无机结合稳定材料的击实试验方法

合集下载

无机结合料稳定材料检测实施细则

无机结合料稳定材料检测实施细则

无机结合料稳定材料(外掺料)检测实施细则一、检测项目无机结合料含水量、击实、无侧限抗压强度、水泥或石灰剂量、石灰化学分析、粉煤灰细度、粉煤灰需水量比、粉煤灰含水量、粉煤灰安定性、粉煤灰烧失量、粉煤灰比表面积、石灰粉煤灰密度。

二、检测依据《公路工程无机结合料稳定材料试验规程》JTG E51-2009《用于水泥和混凝土中的粉煤灰》 GB1596-2005《粉煤灰混凝土应用技术规程》 DG/TJ 08-230-2006《水泥标准稠度用水量、凝结时间、安定性检验方法》GB/T 1346-2001三、检测方法1.无机结合料含水量(T 0801-2009烘干法)1.1目的和适用范围本法是测定无机结合料稳定土含水量的标准方法。

在105℃~110℃的条件下烘干到恒重的稳定土称为干稳定土的质量之比的百分率称为稳定土的含水量。

1.2仪器设备电热鼓风干燥箱(编号TG-05);电子天平(编号TG-03);电子天平(编号SH-06)。

1.3试验步骤1.3.1在开始试验前后应记录试验室的环境条件和仪器设备使用台帐。

1.3.2细粒土,称铝盒质量并精确至0.01g(m1),试样约50g放入铝盒中,称其质量并精确至0.01g(m2)。

中粒土,称铝盒质量精确至0.1g(m1)试样至少500g放入铝盒中称其质量并精确至0.1g(m2)。

粗粒土,称铝盒质量并精确至0.1g(m1),试样至少2000g放入铝盒中,称其质量并精确至0.1g(m2)。

1.3.3将其称好的试样与铝盒一起放到已达110℃的烘箱内进行烘干,需要的烘干时间随土类和试样数量而变。

当冷却试样连续两次称量的差(每次间隔4h)不超过原试样质量的0.1%时,即认为已经烘干。

1.3.4烘干后,从烘箱中取出盛有试样的铝盒,放置冷却。

1.3.5将铝盒和烘干的试样称其质量并精确至细粒土0.01g、中粒土0.1g、粗粒土0.1g(m3)。

1.4计算用下式计算无机结合料稳定土的含水量W(%)W=( m2- m3)×100/( m3- m1)式中:m1—铝盒的质量(g);m2—铝盒和湿稳定土的合计质量(g);m3—铝盒和干稳定土的合计质量(g);1.5结果无机结合料稳定土的含水量W两次平均值,保留至小数点后两位。

无机结合料稳定材料振动压实检测方案

无机结合料稳定材料振动压实检测方案

无机结合料稳定材料振动压实检测方案1.适用范围本方法适用于在室内对水泥、石灰、石灰粉煤灰稳定粒料土基层材料进行振动压实试验,以确定这些材料在振动压实条件下的含水量-干密度曲线,确定其最佳含水量和最大干密度。

2.试验目的确定水泥、石灰、石灰粉煤灰稳定粒料土基层材料在振动压实条件下的含水量-干密度曲线,确定其最佳含水量和最大干密度。

3.试验依据《公路工程无机结合料稳定材料试验规程》JTG E51-2009/T0842-20094.检验人员检验人员均为持证上岗人员。

5.试验设备钢模、振动压实机、电子天平、方孔筛、量筒、脱模器6.取样方法对集料进行筛分,按预定级配配好集料。

如果集料最大公称粒径不大于37.5mm,则直接备样;如果大于37.5mm的粒径含量超过10%,则过37.5mm筛备用,筛分后记录超尺寸颗粒的百分率。

在预定做击实试验的前一天,取有代表性的试料测定其风干含水量。

对细集料,式样应不少于100g;对于中粒料,式样应不少于1000g;对于粗集料,式样应不少于2000g。

同时测定石灰及水泥的含水量。

7.方法与步骤7.1试验步骤7.1.1将准备好的各种粗、细集料按照预定的混合料级配配制5~6份,每份试料的干质量约为5.5~6.5Kg。

同时预定5~6个不同含水量,依次相差1%~2%,且其中至少有两个大于和两个小于最佳含水量。

7.1.2将1份试料平铺于金属盘内,将事先计算得到的该份史料中应加的水量均匀地喷洒在试料上,用小铲将试料充分拌合到均匀状态,然后装入密闭容器或塑料口袋内浸润备用。

将所需要的结合料,如水泥加到浸润后的试样中,并用小铲,泥刀或其他工具充分拌合到均匀状态。

加有水泥的式样拌和后,应在1h内完成振实试验。

拌和后超过1h的式样,应予作废(石灰稳定和石灰粉煤灰稳定除外)。

7.1.3调节振动压实机上下车的配重、偏心块夹角和变频器的频率。

对无机结合料稳定粒料一般选用面压力约为0.1MPa,激振力约6800N,振动频率为28~30Hz的振实条件。

无机结合料试验规程完整

无机结合料试验规程完整

最大干密度T0804-1994无机结合料稳定材料击实试验方法(公路工程无机结合料稳定材料试验规程 JTG E51-2009)1适用围1.1 本方法适用于在规定的试筒,对水泥稳定材料(在水泥水化前)、石灰稳定材料及石灰(或水泥)粉煤灰稳定材料进行击实试验,以绘制稳定材料的含水量——干密度关系曲线,从而确定其最佳含水量和最大干密度1.2 试验集料的最大公称粒径宜控制在37.5mm以(方孔筛)。

1.3 试验方法类别。

本实验方法分三类,各类击实方法的主要参数列于表T0804-1。

2 仪器设备2.1 击实筒:小型,径100mm、高127mm的金属圆筒,套环高50mm,底座;大型,径152mm、高170mm的金属圆筒,套环高50mm直径151mm 和高50mm的筒垫块,底座。

2.2 多功能自控电动击实仪:击锤的底面直径50mm,总质量4.5kg。

击锤在导管的总行程为450mm。

可设置击实次数,并保证击锤自由垂直落下,落高应为450mm,锤迹均匀分布于试样面。

2.3 电子天平:量程4000g,感量0.01g。

2.4 电子天平:量程15kg,感量0.1g。

2.5方孔筛:孔径53mm、37.5mm、26.5mm、19mm、4.75mm、2.36mm 的筛各1个。

2.6 量筒:50ml、100ml、和500ml的量筒各1个。

2.7 直刮刀:长200~250mm、宽30mm和厚3mm,一侧开口的直刮刀,用以刮平和修饰粒料大试件的表面。

2.8 刮土刀:长150~200mm、宽约20mm的刮刀,用以刮平和修饰小试件的表面。

2.9 工字型刮平刀:30mm×50mm×310mm,上下两面和侧面均刨平。

2.10 拌和工具:约400mm×600mm×70mm的长方形金属盘、拌和用平头小铲等。

2.11 脱模器2.12 测定含水量用得吕盒、烘箱等其他用具。

2.13 游标卡尺3试验准备3.1 将具有代表性的风干试料(必要时,也可以试在50℃烘箱烘干)用木锤捣碎或用木碾碾碎。

无机结合料稳定材料击实试验方法

无机结合料稳定材料击实试验方法

无机结合料稳定材料击实试验方法2仪器设备2.1击实筒:小型,内径100mm、高127mm的金属圆筒,套环高50mm,底座;大型,内径152mm、高170mm的金属圆筒,套环高50mm,直径151mm和高50mm的筒内垫块,底座。

2.2多功能自控电动击实仪:击锤的底面直径50mm,总质量 4.5kg。

击锤在导管内的总行程为450mm。

可设置击实次数,并保证击锤自由垂直落下,落高应为450mm,锤迹均匀分布于试样面。

2.3电子天平:量程4 OOOg,感量O.Olg。

2.4电子天平:量程15kg,感量0. lg。

2.5 方孔筛:孔径 53mm、37. 5mm,26. 5mm、19mm、4. 75mm、2. 36mm 的筛各 1 个。

2.6量筒:50mL、100mL和500mL的量筒各1个。

2.7直刮刀:长200 ~ 250mm、宽30mm和厚3 mm —侧开口的直刮刀,用以刮平和修饰粒料大试件的表面。

2.8刮土刀:长150〜200mm、宽约20mm的刮刀,用以刮平和修饰小试件的表面。

2.9工字形刮平尺:30mm x50mm X 310mm,上下两面和侧面均刨平。

2.10拌和工具:约400mm X 600mm X 70mm的长方形金属盘、拌和用平头小铲等。

2.11脱模器。

2.12测定含水量用的铝盒、烘箱等其他用具。

2.13游标卡尺。

3试验准备3.1将具有代表性的风干试料用木锤捣碎或用木碾碾碎。

土团均应破碎到能通过4. 75mm的筛孔。

但应注意不使粒料的单个颗粒破碎或不使其破碎程度超过施工中拌和机械的破碎率。

3.2如试料是细粒土,将已破碎的具有代表性的土过4. 75mm筛备用(用甲法或乙法做试验)。

3.3如试料中含有粒径大于 4. 75mm的颗粒,贝(J先将试料过19mm筛;如存留在19mm 筛上的颗粒的含量不超过10%,则过26.5mm筛,留作备用(用甲法或乙法做试验)。

3.4如试料中粒径大于19mm的颗粒含量超过10%,则将试料过37. 5mm筛;如果存留在37. 5mm筛上的颗粒的含量不超过10%,则过53mm的筛备用(用丙法试验)。

无机结合料规程

无机结合料规程

无机结合料规程(JTJ057-94)第1章总则1.0.1 为给公路路面基层设计和施工所用种类无机结合料稳定土的质量指标和参数统一试验方法,特制定本规程。

1.0.2 本规程适用于水泥稳定土、石灰稳定土、水泥石灰综合稳定土、石灰粉煤灰稳定土、水泥粉煤灰稳定土和水泥石灰粉煤灰稳定土等无机结合料稳定材料以及石灰的化学分析。

1.0.3 应根据试验目的采用下列不同和取样方法。

可用下列方法之一将整个样品缩小到每个试验所需要的合适质量。

(1)四分法需要时应加清水使主样品变湿。

充分拌和主样品:在一块清洁、平整、坚硬的面上将料堆成一个圆锥体,用铲翻动此锥体并形成一个新锥体,这样重复进行三次,在形成每一个锥体堆时,铲中的料要放在锥顶,使滑动边部的那部分料尽可能分布均匀,使锥体的中心不移动。

将平头铲反复交错垂直插入最后一个锥体的顶部,使锥体顶变平,每次插入后提起铲时不要带有材料。

沿两个垂直的直径,将已变成平顶的锥体料堆分成四部分,尽可能使这四部分料的质量相同。

将对角的一对料(如一、三象限为一对,二、四象限为另一对)铲到一边,将剩余的一对料铲到一块。

重复上述拌和以及缩小的过程,直至达到要求的样品质量。

(2)用分料器法如果储料中含有粒径5mm以下的细料,材料应该是表面干燥的。

将材料充分拌和后通过分料器,保留一部分,将另一部分再次通过分料器。

这样重复进行,直至将原样品缩小到需要的质量。

1.0.4 本试验规程所涉及各类无机结合料稳定土的名称、定义应符合《公路路面基层施工技术规范》(JTJ034-93)的规定。

关闭此窗口第2章无机结合料稳定土的含水量试验方法2.1 烘干法(T0801-94)2.1.1 目的和适用范围本法是测定无机结合料稳定土含水量的标准方法。

在105~110摄氏度的条件下烘干到恒重的稳定土称为干稳定土,湿稳定土和干稳定土的质量之差与干稳定土的质量之比的百分率稳称为稳定土的含水量。

2.1.2 仪器设备2.1.2.1 对于稳定细粒土。

土工和无机结合料稳定材料试验检测

土工和无机结合料稳定材料试验检测

物理风化只改变岩石颗粒的大小和形 状,不改变颗粒的成分。物理风化后形 成的碎块与氧气 二氧化碳和水接触,经 过化学变化,变成更细的颗粒并且成分 也发生改变,产生与原来岩石成分不同 的矿物,这个过程叫做化学风化。
在此基础上,加之生物活动的参与, 从而产生有机质的积聚,经过这些风化 作用所形成的矿物颗粒堆积在一起,其 间贯穿着孔隙,孔隙间存在着水和空气。 这种松散的固体颗粒(有时还会含有有 机质) 水和气体的集合体即是土。
公路土工和 无机结合料稳定材料
试验检测培训
第一部分
主要内容
土工
一、 土的概述 二、 颗粒分析(颗粒级配)试验 三、 界限含水率试验 四、 击实(最佳含水率、最大干密度)试验 五、 土的承载比(CBR)试验
第二部分 无机结合料稳定材料
一、 无机结合料稳定材料击实试验 二、 无侧限抗压强度试验 三、 水泥(石灰)剂量
第一部分:土工
《公路土工试验规程》(JTG E40-2007)
一、土的概述
1、 土的形成
土是由地壳表面的岩石经过物理风化 化学风 化和生物风化作用之后的产物。
岩石暴露在大气中,受到温度变化的 影响,体积经常发生膨胀和收缩,不均 匀的膨胀和收缩使之产生裂缝,同时长 期经受风 霜 雨和雪的侵蚀以及动植物的 破坏,逐渐由整块岩石崩解成大小不等 和形状不同的碎块,这个过程叫物理风 化。
2、土的三相组成

土由固体土粒、液体水和气体三相组成。
在本模块中,学生将学习算法初步、统计、概率的基础知识。1.算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术 飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素 养。中学数学中的算法内容和其他内容是密切联系在一起的,比如线性方程组的求解、数列的求和等。具体来说,需要通过模仿、操作、探索,学 习设计程序框图表达解决问题的过程,体会算法的基本思想和含义,理解算法的基本结构和基本算法语句,并了解中国古代数学中的算法。在本教 科书中,首先通过实例明确了算法的含义,然后结合具体算法介绍了算法的三种基本结构:顺序、条件和循环,以及基本的算法语句,最后集中介 绍了辗转相除法与更相减损术、秦九韶算法、排序、进位制等典型的几个算法问题,力求表现算法的思想,培养学生的算法意识。2.现代社会是信 息化的社会,人们面临形形色色的问题,把问题用数量化的形式表示,是利用数学工具解决问题的基础。对于数量化表示的问题,需要收集数据、 分析数据、解答问题。统计学是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。本教科书主要介绍最基本的获取样 本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布及数字特征和线性回归等内容。本教科书介绍的统计内 容是在义务教育阶段有关抽样调查知识的基础上展开的,侧重点放在了介绍获得高质量样本的方法、方便样本的缺点以及随机样本的简单性质上。 教科书首先通过大量的日常生活中的统计数据,通过边框的问题和探究栏目引导学生思考用样本估计总体的必要性,以及样本的代表性问题。为强 化样本代表性的重要性,教科书通过一个著名的预测结果出错的案例,使学生体会抽样不是简单的从总体中取出几个个体的问题,它关系到最后的 统计分析结果是否可靠。然后,通过生动有趣的实例引进了随机样本的概念。通过实际问题情景引入系统抽样、分层抽样方法,介绍了简单随机抽 样方法。最后,通过探究的方式,引导学生总结三种随机抽样方法的优缺点。3.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科, 它为人们认识客观世界提供了重要的思维模式和解决问题的模型,同时为统计学的发展提供了理论基础。因此,统计与概率的基础知识已经成为一 个未来公民的必备常识。在本模块中,学生将在义务教育阶段学习统计与概率的基础上,结合具体实例,学习概率的某些基本性质和简单的概率模 型,加深对随机现象的理解,能通过实验、计算器(机)模拟估计简单随机事件发生的概率。教科书首先通过具体实例给出了随机事件的定义,通 过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统 计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。概率的意义是本 章的重点内容。教科书从几方面解释概率的意义,并通过掷硬币和掷骰子的试验,引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算 器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图 形的面积等。教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和 频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率 稳定在某个常数附近,从而给出概率的统计定义。概率的意义是本章的重点内容。教科书从几方面解释概率的意义,并通过掷硬币和掷骰子的试验, 引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的 方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。砂浆:由胶凝材料、细骨料和水按适当比例配制而成,是建筑工程用 量大而广的一种材料。水泥:凡细磨材料,加入适量水后可制成塑性浆体, 既能在空气中硬化,又能在水中硬化,并能将砂、石等材料牢固地胶结 在一起的水硬性胶凝材料,通称水泥。水泥体积安定性:是指水泥在硬化过程中,体积变化是否均匀的性能,简称安定性。水泥安定性不良,会导 致构件产生膨胀性裂

JTJ公路工程无机结合料稳定材料试验规程

JTJ公路工程无机结合料稳定材料试验规程

JTJ中华人民共和国行业标准JTJ 057一94公路工程无机结合料稳定材料试验规程Test Methods of Materials Stabilized with InorganicBin de rs f o r H i gh way Engineering1994-07-05发布1994-12-01实施中华人民共和国交通部发布中华人民共和国行业标准公路工程无机结合料稳定材料试验规程Te s t M et hods of M aterials Stabilizedwith Inorganic Binders for Highway EngineeringJTJ 057一94主编单位:交通部公路科学研究所批准单位:交通部施行日期:1994年12月1日关于发布交通行业标准《公路工程无机结合料稳定材料试验规程》、《公路工程集料试验规程》的通知交公路发「1994习631(不另行文)现批准发布交通行业标准《公路工程无机结合料稳定材料试验规程》、《公路工程集料试验规程》,编号分别为JTJ 057-94及JTJ 058-94,自1994年12月1日起实行。

1985年我部发布的《公路路面基层材料试验规程》同时废止。

以上规程由交通部公路科学研究所负责解释。

请各单位在使用过程中注意总结经验,及时将发现的问题和修改意见函告部公路科学研究所,以便修订时参考。

中华人民共和国交通部一九九四年七月五日目次1 总则 (1)2 无机结合料稳定土的含水量试验方法·············,·,····一32.1 洪干法(TO801-94)·········。

,,··························一,.3 2.2 砂浴法(T0802-94)·········。

无机结合料稳定材料击实试验

无机结合料稳定材料击实试验

T 0804-1994无机结合料稳定材料击实试验方法一、适用范围①试验集料的公称最大粒径宜控制在37. 5mm以内(方孔筛)。

②试验方法类别。

本试验方法分三类,各类击实方法的主要参数列于表T 0804-1二、仪器设备①击实筒:小型,内径100mm、高127 mm的金属圆筒,套环高50mm,底座;大型,内径152mm、高170mm的金属圆筒,套环高50mm,直径151 mm和高50mm的筒内垫块,底座。

②多功能自控电动击实仪:击锤的底面直径50mm,总质量4. 5kg。

击锤在导管内的总行程为450mm。

可设置击实次数,并保证击锤自由垂直落下,落高应为450 mm,锤迹均匀分布于试样面。

③电子天平:量程4000g,感量0.01g。

④电子天平:量程15 kg,感量0. 1g。

⑤方孔筛:孔径53mm,37. 5mm,26. 5mm,19mm,4. 75mm,2. 36mm的筛各1个。

⑥量筒:50mL,100mL和500mL的量筒各1个。

⑦直刮刀:长200~250mm、宽30mm和厚3mm,一侧开口的直刮刀,用以刮平和修饰粒料大试件的表面。

⑧刮土刀:长150~200mm、宽约20mm的刮刀,用以刮平和修饰小试件的表面。

⑨工字形刮平尺:30mm x 50mm x 310mm,上下两面和侧面均刨平。

⑩拌和工具:约400mm x 600mm x 70mm的长方形金属盘、拌和用平头小铲等。

11脱模器。

12测定含水量用的铝盒、烘箱等其他用具。

13游标卡尺。

三、试验准备①将具有代表性的风干试料(必要时,也可以在50℃烘箱内烘干)用木锤捣碎或用木碾碾碎。

土团均应破碎到能通过4. 75 mm的筛孔。

但应注意不使粒料的单个颗粒破碎或不使其破碎程度超过施工中拌和机械的破碎率。

②如试料是细粒土,将已破碎的具有代表性的土过4. 75mm筛备用(用甲法或乙法做试验)。

③如试料中含有粒径大于4. 75mm的颗粒,则先将试料过19mm筛;如存留在19 mm 筛上的颗粒的含量不超过10%,则过26 . 5 mm筛,留作备用(用甲法或乙法做试验)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无机结合料稳定土的击实试验方法1 仪器设备(1 )击实筒:小型,内径l00mm、高127mm的金属圆筒,套环高50mm,底座;中型,内径152mm,高170mm的金属圆筒,套环高50mm,直径151mm和高50mm的筒内垫块,底座。

(2)击锤和导管:击锤的底面直径50mm,总质量4.5k g。

击锤在导管内的总行程为450mm 。

可设置击实次数,并保证击锤自由垂直落下,落高应为450mm,锤迹均匀分布于试样面。

(3)电子天平:量程4000g,感量0.01 g,(4 )电子天平:称量15kg,感量0.1g,(5 )方孔筛:孔径53mm,37.5mm、26.5mm、19mm、4.75mm、2.36mm的筛各1个。

(6 )量筒:50mL、100mL和500mL的量筒各1个。

(7 )直刮刀:长200-250mm、宽30mm和厚3mm,一侧开口的直刮刀,用以刮平和修饰粒料大试件的表面。

(8) 刮土刀:长150~200mm、宽约20mm的刮刀。

用以刮平和修饰小试件的表面(9 )工字形刮平尺:30mmX 50mm X310mm,上下两面和侧面均刨平。

(1 0) 拌和工具:约400mm X 600mm X70mm 的长方形金属盘,拌和用平头小铲等。

(1 1) 脱模器。

(1 2) 测定含水量用的铝盒、烘箱等其它用具。

2试验步骤:(1)试样准备a将具有代表性的风干试料(必要时,也可以在50℃烘箱内烘干)用木锤或木碾捣碎。

土均应捣碎到能通过4.75mm的筛孔。

但应注意不使粒料的单个颗粒破碎或不使其破碎程度超过施工中拌和机械的破碎率。

b如试料是细粒土,将已捣碎的具有代表性的土过5mm筛备用(用甲法或乙法做试验)。

如试料中含有粒径大于5mm的颗粒,则先将试料过25mm的筛,如存留在筛孔25mm筛的颗粒的含量不超过2000,则过筛料留作备用(用甲法或乙法做试验)。

c如试料中粒径大于19mm的颗粒含量超过10%,则将试料过37.5mm的筛;如果存留在37。

5mm筛上的颗粒的含量不超过10%,则过53mm的筛备用。

(用丙法试验)。

d每次筛分后,均应记录超尺寸颗粒的百分率P。

d在预定做击实试验的前一天,取有代表性的试料测定其风干含水量。

对于细粒土,试样应不少于100g;对于中粒土,试样应不少于1000g;对于粗粒土的各种集料,试样应不少于2000g。

(2)甲法a将已筛分的试样用四分法逐次分小,至最后取出约10-15kg试料。

再用四分法将已取出的试料分成5~6份,每份试料的干质量为2.0k g(对于细粒土)或2.5kg(对于各种中粒土)。

b 预定5~6个不同含水率,依次相差0.5%一1.5%,且其中至少有两个大于和两个小于最佳含水率。

c按预定含水率制备试样。

将1份试料平铺于金属盘内,将事先计算得的该份试料中应加的水量均匀地喷洒在试料上,用小铲将试料充分拌和到均匀状态(如为石灰稳定材料、石灰粉煤灰综合稳定材料、水泥粉煤灰综合稳定材料和水泥、石灰综合稳定材料,可将石灰、粉煤灰和试料一起拌匀),然后装入密闭容器或塑料袋内浸润备用。

浸润时间:黏质土12-24h,粉质土6-8h,砂类土、砂砾土、红土砂砾、级配砂砾等可以缩短到4h左右,含土很少的未筛分碎石、砂砾和砂可缩短到2h。

浸润时间一般不超过24h。

d应加水量可按下式计算:m w=(m n1+0.01ωn+m c1+0.01ωc)×0.01ω−m n1+0.01ωn×0.01ωn−m c1+0.01ωc×0.01ωn式中: m w—混合料中应加的水量(g);m n—混合料中素土(或集料)的质量(g),其原始含水量为ωn,即风干含水量( % ); m c—混合料中水泥或石灰的质量(g),其原始含水量为ωc(% ) ;ω—要求达到的混合料的含水量(%)。

e将所需要的稳定剂水泥加到浸润后的试料中,并用小铲、泥刀或其它工具充分拌和到均匀状态。

水泥应在土样击实前逐个加入。

加有水泥的试样拌和后,应在lh内完成下述击实试验,拌和后超过1h的试样,应予作废(石灰稳定材料和石灰粉煤灰稳定材料除外)。

f试筒套环与击实底板应紧密联结。

将击实筒放在坚实地面上,取制备好的试样(仍用四分法)400-500g(其量应使击实后的试样等于或略高于筒高的1/5)倒入筒内,整平其表面并稍加压紧,然后按所需击数进行第一层试样的击实。

第一层击实完后,检查该层高度是否合适,以便调整以后几层的试样用量。

用刮土刀或螺丝刀将已击实层的表面“拉毛”,然后重复上述做法,进行其余四层试样的击实。

最后一层试样击实后,试样超出试筒顶的高度不得大于6mm,超出高度过大的试件应该作废。

g用刮土刀沿套环内壁削挖(使试样与套环脱离)后,扭动并取下套环。

齐筒顶细心刮平试样,并拆除底板。

如试样底面略突出筒外或有孔洞,则应细心刮平或修补。

最后用工字型刮平尺齐筒顶和筒底将试样刮平。

擦净试筒的外壁,称其质量m1。

h用脱模器推出筒内试样。

从试样内部从上到下取两个有代表性的样品(可将脱出试件用锤打碎后,用四分法采取),测定其含水量,计算至0.1%。

两个试样的含水量的差值不得大于1%。

所取样品的数量见下表。

〔如只取一个样品测定含水量,则样品的质量应为表列数值的两倍)。

擦净试筒,称其质量mi按上述方法进行其余含水量下稳定材料的击实和测定工作。

凡已用过的试样,一律不再重复使用。

(3)乙法在缺乏内径l0cm的试筒时,以及在需要与承载比等试验结合起来进行时,采用乙法进行击实试验。

本法更适宜于粒径达19mm的集料。

a将已过筛的试料用四分法逐次分小,至最后取出约30kg试料。

用四分法将取出的试料分成5~6份,每份试料的干重约为4.4kg(细粒土)或5.5kg(中粒土)。

b以下各步的做法与甲法相同,但应该先将垫块放入筒内底板上,然后加料并击实。

所不同的是,每层所取制备好的试样约900g(对于水泥或石灰稳定细粒土)或1100g(对于稳定中粒土),每层的锤击次数为59次。

(4)丙法a 将已过筛的试料用四分法逐次分小,至最后取出约33kg试料。

再用四分法将取出的试料分成6份(至少要5份),每份重约5.5 kg(风干质量)。

b预定5~6个不同含水量,依次相差0.5%~1.5%。

在估计的最佳含水率左右可只差0.5%~1%。

c同甲法步骤。

d将试筒、套环与夯击底板紧密地联结在一起,并将垫块放在筒内底板上。

击实筒应放在坚实(最好是水泥混凝土)地面上,取制备好的试样1.8kg左右[其量应使击实后的试样略高于(高出1-2mm)筒高的1/3]倒入筒内,整平其表面,并稍加压紧。

然后按所需击数进行第一层试样的击实(共击98次)。

第1层击实完后检查该层的高度是否合适,以便调整以后两层的试样用量。

用刮土刀或螺丝刀将已击实的表面“拉毛”,然后重复上述做法,进行其余两层试样的击实最后一层试样击实后,试样超出试筒顶的高度不得大于6mm。

超出高度过大的试件应该作废。

e用刮土刀沿套环内壁削挖(使试样与套环脱离)后,扭动并取下套环。

齐筒顶细心刮平试样,并拆除底板,取走垫块。

擦净试筒的外壁,称取质量m1。

f用脱模器推出筒内试样。

从试样内部从上到下取两个有代表性的样品(可将脱出试件用锤打碎后,用四分法采取),测定其含水量,计算至0.1%。

两个试样的含水量的差值不得大于1%。

所取样品的数量应不少于700g,如只取一个样品测定含水量,则样品的数量应不少于1400g。

烘箱的温度应事先调整到110'C左右,以使放入的试样能立即在105-110℃的温度下烘干。

擦净试筒,称其质量m2。

g按上述方法进行其余含水量下稳定土的击实和测定。

凡已用过的试料,一律不再重复使用(5)计算a.按下式计算每次击实后稳定土材料的湿密度:ρw=m1 −m2V式中: ρw一稳定材料的湿密度(g/cm³);m1 一试筒与湿试样的总质量(g);m2一试筒的质量(g);V一试筒的容积(cm³)b.按下式计算每次击实后稳定材料的干密度:ρd=ρw1+0.01ω式中ρd—试样的干密度(g/cm³);ω—试样的含水率(%)(6)制图a以干密度为纵坐标,以含水量为横坐标,绘制含水量-干密度曲线。

曲线必须为凸形的,如试验点不足以连成完整的凸形曲线,则应该进行补充试验。

b将试验各点采用二次曲线方法拟合曲线,曲线的峰值点对应的含水量及干密度即为最佳含水量和最大干密度。

(7)超尺寸颗粒的校正。

当试样中大于规定最大粒径的超尺寸颗粒的含量为5%~30%时,按下列各式对试验所得最大干密度和最佳含水量进行校正(超尺寸颗粒的含量小于5%时,可以不进行校正)a最大干密度按下式进行校正:ρ′dm =ρdm(1−0.01p)+0.9×0.01pG′a式中:ρ′dm—校正后的最大干密度(g/cm³)ρdm—试验所得的最大干密度(g/cm³)p—试样中超尺寸颗粒的百分率(%)G′a—超尺寸颗粒的毛体积相对密度。

b最佳含水量按下式进行校正:ω′=ω0(1−0.1p)+0.01pωa式中:ω′—校正后的最佳含水量(%)ω0—试验所得的最佳含水量(%)p—试样中超尺寸颗粒的百分率(%)ωa—超尺寸颗粒的吸水量(%)3注意事项(1)应做两次平行试验,取两次试验的平均值作为最大干密度和最佳含水量。

两次重复性试验最大干密度的差不应超过0.05g/cm³(稳定细粒土)和0.08g/cm³(稳定中粒土盒粗粒土),最佳含水量的差不应超过0.5%(最佳含水量小于10%)和1.0%(最佳含水量大于10%)。

超过上述规定值,应重做试验,直到满足精度要求。

(2)混合料密度计算应保留小数点后3位有效数字,含水量应保留小数点后1位有效数字。

相关文档
最新文档