带电粒子在有界磁场中运动的临界问题

合集下载

(完整版)带电粒子在有界磁场中运动的临界问题

(完整版)带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。

粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。

如何分析这类相关的问题是本文所讨论的内容。

一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

磁场临界问题

磁场临界问题

带电粒子在有界磁场中运动的临界问题湖北省黄梅县第五中学石成美“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD 边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

带电粒子在有界匀强磁场中运动的临界问题

带电粒子在有界匀强磁场中运动的临界问题
轨迹圆的圆心是在以O为圆心、以R=mv/qB为半径的圆弧上
分析方法:
(1)找圆心的集合, 画各个v方向的圆, 找临界圆
(2)先画某个v方向 上的圆,再将圆绕入 射点旋转,找临界圆 (“硬币法”)
应用2.如图所示,真空室内存在匀强磁场,磁场方向垂
直于纸面向里,磁感应强度的大小B=0.60T,磁场内有
O
几何法求半径(抓住弦、弧、半
径、角度的关系;
3、找回旋角 确定运动时间
(α单位为弧度) S为弧长
类型一:给定有界匀强磁场,研究带电粒子运动情况
情景1:带正电粒子入射速度方向确定,而大小变化,垂直进入无
界匀强磁场后所有可能的运动轨迹,这些轨迹有什么共同点
粒子进入单
边磁场时,入
射速度与边 界夹角等于
a
b
L
C s
解答:
DB
a
A
D
Bb
R L 2R
C s
情景3 :入射粒子的速度大小、方向都改变,那会是什么情况?
如图所示,两个同心圆为匀强磁场的内外边界,内半径为R1,外 半径为R2,磁场方向垂直纸面向里,已知带正电粒子的电荷为q, 质量为m,匀强磁场的磁感应强度为B,带正电的粒子以某一速 度v从内边界上的A点射入磁场区域。
y
已知圆的一条弦,以此弦为 直径的圆的面积是最小的
30°
a
v
R
r O’
O
b
x
v 60°
思考:若磁场区域是矩形,求最小的矩形面积
小结
带电粒子在有界磁场中运动时,经常会有极 值与临界问题的出现。--找临界圆是关键
类型一:给定有界磁场,研究带电粒子运动情况
情景1:入射速度方向确定,而大小变化

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题“带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题.一、 带电粒子在“圆形磁场区域”中的运动例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解析:设粒子在洛仑兹力作用下的轨道半径为R ,由Rv m Bq v 2= 得cm m m Bq mv R 2020.0102.3332.0102.31064.619627==⨯⨯⨯⨯⨯==-- 虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线.由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.如图2,作出磁偏转角ϕ及对应轨道圆心O ',据几何关系得212sin==R r ϕ,得060=ϕ,即α粒子穿过磁场空间的最大偏转角为060.二、带电粒子在“长方形磁场区域”中的运动例2、如图3,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.解析:如图4,设粒子以速率1v 运动时,粒子正好打在左极板边缘(图4中轨迹1),则其圆轨迹半径为41d R =,又由1211R v m Bqv =得m Bqdv 41=,则粒子入射速率小于1v 时可不打在板上.设粒子以速率2v 运动时,粒子正好打在右极板边缘(图4中轨迹2),由图可得22222)2(d R L R -+=,则其圆轨迹半径为d d L R 44222+=,又由2222R v m Bqv =得md d L Bq v 4)4(222+=,则粒子入射速率大于2v 时可不打在板上.综上,要粒子不打在板上,其入射速率应满足:mBqdv 4<或md d L Bq v 4)4(22+>.三、带电粒子在“三角形磁场区域”中的运动例3、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,图3⨯⨯⨯⨯⨯⨯⨯⨯→∙d Lv 图4v2v 图5DB求粒子速率应满足什么条件及粒子从AC间什么范围内射出.解析:如图6所示,设粒子速率为1v 时,其圆轨迹正好与AC边相切于E点. 由图知,在E AO 1∆中,11R E O =,113R a A O -=,由AO E O 11030cos =得11323R a R -=,解得a R )32(31-=,则a R a AO AE )332(23211-=-==. 又由1211R vm Bqv =得m aqB m BqR v )32(311-==,则要粒子能从AC间离开磁场,其速率应大于1v .如图7所示,设粒子速率为2v 时,其圆轨迹正好与BC边相切于F点,与AC相交于G点.易知A点即为粒子轨迹的圆心,则a AG AD R 32===.又由2222R v m Bqv =得m aqBv 32=,则要粒子能从AC间离开磁场,其速率应小于等于2v .综上,要粒子能从AC间离开磁场,粒子速率应满足maqBv m aqB3)32(3≤<-. 粒子从距A点a a 3~)332(-的EG 间射出.四、带电粒子在“圆环形磁场区域”中的运动例4、据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图8所示的是一个截面为内径m R 6.01=、外径mR 2.12=图8图6D1oA的环状区域,区域内有垂直于截面向里的匀强磁场.已知氦核的荷质比kg c mq/108.47⨯=,磁场的磁感应强度T B 4.0=,不计带电粒子重力.(1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速度v 的大小与它在磁场中运动的轨道半径r 有关,试导出v 与r 的关系式.(2)若氦核沿磁场区域的半径方向平行于截面从A 点射人磁场,画出氦核在磁场中运动而不穿出外边界的最大圆轨道示意图.(3)若氦核在平行于截面从A 点沿各个方向射人磁场都不能穿出磁场外边界,求氦核的最大速度.解析:(1)设氦核质量为m ,电量为q ,以速率v 在磁感强度为B 的匀强磁场中做半径为r 的匀速圆周运动,由洛仑兹力公式和牛顿定律得R v m Bqv 2=,则mBqr v =.(2)所求轨迹示意图如图9所示(要与外圆相切)(3)当氦核以m v 的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以m v 速度沿各方向射入磁场区的氦核都不能穿出磁场外边界,如图10所示.由图知m R R r 3.0212=-=',又由r v m Bqv 2=得Bq mv r =,在速度为m v 时不穿出磁场外界应满足的条件是r Bqmv m'<, 则s m mr Bq v m /1076.53.0108.44.067⨯=⨯⨯⨯='≤. 五、带电粒子在“宽度一定的无限长磁场区域”中的运动例5、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,图9图10已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由r v m Bev 2=可得Bemv r m m =,代入数据解得d m r m 21022=⨯=-. 该电子运动轨迹圆心在A板上H处,恰能击中B板M处.随着电子速度的减少,电子轨迹半径也逐渐减小.击中B板的电子与Q点最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B板MN区域和A板PH区域.在∆MFH中,有d d d MF HM FH 3)2(2222-=-=,s m d PF QM /1068.2)32(3-⨯=-==, m d QN 2101-⨯==,m d PH 21022-⨯==.电子能击中B板Q点右侧与Q点相距m m 23101~1068.2--⨯⨯的范围.电子能击中A板P点右侧与P点相距m 2102~0-⨯的范围.(2)如图13所示,要使P点发出的电子能击中Q点,则有Be mv r =,2sin d r =θ. 解得6108sin ⨯=θv .v 取最大速度s m /102.37⨯时,有41sin =θ,41arcsin min =θ;v 取最小速度时有2max πθ=,s m v /1086min ⨯=.图13P所以电子速度与θ之间应满足6108sin ⨯=θv ,且]2,41[a r c s i n πθ∈,]/102.3,/108[76s m s m v ⨯⨯∈.六、带电粒子在“单边磁场区域”中的运动例6、如图14所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解析:带电粒子在磁场中运动时有R v mBqv 2=,则cm m Bq mv R 101.0106.1100.1100.1106.1182425==⨯⨯⨯⨯⨯⨯==---.如图15所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的直径时,A 点既为粒子能打到y 轴上方的最高点.因cm R Op 10==,cm R AP 202==,则cm OP AP OA 31022=-=. 当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到y 轴下方的最低点,易得cm R OB 10==.综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-.cm/图14o cm x /cmy /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯∙Welcome To Download !!!欢迎您的下载,资料仅供参考!。

2013带电粒子在有界磁场中运动的临界问题

2013带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。

二、带电粒子在有界磁场中运动类型的分析1.给定有界磁场(1)确定入射速度的大小和方向,判定带电粒子出射点或其它【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图T动态分析T找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。

)二、常见题型(B为磁场的磁感应强度,V。

为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率V。

垂直匀强磁场射入,入射方向与CD边界夹角为9。

已知电子的质量为m电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v o至少多大?分析:如图2,通过作图可以看到:随着V。

的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点0正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m电量为e、速度为v o=BeL/ m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP,打在O点左侧最远距离OO ___ 。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m带电荷量为一q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题此类问题的解题关键是寻找临界点,寻找临界点的有效方法是:方法:轨迹圆的缩放:当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”1、一个质量为m,带电量为+q的粒子(不计重力),从O点处沿+y方向以初速度v0射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy平面向里,它的边界分别是y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________时,粒子将从上边界射出:当B满足条件_________时,粒子将从左边界射出:当B满足条件_________时,粒子将从下边界射出。

2、如图所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。

要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域?3、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ= 30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围.(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间4、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.小结:带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。

粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。

如何分析这类相关的问题是本文所讨论的内容。

一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。

二、带电粒子在有界磁场中运动类型的分析1.给定有界磁场(1)确定入射速度的大小和方向,判定带电粒子出射点或其它【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。

一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。

若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。

解析:带正电粒子射入磁场后,由于受到洛仑兹力的作用,粒子将沿图6所示的轨迹运动,从A点射出磁场,O、A间的距离为l,射出时速度的大小仍为v,射出方向与x轴的夹角仍为θ。

由洛仑兹力公式和牛顿定律可得,,(式中R为圆轨道的半径)解得R=mv/qB①圆轨道的圆心位于OA的中垂线上,由几何关系可得l/2=Rsinθ②联立①、②两式,解得。

点评:本题给定带电粒子在有界磁场中运动的入射点和出射点,求该粒子的电量和质量之比,也可以倒过来分析,求出射点的位置。

在处理这类问题时重点是画出轨迹图,根据几何关系确定轨迹半径。

(2)确定入射速度的方向,而大小变化,判定粒子的出射范围【例2】如图7所示,矩形匀强磁场区域的长为L,宽为L/2。

磁感应强度为B,质量为m,电荷量为e的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v 的取值范围?解析:(1)带电粒子射入磁场后,由于速率大小的变化,导致粒子轨迹半径的改变,如图所示。

当速率最小时,粒子恰好从d点射出,由图可知其半径R 1=L/4,再由R1=mv1/eB,得当速率最大时,粒子恰好从c点射出,由图可知其半径R2满足,即R2=5L/4,再由R2=mv2/eB,得电子速率v的取值范围为:。

点评:本题给定带电粒子在有界磁场中运动的入射速度的方向,由于入射速度的大小发生改变,从而改变了该粒子运动轨迹半径,导致粒子的出射点位置变化。

在处理这类问题时重点是画出临界状态粒子运动的轨迹图,再根据几何关系确定对应的轨迹半径,最后求解临界状态的速率。

(3)确定入射速度的大小,而方向变化,判定粒子的出射范围【例3】(2004年广东省高考试题)如图8所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s,已知α粒子的电荷与质量之比q/m=5.0×107C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度。

解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有qvB=mv2/R,由此得R=mv/qB,代入数值得R=10cm。

可见,2R>l>R,如图9所示,因朝不同方向发射的α粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是α粒子能打中的左侧最远点。

为定出P1点的位置,可作平行于ab的直线cd,cd到ab的距离为R,以S为圆心,R为半径,作弧交cd于Q点,过Q作ab的垂线,它与ab 的交点即为P1。

,再考虑N的右侧。

任何α粒子在运动中离S的距离不可能超过2R,以2R为半径、S为圆心作圆,交ab于N右侧的P2点,此即右侧能打到的最远点。

由图中几何关系得,所求长度为P1P2=NP1+NP2,代入数值得P1P2=20cm。

点评:本题给定带电粒子在有界磁场中运动的入射速度的大小,其对应的轨迹半径也就确定了。

但由于入射速度的方向发生改变,从而改变了该粒子运动轨迹图,导致粒子的出射点位置变化。

在处理这类问题时重点是画出临界状态粒子运动的轨迹图(对应的临界状态的速度的方向),再利用轨迹半径与几何关系确定对应的出射范围。

2.给定动态有界磁场(1)确定入射速度的大小和方向,判定粒子出射点的位置【例4】(2006年天津市理综试题)在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析:(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷。

如图11所示,粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径r=R,又,则粒子的荷质比为。

(2)粒子从D点飞出磁场速度方向改变了60°角,故AD弧所对圆心角60°,粒子做圆周运动的半径,又,所以,粒子在磁场中飞行时间:。

点评:本题给定带电粒子在有界磁场中运动的入射速度的大小和方向,但由于有界磁场发生改变(包括磁感应强度的大小或方向的改变),从而改变了该粒子在有界磁场中运动的轨迹图,导致粒子的出射点位置变化。

在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,再利用轨迹半径与几何关系确定对应的出射点的位置。

(2)确定入射速度和出射速度的大小和方向,判定动态有界磁场的边界位置【例5】(1994年全国高考试题)如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。

为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。

若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。

重力忽略不计。

解析:质点在磁场中作半径为R的圆周运动,qvB=(Mv2)/R,得R=(MV)/(qB)。

根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆周,这段圆弧应与入射方向的速度、出射方向的速度相切。

如图13所示,过a点作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O′点就是圆周的圆心。

质点在磁场区域中的轨道就是以O′为圆心、R为半径的圆(图中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上。

在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周。

所以本题所求的圆形磁场区域的最小半径为:,所求磁场区域如图13所示中实线圆所示。

点评:本题给定带电粒子在有界磁场中运动的入射速度和出射速度的大小和方向,但由于有界磁场发生改变(磁感应强度不变,但磁场区域在改变),从而改变了该粒子在有界磁场中运动的轨迹图,导致粒子的出射点位置变化。

在处理这类问题时重点是画出磁场发生改变后粒子运动的轨迹图,确定临界状态的粒子运动轨迹图,再利用轨迹半径与几何关系确定对应的磁场区域的位置。

综上所述,运动的带电粒子垂直进入有界的匀强磁场,若仅受洛仑兹力作用时,它一定做匀速圆周运动,这类问题虽然比较复杂,但只要准确地画出运动轨迹图,并灵活运用几何知识和物理规律,找到已知量与轨道半径R、周期T的关系,求出粒子在磁场中偏转的角度或距离以及运动时间不太难。

【巩固练习】1.(2005年理综I)如图14所示,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。

许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。

不计重力,不计粒子间的相互影响。

下列图中阴影部分表示带电粒子可能经过的区域,其中。

哪个图是正确的?A.B.C.D.答案:A2.(1999年全国高考试题)如图15所示中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L不计重力及粒子间的相互作用。

(1)求所考察的粒子在磁场中的轨道半径;(2)求这两个粒子从O点射入磁场的时间间隔。

答案:(1)R=mv/qB;(2)△t=4marcco s(LqB/2mv)/qB。

3.(2007年武汉市理综模拟试题)如图16所示,现有一质量为m、电量为e的电子从y轴上的P(0,a)点以初速度v平行于x轴射出,为了使电子能够经过x轴上的Q(b,0)点,可在y轴右侧加一垂直于xoy平面向里、宽度为L 的匀强磁场,磁感应强度大小为B,该磁场左、右边界与y轴平行,上、下足够宽(图中未画出)。

相关文档
最新文档