带电粒子在磁场中的临界问题
2024届物理一轮复习讲义专题强化十七 带电粒子在匀强磁场中的多解和临界问题含答案

2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。
考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。
离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。
已知离子比荷为k ,不计重力。
若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
带电粒子磁场中运动临界极限多解分类汇编(经典)

带电粒子在磁场中运动的临界极值多解问题分类汇编一、基础题(圆周运动基本规律)1.四川卷如图所示,长方形abcd 长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T。
一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射入磁场区域A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在Oa边和ab边D.从aO边射入的粒子,出射点分布在ab边和be边2.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O在匀强磁场中做逆时针方向的匀速圆周运动,磁场方向竖直向下,且范围足够大,其俯视图如图所示,若小球运动到某点时,绳子突然断开,则关于绳子断开后,对小球可能的运动情况的判断错误的是()A.小球仍做逆时针方向的匀速圆周运动,但半径减小B.小球仍做逆时针方向的匀速圆周运动,半径不变C.小球做顺时针方向的匀速圆周运动,半径不变D.小球做顺时针方向的匀速圆周运动,半径减小3金属小球质量m带电-q,由长L的绝缘细线悬挂于图示匀强磁场中的O点,然后将小球拉到θ=600处由静止释放,小球沿圆弧运动到最低点时悬线上的张力恰好为0;求①磁场的磁感应强度B=?②小球住复摆动中悬线上的最大张力多少?二、临界、极值1、刚好穿出磁场边界的临界条件------轨迹与边界相切条形、矩形、三角形磁场临界4. (2010年宿州模拟)一质量为m、电荷量为q的带负电的粒子,从A点射入宽度为d、磁感应强度为B的匀强磁场中,MN、PQ为该磁场的边界线,磁感线垂直于纸面向里,如图所示.带电粒子射入时的初速度与PQ成45°角,且粒子恰好没有从MN射出.(不计粒子所受重力)(1)求该带电粒子的初速度大小;(2)求该带电粒子从PQ边界射出的出射点到A点的距离.6、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁场强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁场以速度v 平行极板射入磁场,欲使粒子不打在极板上,则粒子入射速度v 应满足什么条件?7.如图所示,一足够长的矩形区域abcd 内充满磁感应强度为B ,方向垂直纸面向里的匀强磁场.现从矩形区域ad 边的中点O 处,垂直磁场射入一速度方向与ad 边夹角为30°,大小为v 0的带正电的粒子.已知粒子质量为m ,电荷量为q ,ad 边长为l ,重力影响不计.(1)试求粒子能从ab 边射出磁场的v 0的范围; (2)在满足粒子从ab 边射出磁场的条件下,粒子在磁场中运动的最长时间是多少?8、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.9、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。
带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。
(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。
解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。
由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。
粒子在磁场内运行轨迹对应圆心角为πα35=。
而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。
带电粒子在有界磁场中的临界问题

带电粒子在有界磁场中的临界问题示例文章篇一:哎呀,我的天呐!“带电粒子在有界磁场中的临界问题”,这听起来可真让人头疼!老师在课堂上讲的时候,我一开始简直是一头雾水。
就像我在玩拼图,怎么都找不到关键的那几块一样,我怎么也搞不懂这带电粒子在磁场里到底是咋回事。
我就问我同桌:“嘿,你能明白这带电粒子在有界磁场里的临界问题不?”我同桌皱着眉头说:“我也是糊里糊涂的,感觉就像走进了一个迷宫,找不到出口。
”老师在黑板上画来画去,又是电场线,又是磁场线的,可我看着那些线条,就好像看到了一堆乱麻,怎么也理不清楚。
我心里直嘀咕:“这带电粒子难道是有魔法吗?怎么这么难搞懂!”后来老师又举了个例子,说带电粒子就像在操场上乱跑的小朋友,而磁场就像是操场周围的围墙。
我就在想,那这围墙得什么样,小朋友才能刚好在里面或者刚好跑出去呢?下课后,我去找学习好的班长请教。
我着急地问:“班长,这带电粒子在有界磁场中的临界问题,到底咋解决呀?”班长耐心地说:“别着急,你先想想,如果这个小朋友跑得特别快,是不是就容易冲出去?如果跑得慢,是不是就一直在里面?带电粒子也一样呀。
”我好像有点明白了,又好像还是有点迷糊。
回到家,我又翻开书,看了一遍又一遍,做了几道练习题,可还是会出错。
我就纳闷了,这带电粒子在有界磁场中的临界问题怎么就这么难呢?难道我真的就学不会了?不,我才不信呢!我一定要把它搞明白!经过我不断地努力,不断地思考,不断地请教老师和同学,我终于对这个问题有了一些头绪。
我发现只要抓住关键的几个点,比如粒子的速度、磁场的强度,还有粒子进入磁场的角度,就能慢慢找到解决问题的方法。
我想说,虽然这个问题曾经让我头疼不已,但是只要不放弃,努力去钻研,就一定能攻克它!学习就是这样,会遇到各种各样的难题,可只要我们坚持,就没有什么能难倒我们!示例文章篇二:哎呀,我是个小学生,这“带电粒子在有界磁场中的临界问题”听起来可真让人头疼啊!但老师既然讲了,我就努力去搞明白。
第53课时 匀强磁场中的临界极值和多解问题(题型研究课)

匀强磁场中的临界极值和多解问题(题型研究课)
结
束
2.(2016· 海南高考)如图,A、C 两点分别位于 x 轴和 y 轴上,∠OCA=30° ,OA 的长度为 L。在△OCA 区 域内有垂直于 xOy 平面向里的匀强磁场。 质量为 m、 电荷量为 q 的带正电粒子,以平行于 y 轴的方向从 OA 边射入磁场。已知粒子从某点射入时,恰好垂 直于 OC 边射出磁场,且粒子在磁场中运动的时间为 t0。不计重力。 (1)求磁场的磁感应强度的大小; (2)若粒子先后从两不同点以相同的速度射入磁场,恰好从 OC 边上 的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和; (3)若粒子从某点射入磁场后,其运动轨迹与 AC 边相切,且在磁场 5 内运动的时间为 t0,求粒子此次入射速度的大小。 3
匀强磁场中的临界极值和多解问题(题型研究课)
结
束
(2)设当 v0=v3 时,粒子恰好打不到荧光屏 上, 则这时粒子沿图中轨迹②从磁场的最高点 A 竖直向上射出磁场。由此可知,粒子在磁场中 的轨道半径 r3=R。又由洛伦兹力提供向心力, v32 得 qv3B=m ,解得 v3=1.5×106 m/s。由题意 r3 可知,当 v0>1.5× 106 m/s 时,粒子能打到荧光屏上。
匀强磁场中的临界极值和多解问题(题型研究课)
结
束
(1)根据边界条件,通过画动态图的方法,找出符合临界条 件的粒子轨迹。 (2)运用几何关系,求得粒子运动半径。 (3)根据洛伦兹力提供向心力建立方程。
匀强磁场中的临界极值和多解问题(题型研究课)
结
束
[集训冲关]
1.(多选)(2017· 常德月考)如图所示,宽为 d 的 有界匀强磁场的边界为 PP′、 QQ′。 一个 质量为 m、电荷量为 q 的微观粒子沿图示 方向以速度 v0 垂直射入磁场,磁感应强度 大小为 B,要使粒子不能从边界 QQ′射出,粒子的入射速度 v0 的最大值可能是下面给出的(粒子的重力不计) qBd A. m 2qBd C. 3m 2qBd B. m qBd D. 3m ( )
带电粒子在匀强磁场中的多解和临界问题

的距离L;
解析 粒子在磁场中的运动轨迹如图所示,粒子
在MO边界射出点为N
由洛伦兹力提供向心力得 解得 R=mqBv②
qvB=mRv2①
由几何关系可知粒子在磁场中运动轨迹所对应的圆心角 α=60°③
则 O、N 间的距离 L=R=mqBv。④
答案
mv qB
mv qB
(2)粒子在磁场中的运动时间;
解析 设粒子在匀强磁场中做匀速圆周运动的周期
带电粒子在匀强磁场中的多解和临界问题
学习目标
会分析带电粒子在匀强磁场中的多解问题和临界极值问题, 提高思维分析综合能力。
目录
CONTENTS
01 研透核心考点 02 提升素养能力
1
研透核心考点
考点一 带电粒子在磁场中运动的多解问题
考点二 带电粒子在磁场中运动的临界极值问题
考点一 带电粒子在磁场中运动的多解问题
4qBL D. 5m
解析 若粒子恰好从 A 点射出磁场,则轨道半径为 r1=L2,由 qv1B=mvr112可得 v1=qBmr1=q2BmL;若粒子恰好从 B 点射出磁场,则轨道半径为 r2=L,由 qv2B =mvr222可得 v2=qmBL。为使粒子不能经过正方形的 AB 边,粒子的速度 v<v1= q2BmL或 v>v2=qmBL,故 A 正确。
有一个交点,故粒子偏转角只可能为 40°,运动时间 t=34600°°T=29πqmB,A 正确, C 错误;若粒子带正电,将做顺时针方向的匀速圆周运动,无论轨迹与 ON 有 几个交点,粒子回到 OM 直线时,由圆周运动的对称性,速度方向必与 OM 成
考点12:旋转圆法--带电粒子在磁场中运动的临界问题

考点12:旋转圆法--带电粒子在磁场中运动的临界问题当粒子的入射速度大小确定而方向不确定时,所有不同方向入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转(作图)中,也容易发现“临界点”.另外,要重视分析时的尺规作图,规范而准确的作图可突出几何关系,使抽象的物理问题更形象、直观,如图. ①适用条件a.速度大小一定,方向不同粒子源发射速度大小一定,方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若入射初速度为v 0,由q v 0B =m v 20R 得圆周运动半径为R =m v 0qB .b.轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点O 为圆心、半径R =m v 0qB 的圆(这个圆在下面的叙述中称为“轨迹圆心圆”)上. ②界定方法将半径为R =m v 0qB 的圆的圆心沿着“轨迹圆心圆”移动,从而探索出临界条件,这种方法称为“旋转圆法”.1.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.2.如图所示,在边长ab =1.5L 、bc =3L 的矩形区域内存在着垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域内各个方向发射速度大小相等的同种带电粒子.若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用.下列说法正确的是( )A.粒子带负电C.粒子的比荷为πBt 0D.粒子在磁场中运动的最长时间为2t 0 2.D[由题设条件作出以O 1为圆心的轨迹圆弧,如图所示,由左手定则可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ=32L L =32,解得θ=π3,可得T =6t 0,选项B 错误;根据洛伦兹力公式和牛顿第二定律可得T =2πm qB ,解得m q =3t 0Bπ,选项C 错误;根据周期公式,粒子在磁场中运动时间t =mαqB ,在同一圆中,半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是以O 2为圆心的圆弧,如图所示,由图中几何关系可知α=2π3,解得t =2t 0,选项D 正确.]3.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.4.如图所示,在0≤x ≤3a 的区域内存在与xOy 平面垂直的匀强磁场,磁感应强度大小为B .在t =0时刻,从原点O 发射一束等速率的相同的带电粒子,速度方向与y 轴正方向的夹角分布在0°~90°范围内.其中,沿y 轴正方向发射的粒子在t =t 0时刻刚好从磁场右边界上P (3a ,3a )点离开磁场,不计粒子重力,下列说法正确的是( )A .粒子在磁场中做圆周运动的半径为3aB .粒子的发射速度大小为4πa t 0C .带电粒子的比荷为4π3Bt答案 D解析 根据题意作出沿y 轴正方向发射的带电粒子在磁场中做圆周运动的运动轨迹如图所示, 圆心为O ′,根据几何关系,可知粒子做圆周运动的半径为r =2a ,故A 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3 ,运动时间t 0=2π3×2a v 0,解得:v 0=4πa3t 0,选项B 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3,对应运动时间为t 0,所以粒子运动的周期为T =3t 0,由Bq v 0=m ⎝⎛⎭⎫2πT 2r ,则q m =2π3Bt 0,故C 错误;在磁场中运动时间最长的粒子的运动轨迹如图所示,由几何知识得该粒子做圆周运动的圆心角为4π3,在磁场中的运动时间为2t 0,故D 正确.5.如图所示,半径为r 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场边界上A 点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k ,速度大小为2kBr 。
带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)建议用时:60分钟带电粒子在磁场中的运动A.M带正电,N带负电B.M的速率小于N的速率A.1kBL,0°B3【答案】B【详解】若离子通过下部分磁场直接到达根据几何关系则有:R由:2v qvB mR=可得:qBLv kBLm==根据对称性可知出射速度与当离子在两个磁场均运动一次时,如图乙所示,因为两个磁场的磁感应强度大小均为根据洛伦兹力提供向心力,有:可得:122qBLv kBLm==此时出射方向与入射方向相同,即出射方向与入射方向的夹角为:通过以上分析可知当离子从下部分磁场射出时,需满足:此时出射方向与入射方向的夹角为:A.从ab边射出的粒子的运动时间均相同B.从bc边射出的粒子在磁场中的运动时间最长为C.粒子有可能从c点离开磁场D.若要使粒子离开长方形区域,速率至少为可见从ab射出的粒子做匀速圆周运动的半径不同,对应的圆心角不相同,所以时间也不同,故B.从bc边射出的粒子,其最大圆心角即与A .粒子的速度大小为2qBdmB .从O 点射出的粒子在磁场中的运动时间为C .从x 轴上射出磁场的粒子在磁场中运动的最长时间与最短时间之比为D .沿平行x 轴正方向射入的粒子离开磁场时的位置到得:R d=由洛仑兹力提供向心力可得:Bqv m=得:qBd v m=A 错误;A .如果0v v >,则粒子速度越大,在磁场中运动的时间越长B .如果0v v >,则粒子速度越大,在磁场中运动的时间越短C .如果0v v <,则粒子速度越大,在磁场中运动的时间越长D .如果0v v <,则粒子速度越大,在磁场中运动的时间越短【答案】B该轨迹恰好与y 轴相切,若上移,可知,对应轨迹圆心角可知,粒子在磁场中运动的时间越短,故CD .若0v v <,结合上述可知,飞出的速度方向与x 轴正方向夹角仍然等于A .粒子能通过cd 边的最短时间B .若粒子恰好从c 点射出磁场,粒子速度C .若粒子恰好从d 点射出磁场,粒子速度7.(2024·广西钦州·模拟预测)如图所示,有界匀强磁场的宽度为粒子以速度0v垂直边界射入磁场,离开磁场时的速度偏角为( )A.带电粒子在匀强磁场中做圆周运动的轨道半径为B.带电粒子在匀强磁场中做圆周运动的角速度为C.带电粒子在匀强磁场中运动的时间为D.匀强磁场的磁感应强度大小为【答案】B【详解】A.由几何关系可知,带电粒子在匀强磁场中做圆周运动的轨道半径为:A.该匀强磁场的磁感应强度B.带电粒子在磁场中运动的速率C.带电粒子在磁场中运动的轨道半径D.带电粒子在磁场中运动的时间C.根据几何关系可得:cos30aR = o所以:233R a =故C正确;AB.在磁场中由洛伦兹力提供向心力,即:A.从c点射出的粒子速度偏转角度最大C.粒子在磁场运动的最大位移为10.(2024·四川乐山·三模)如图所示,在一个半径为面向里的匀强磁场,O 为区域磁场圆心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G
F
E
R2
R1
v1
o2
o1
D
答案:要粒子能从AC间离开磁场,粒子速率应满足 3(2 3)aqB v 3aqB
m
m
粒子从距A点 (2 3 3)a ~ 3a的 间射出EG
D.粒子在磁场中运动的轨迹长度与时间的比值与θ无关
ACD
M
P
θ v0
O
N
Q
【习题】
1、如图所示.长为L的水平极板间,有垂直纸面向内的
匀强磁场,磁感强度为B,板间距离也为L,板不带电,
现有质量为m,电量为q的带正电粒子(不计重力),从左
边极板间中点处垂直磁感线以速度v水平射入磁场,欲
使粒子不打在极板上,可采用的办法是:
A.使粒子的速度v<BqL/4m; B.使粒子的速度v>5BqL/4m; C.使粒子的速度v>BqL/m;
O2
A
B r2
D.使粒子速度BqL/4m<v<5BqL/4m。 r2
v
O1
+q v
拓展:一大群这种带电粒子沿平行于板的方向从各个 位置以速度v从金属板的左端射入板间,为了使这些正
电荷都不从板间穿出,这些带电粒子的速度需满足什
垂直
θv
B
的直
线上
①a 速度较小时粒子作部分b 圆周
运动后从原边界飞出;②速度
在某一范围内从侧面边界飞;
③速度较大时粒子作部分圆周
运动从另一侧面边界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
【例题4】 .如图所示,一足够长的矩形区域abcd内充满 方向垂直纸面向里的、磁感应强度为B的匀强磁场, 在ad边中点O方向垂直磁场射入一速度方向跟ad边夹 角θ=300 、大小为v0的带电粒子,已知粒子质量为m、 电量为q,ab边足够长,ad边长为L,粒子的重力不 计。求:⑴.粒子能从ab边上射出磁场的v0大小范围。 ⑵.如果带电粒子不受上述v0大小范围的限制,求粒子 在磁场中运动的最长时间。
d r(1 cos )
C
EB
. v θO
B
D
F
qvB m v2 r
v eBr eB d
m m (1 cos )
思考:求电子在磁场中运动的 最长时间是多长?
t 2 2 2m 2( )m
2 eB
eB
【例题3】 .如图所示,相互平行的直线M、N、P、Q间 存在垂直于纸面的匀强磁场。某带负电粒子由O点垂直 于磁场方向射入,已知粒子速率一定,射入时速度方 向与OM间夹角的范围为0<θ<90º,不计粒子的重力, 则: A.θ越大,粒子在磁场中运动的时间可能越短 B.θ越大,粒子在磁场中运动的路径一定越长 C.θ越大,粒子在磁场中运动轨迹的圆心到MN的距离一 定越小
.a L s b
◆带电粒子在三角形磁场区域中的运动
【例题6】 .如图所示,在边长为2a的等边三角形△ABC 内存在垂直纸面向里磁感应强度为B的匀强磁场,有一
带电量为q、质量为m的粒子从距A点 3a 的D点垂直于
AB方向进入磁场。若粒子能从AC间离开磁场,求粒 子速率应满足什么条件及粒子从AC间什么范围内射出?
①速度较小时,作半圆运动后 从原边界飞出;②速度增加为 某临界值时,粒子作部分圆周 运动其轨迹与另一边界相切; ③速度较大时粒子作部分圆周 运动后从另一边界飞出
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
么条件?
5d
+v
+v
+v
+v
B
M
d
N
带电粒子沿逆时针方向做半径相同的匀速圆周运动,如果从 下板进入场区的带电粒子不从板间穿出,则这些正电荷就都 不从板间穿出.
eBd v 3eBd
2m
m
◆带电粒子在矩形磁场区域中的运动
圆心
在过
入射
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
B
e
v0
d
B
变化2:若初速度向下与边界成 α = 60 0,则初速度有什么要求?
变化3:若初速度向上与边界成 α = 60 0,则初速度有什么要求?
◆带电粒子在平行直线边界磁场区域中的运动
QP
P
Q
Q
B
v
v
v
S
圆心在磁场原边界上
S
S
圆心在过入射点跟边 圆心在过入射点跟速
界垂直的直线上
度方向垂直的直线上
【例题1】如图所示,一束电子(电量为e)以速度 V垂直射入磁感应强度为B、宽度为d的匀强磁
场,穿透磁场时的速度与电子原来的入射方向
的夹角为300.求: (1)电子的质量 m
B ev
(2)电子在磁场中的运动时间t
θ
v
m qBd 2v
t 30 T d
360 12v
θ
d
变化1:在上题中若电子的电量e,质量m,磁感 应强度B及宽度d已知,若要求电子不从右边界穿 出,则初速度V0有什么要求?
量变积累到一定程度发生质变,出现临界状态.
【例题2】在真空中宽d的区域内有匀强磁场B,质量
为m,电量为e,速率为v的电子从边界CD外侧垂
直射入磁场,入射方向与CD夹角θ,为了使电子能
从磁场的另一侧边界EF射出,v应满足的条件是:
A.v>eBd/m(1+sinθ) B.v>eBd/m(1+cosθ) C.v> eBd/msinθ D.v< eBd/mcosθ
a
b
O
V0
d
c
2θ 2θ
θ
V0
【例题5】 .如图,真空室内存 在匀强磁场,磁场方向垂直于纸 面向里,磁感应强度的大小 B=0.60T,磁场内有一块平面感 光板ab,板面与磁场方向平行,在 距ab的距离L=16cm处,有一个 点状的放射源S,它向各个方向发 射α粒子,α粒子的速度都是 v=4.8x106 m/s,已知α粒子的电 荷与质量之比q/m=5.0x107C/kg 现只考虑在图纸平面中运动的α 粒子,求ab上被α粒子打中的区 域的长度.