小学六年级数学下册《比例》知识要点
六年级下册数学比例知识点

六年级下册数学比例知识点
在六年级下册的数学课程中,比例是一个重要的知识点。
以下是一些关于比例的重要
知识和技能:
1. 比例的概念:比例是指两个或多个相同种类的量之间的关系,在比例中我们将这些
量用分数表示。
2. 比例的性质:比例的两个分数称为一个比例,比例中各个分数的相等关系称为比例
的性质。
例如:如果a:b = c:d,则称a、b、c、d构成一个比例。
3. 比例的基础运算:比例可以进行加、减、乘、除等运算。
例如:如果a:b = c:d,则有a+c:b+d = a-b:b-d = a/b:c/d。
4. 比例的化简和维持:在比例中,我们可以约分或扩大分数的值,得到一个全等的比例。
例如:将2:3化简为2/3:1,将2:3扩大为4:6。
5. 比例的图形应用:比例可以用来解决与图形形状和尺寸相关的问题。
例如:通过比
例可以计算矩形的边长、面积等。
6. 比例和百分数的关系:百分数是一种特殊的比例,其中分子是一个非负整数。
例如:25%表示为25/100或1/4。
7. 比例的应用:比例在日常生活中有很多应用,例如计算折扣、利率、比赛成绩等。
以上是六年级下册数学课程中关于比例的一些重要知识点。
学生可以通过练习题和实
际应用问题来巩固和应用这些知识。
小学数学六年级比例知识点

小学数学六年级比例知识点在小学六年级数学学习中,比例是一个重要的知识点。
比例在日常生活中应用广泛,例如购物时的价格比较、食谱中的食材比例等等。
掌握了比例的概念和运算方法,学生能够更好地理解和解决实际问题。
一、比例的定义比例是指两个或多个具有相同性质的量之间的对应关系。
比例常用两个比例项的比值表示,形式为a:b或a/b,其中a和b称为比例项。
二、比例的性质1. 比例的交换性:比例a:b与b:a相等。
2. 比例的比值性:如果a:b=c:d,则a/c=b/d。
3. 比例的平行性:如果a:b=c:d,且b不为0,则a/b=c/d。
三、比例的表示方法1. 倍数关系表:通过倍数关系表可以清楚地列出两组具有比例关系的数。
2. 比例尺:比例尺是表示长度或面积比例的一种工具。
比例尺的使用可以帮助我们在图纸上进行测量和绘制。
3. 分数形式:将比例转化为分数形式可以更直观地表示比例关系。
四、比例的运算1. 比例的等比乘除:在比例中,如果将两个比例项同时乘以(或除以)同一个非零数,那么得到的新的比例与原比例相等。
2. 比例的合并:当两个比例都有相同的比例项时,可以将其合并为一个比例。
五、比例的应用1. 比例的扩大和缩小:比例可以帮助我们在实际问题中进行数值的扩大和缩小计算。
比如说,地图尺寸的缩小或放大,可以使用比例进行计算。
2. 求解未知量:通过已知比例关系和已知量,可以求解未知量。
例如,知道一个图形的某条边长度与其他边的比例,可以通过比例关系求解其他边的长度。
六、练习题1. 甲园和乙园的面积比为5:8,已知甲园的面积为60平方米,求乙园的面积。
2. 小明用2个小时做完了10道题目,求他还需要多少时间才能做完20道题目?3. 一张长方形的长和宽的比是3:2,且长是12cm,求宽是多少?4. 某商品原价为80元,现以打7折出售,求现价是多少?七、总结小学数学六年级比例知识点涵盖了比例的定义、性质、表示方法、运算方法以及应用等内容。
六年级数学下册第四单元《比例》思维导图、知识总结、总复习

用字母表示:
正比例和反比例
图像的特点
一条从(0,0)出发的无限延长的射线
反比例
意义:两个数量的乘积一定,一个数变大,另一个数变小 字母表示:xy=k(k一定)
正方比例图像的异同点
判断正反比例的方法
找变量、看定量、判断
比例的应用
意义:图上距离和实际距离的比叫做这幅图的比例尺
分类
数值比例尺 线段比例尺
比例尺
比例
比例的意义和基本性质
比例的意义:表示两个比相 两端的叫外项,中间的叫内项
比例的基本性质
两个外项之积等于两个内项之积
比和比例的联系和区别
解比例
求比例中的未知项叫解比例 根据比例的基本性质计算
意义:两个数的比值一定,一个数变大,另一个数也变大
正比例
比例尺=图上距离:实际距离
计算方法
实际距离=图上距离÷比例尺
图上距离=实际距离×比例尺
画平面图
1、先确定比例尺 2、再根据方向和图上距离画出位置
图形的放大和缩小
特点:放大或缩小后,形状不变,大小不同 画图时,最后画斜边。
先根据数量关系判断是正比例还是反比例
用比例解决问题
根据正反比例的意义列出方程 解比例
检查和写答语
小学六年级比例知识点总结

小学六年级比例知识点总结一、比例的基本性质: 1。
2。
成反比例的量,除了量的增减外,还有两种情况:一是一种量变化,引起另一种量的相应的变化,这时前后两种量的变化的比,等于后者同前者的比;二是两种量的前后两个数相除所得的商,等于它们的和同除以它们的差,即1: 4。
3。
成正比例的量,它们的比值是一定的,一般在0和1之间,其中最大的是一。
二、比例的基本性质:两种相关联的量,一种量变化,如果另一种量也随着它变化,那么这两种量的乘积就(扩大),这两种量的乘积就(缩小)。
3。
如果两个比相除又叫两个比的比值,表示这两个比相除的结果,这种说法不确切。
4。
比例的基本性质可归纳为以下几点:(1)比例中项必须是一个数,或者是一个数的比,两个外项互为倒数。
(2)比例两个外项的积等于两个内项积的。
(3)两个外项的积等于两个内项积的。
(4)比例的基本性质两边同时乘或除以相同的数( 0除外)比值不变,这与正比例、反比例的情形不同,而且0除外。
(5)两个外项的积等于两个内项积的,叫做两个外项互为倒数。
(6)如果两个外项的积等于两个内项积的,并且一个外项是另一个外项的倒数,那么这两个外项互为倒数。
(7)把比例的基本性质和正比例、反比例的基本性质结合起来,就可以写出比例的基本性质,用字母表示为: p:q=a3。
5。
比例的基本性质两边同时乘或除以一个相同的数(零除外)比值不变,这与反比例的情形类似,但是比例的基本性质中“比例的基本性质两边同时乘或除以相同的数(零除外)比值不变”是没有意义的,因为比例的基本性质的两边仍然可能分别是不相等的量,比值也可能分别是不相等的量,都满足不变性质,故本题错误。
(8)(简)设比例中两个外项的积为x,则x:(9)由比例的基本性质,可知当一个外项是另一个外项的(p÷q),且比例的两个外项的积为a时,比例的两边相等,即两个外项的积等于两个内项积的,这时,(a÷a)成反比例。
当a成比例时,比例的两边仍然相等,即两个外项的积不等于两个内项积的,即a与a成反比例。
六年级下册数学比例知识点

六年级下册数学比例知识点六年级下册数学比例知识点1、比的意义(1)两个数相除又叫做两个数的比(2)“:〞是比号,读作“比〞。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
六年级下册比例知识点归纳总结

六年级下册比例知识点归纳总结在六年级下册学习比例的知识点之后,我对比例有了更深入的了解。
在此,我将对六年级下册比例的知识点进行归纳总结。
一、什么是比例比例是指两个或多个具有相同或相似特征对象之间的量的对应关系。
比例的表达形式为a:b或a/b,其中a和b分别代表两个相关的量。
例如,如果一辆汽车行驶了100公里,则计算比例时可以写成100km:1L或100/1。
二、比例的基本性质1. 比例的对应关系:比例中的两个量是有对应关系的,它们之间的数值是相等的或相似的。
2. 比例的等比关系:比例中的两个量是按照相等的比值关系进行变化的。
3. 比例的可加性:对于比例中的两个量a和b,以及另外两个量c和d,如果a/b = c/d,则(a+c)/(b+d) = a/b = c/d。
4. 比例的倒数关系:如果a/b = c/d,则b/a = d/c。
三、比例的求解方法1. 等比例乘法:当已知一个比例和其中一个量的数值时,可以通过等比例乘法求解另一个量的数值。
例如,如果已知100km:1L的比例关系,且已知行驶了200km,可以通过等比例乘法求解所消耗的燃料量,即200/100 × 1 = 2L。
2. 逆向思维:有时候需要通过已知的比例和两个量中的一个数值,推导出另一个量的数值。
例如,已知100km:1L的比例关系,且已知消耗了10L的燃料,可以通过逆向思维求解所行驶的距离,即10 ×100 = 1000km。
3. 配对法:当比例中含有未知量时,可以通过配对法求解未知量。
配对法即将已知量与未知量分别配对,使其在比例中成对出现。
例如,已知a比b = 3:7,且a = 15,可以通过配对法求解b的值,即15/3 ×7 = 35。
四、比例的应用比例在日常生活中有着广泛的应用,下面列举一些常见的应用场景:1. 图片的缩放比例:在设计和制作图片时,常常需要按照特定的比例进行缩放,以保持图片的宽高比例不变。
六年级比例的知识点归纳

六年级比例的知识点归纳六年级比例的知识点归纳:比例是一种数学关系表达方式,用于表示两个或多个数之间的数量关系。
在六年级中,比例是一个重要的数学知识点,它涉及到比例关系、比例的性质、比例的运算等。
下面将对六年级比例的知识点进行归纳和解释。
一、比例与比例关系1.比例的定义比例是指两个或多个具有相同单位的数之间的相对关系。
比例有两个重要的特点:一是比例的两个数之间具有相同的单位;二是比例中的两个数可以用相等的倍数相乘得到。
2.比例的表示方式比例可以用分数形式、冒号形式和百分数形式来表示。
例如,3:5、3/5和60%都表示比例的关系。
3.比例的比较比较两个比例的大小时,可以将其化为相同的分数或小数进行比较。
比较的方法主要有:(1)将两个比例的分子和分母同时扩大或缩小,使其分子相等再进行比较;(2)将两个比例化成小数,然后进行比较。
二、比例的性质1.比例倒数的倒数也成比例如果a∶b,则1/b∶1/a也成比例。
2.比例中加(减)相等数,比例不变如果a∶b,则(a+c)∶(b+c)和(a-c)∶(b-c)也成比例。
3.比例中乘(除)相等数,比例不变如果a∶b,则(ka)∶(kb)和(a/k)∶(b/k)也成比例。
4.比例中乘(除)相同的数,比例不变如果a∶b,则(k⋅a)∶(k⋅b)和(a/k)∶(b/k)也成比例。
5.比例倒置,得到的也是比例如果a∶b,则b∶a也成比例。
三、比例的应用1.比例的单位换算在比例中,如果两个数的单位不同,需要进行单位换算,将其换算成相同的单位才能进行比较。
2.比例的简化和放大比例可以通过约分或扩大的方法进行简化或放大。
简化比例是指将比例的两个数同时除以一个相同的数;放大比例是指将比例的两个数同时乘以一个相同的数。
3.比例的求解比例的求解是指根据已知的比例关系,求出未知的比例数。
常用的方法有:(1)相等乘法;(2)相等划分。
四、比例的运算1.比例的加减如果两个比例中的数字都是正数,可以直接将它们分别相加或相减得到新的比例。
人教版六年级数学下册第四单元《比例》知识点汇总

提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。
例如:
2.4×40=1.6×60
提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。
提示:应用比例的基本性质不是解比例唯一的方法,也可以用求比值的方法或其他方法解比例。
总结:判断两种量是否成正比例的方法:先找变量(两种相关联的量),再看定量(两种量是比值一定,还是乘积一定),最后作出判断。
例如:单价、总价与数量是互相关联的量,当数量一定时,总价÷单价=数量,总价与单价成正比例关系。
当单价一定时,总价÷数量=单价,总价与数量成正比例关系。
当总价一定时,单价×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学下册《比例》知识要点
比例知识要点
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、小学六年级数学下册《比例》知识要点:渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:
8、组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知34=2或者由x1。
5=y1。
2可知x:y=1.2:1.5。
10、解比例:根据比例的基本性质,如果已知比例中的任何
三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=38,解得x=6。
11、正比例和反比例:
(1)、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)
例如:①、速度一定,路程和时间成正比例;因为:路程时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:yx=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数天数=每天看页数(一定)。
(2)、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示xy=k(一定
例如:①、路程一定,速度和时间成反比例,因为:速度时间=路程(一定)。
②、总价一定,单价和数量成反比例,因为:单价数量=总价(一定)。
③、长方形面积一定,它的长和宽成反比例,因为:长宽=长方形的面积(一定)。
④、40x=y,x和y成反比例,因为:xy=40(一定)。
⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量天数=煤的总量(一定)。
12、图上距离:实际距离=比例尺;
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:201900。
13、实际距离=图上距离比例尺;
例如:已知图上距离2cm和比例尺,则实际距离为:
21/201900=400000cm=4km。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
其实,任何一门学科都离不开死记硬背,关键是记忆有技
巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
14、图上距离=实际距离比例尺;
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
例如:已知实际距离4km和比例尺1:201900,则图上距离为:4000001/201900=2(cm)。