-b^2)/2aCcosC=(a^2+b^2-C^2)/2ab斜三角形的解法:已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解.两边和夹角(如a、b、c)余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解.三边(如a、b、c)余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C在有解时只有一解.两边和其中一边的对角(如a、b、A)正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.勾股定理(毕达哥拉斯定理)内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°.[3]射影定理(欧几里得定理)内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积.几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB2=BD·BC(2)AC2;=CD·BC(3)ABXAC=BCXAD正弦定理内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径)余弦定理内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b2+c2-2bc×cosA此定理可以变形为:cosA=(b2+c2-a2)÷2bc。

三角形计算公式大全

三角形计算公式大全
2.
3.
外角公式:设三角形的一个内角为A,则其对应的外角为180度-A。
4.
5.
相关角公式:
6.
(1)同位角:两个三角形中,相同位置上的角度相等。
(2)内错角:两条平行线被一条横线所交,所成的内角互为补角。
(3)同旁内角:两条平行线被一条横线所交,所成的同旁内角互为补角。
四、边长公式
1.
正弦定理:设三角形的三个内角分别为A、B、C,对应的边长分别为a、b、c,则有a/sinA=b/sinB=c/sinC。
2.3.Βιβλιοθήκη 余弦定理:设三角形的三个内角分别为A、B、C,对应的边长分别为a、b、c,则有a²=b²+c²-2bc·cosA。
4.
5.
正切定理:设三角形的三个内角分别为A、B、C,对应的边长分别为a、b、c,则有tanA=sinA/cosA=a/b。
6.
五、特殊三角形
1.
等腰三角形:两边相等的三角形。
2.
(3)余弦定理:设三角形的三个内角分别为A、B、C,对应的边长分别为a、b、c,则三角形的面积S=1/2ab·sinC=1/2bc·sinA=1/2ac·sinB。
(4)高度公式:设三角形的底边为a,对应的高为h,则三角形的面积S=1/2ah。
三、角度公式
1.
内角公式:设三角形的三个内角分别为A、B、C,则有A+B+C=180度。
(1)底角相等。
(2)中线长等于底边长的一半。
(3)高线、中线和底边构成的三角形是直角三角形。
1.
等边三角形:三边相等的三角形。
2.
(1)三个内角都是60度。
(2)高线、中线和底边构成的三角形是等边三角形。

三角形的边长公式

三角形的边长公式

三角形的边长公式三角形边长是a、b、c。

边长公式:a²+b²=c²。

勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a²+b²=c²即直角三角形两直角边的平方和等于斜边的平方。

如果三角形的三条边a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

在三角形中,任意两条边的边长之和大于第三条边,任意两条边的边长之差小于第三条边。

在直角三角形中,两条直角边的平方和等于斜边的平方。

在直角三角形中,斜边上的中线等于斜边的一半。

直角三角形的两条右边的乘积等于斜边和斜边高的乘积。

三角形的三个内角之和等于180度;三角形的任意两条边之和大于第三条边;三角形的任意两条边之差小于第三条边;三角形的外角等于两个不相邻的内角之和。

应用:1.判断给定的三条线段能否构成三角形。

判断方法::当最短两边的和大于最长边时能组成三角形例:下列长度的三条线段,能否组成三角形。

①4cm,9cm,5cm。

②15cm,8cm,8cm③6cm,7cm,13cm④三条线段的长度比为2:3:5答案提示:最短两边的和大于最长边时能组成三角形,等于或小于最长边时不能。

因此②能组成,其余不能组成。

2、求第三边的取值范围。

例1、长度分别为2,7,x的三条线段能组成三角形,则x的取值可以是( )a.4b.5c.6d.9答案提示:根据三角形三边关系定理,因为7-2﹤x﹤7+2,即5﹤x﹤9,所以应选c。

3、求等腰三角形的边长或周长。

例1、若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为( )a.2cmb.4cmc.6cmd.8cm答案提示:等腰三角形要分类讨论:①当2cm为底边时,则腰长为(10-2)÷2=4此时三角形三边为2cm,4cm,4cm,根据最短两边的和大于最长边,能组成三角形。

②当2cm为腰长时,底边长为10-2-2=6此时三角形的三边长为2cm,2cm,6cm,因为2+2﹤6,所以不能组成三角形,因此应选a。

任意三角形边长的计算

任意三角形边长的计算

任意三角形边长的计算
计算任意三角形的边长可以使用勾股定理、余弦定理、正弦定理等方法。

勾股定理适用于直角三角形,公式为:直角边 a、b 所构成的直角三角形斜边 c 的长度等于 a、b 两直角边长度的平方和开根号,即 c=sqrt(a²+b²)。

而余弦定理和正弦定理适用于任意三角形。

余弦定理描述了三角形中一个角的余弦值与对边和两条邻边的关系,公式为:a²=b²+c²-2bc*cosA (其中 A 表示夹角,a 表示对边,b、c 表示邻边)。

正弦定理描述了三角形中一个角的正弦值与对边和与之相邻的两条边的关系,公式为:a/sinA=b/sinB=c/sinC。

通过使用这些公式,我们可以计算任意三角形的边长。

各种三角形边长的计算公式

各种三角形边长的计算公式

各种三角形边长的计算公式三角形是一个有三个边和三个角的几何图形。

在计算三角形的问题中,求解三角形的边长是常见的一个任务。

下面是常见的几种三角形边长的计算公式:1.直角三角形的边长计算:在直角三角形ABC中,如果已知两个边的长度a和b,可以根据勾股定理求得第三条边c的长度:c=√(a²+b²)如果已知斜边c和另外一条边的长度,可以根据勾股定理求得另外一条边的长度:a=√(c²-b²)或b=√(c²-a²)2.等腰三角形的边长计算:在等腰三角形ABC中,如果已知两个等边的长度a,可以根据勾股定理求得底边的长度b:b=√(4a²-a²)=a√3如果已知底边的长度b,可以根据勾股定理求得等边的长度a:a=√(b²/3)3.等边三角形的边长计算:在等边三角形ABC中,三个边长均相等,假设边长为a。

由于等边三角形的三个角均为60度,在应用三角函数时可得到下列关系:sin 60° = √3/2cos 60° = 1/2在等边三角形ABC中,可以得到三个边长的关系:a=b=c4.一般三角形的边长计算:对于一般的三角形ABC,如果已知三个角A、B、C和一个边长a,可以利用正弦定理或余弦定理计算其他边的长度。

正弦定理可以表示为:a/sin A = b/sin B = c/sin C余弦定理则可以表示为:a² = b² + c² - 2bc * cos Ab² = a² + c² - 2ac * cos Bc² = a² + b² - 2ab * cos C以上是常见的三角形边长计算公式,可以根据不同的已知条件选择适用的公式进行计算。

需要注意的是,在进行计算时应确保已知条件是足够确定的,否则可能会导致计算错误。

此外,根据问题的要求,还可能需要应用其他的几何知识和公式进行推导和计算。

三角形边长计算公式大全-求边长的公式

三角形边长计算公式大全-求边长的公式

各种三角形边长的计算公式解三角形解直角三角形(斜三角形特殊情况):勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。

比如:3,4,5。

他们分别是3,4和5的倍数。

常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.解斜三角形:在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。

(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab斜三角形的解法:已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。

两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。

三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。

两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。

勾股定理(毕达哥拉斯定理)内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

几何语言:若△ABC满足∠ABC=90°,则AB²+BC²=AC²勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC 满足,则∠ABC=90°。

各种三角形边长的计算公式

各种三角形边长的计算公式

各种三角形边长的计算公式解三角形解直角三角形(斜三角形特殊情况):勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。

比如:3,4,5。

他们分别是3,4和5的倍数。

常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.解斜三角形:在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。

(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab斜三角形的解法:已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。

两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。

三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。

两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。

勾股定理(毕达哥拉斯定理)内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

几何语言:若△ABC满足∠ABC=90°,则AB²+BC²=AC²勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC 满足,则∠ABC=90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种三角形边长的计算公式
解三角形
解直角三角形(斜三角形特殊情况):
勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.
解斜三角形:
在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab
斜三角形的解法:
已知条件定理应用一般解法
一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解.
两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解.
三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解.
两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180
˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.
勾股定理(毕达哥拉斯定理)
内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.几何语言:若△ABC满足∠ABC=90°,则AB²+BC²=AC²勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°.
[3]射影定理(欧几里得定理)
内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积.几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD²=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB²=BD·BC (2)AC²;=CD·BC (3)ABXAC=BCXAD
正弦定理
内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径)
余弦定理
内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦几何语言:在△ABC中,a²=b²+c²-2bc×cosA 此定理可以变形为:cosA=(b²+c²-a²)÷2bc
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档