高考数学所有公式及结论总结大全
完整版)高中数学公式大全完整版

完整版)高中数学公式大全完整版高中数学常用公式及常用结论1.包含关系若集合A包含于集合B,则AB=B;若AB=B,则A为B 的子集;若C为A和B的并集,则B包含于C;若A和B的交集为∅,则AB=∅;若AB=R,则A和B互为补集。
2.集合的子集集合{a1,a2,…,an}的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个。
3.充要条件1)充分条件:若p→q,则p是q的充分条件。
2)必要条件:若q→p,则p是q的必要条件。
3)充要条件:若p→q,且q→p,则p是q的充要条件。
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。
4.函数的单调性1)设x1≠x2,且x1,x2∈[a,b],则有:f(x1)−f(x2)>0 ⇔ f(x)在[a,b]上是增函数;f(x1)−f(x2)<0 ⇔ f(x)在[a,b]上是减函数。
2)设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。
5.函数的性质如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)+g(x)也是减函数;如果函数y=f(u)和u=g(x)在其对应的定义域上都是减函数,则复合函数y=f[g(x)]是增函数。
6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,则这个函数是奇函数;如果一个函数的图象关于y轴对称,则这个函数是偶函数。
7.函数的对称轴对于函数y=f(x)(x∈R),若f(x+a)=f(b−x)恒成立,则函数f(x)的对称轴是函数x=a+b/2;函数y=f(x+a)与y=f(b−x)的图象关于直线x=a+b/2对称。
8.几个函数方程的周期(约定a>0)1)f(x)=f(x+a),则f(x)的周期T=a;2)f(x+a)=−f(x),或f(x+a)=f(−x)(f(x)≠0),则f(x)的周期T=2a。
高考数学所有公式及结论总结大全

高考数学常用公式及结论200条集合元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==I U U I .包含关系的等价条件A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U容斥原理(CardA 是集合A 中元素的个数) ()()card A B cardA cardB card A B =+-U I()()card A B C cardA cardB cardC card A B =++-U U I()()()()card A B card B C card C A card A B C ---+I I I I I .集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;二次函数,二次方程二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--< ⇔()0()f x NM f x ->- ⇔11()f x N M N>--.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<, 或0)(2=k f 且22122k abk k <-<+.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下表:二次函数在闭区间[]n m ,上的最大、最小值问题探讨设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:ab n m 2-<< n abm <-<2即 n m ab<<-2()()(){}()⎪⎭⎫⎝⎛-==a b f x f m f n f x f 2,max min max()()()()m f x f n f x f ==min max对于开口向下的情况,讨论类似。
高考数学必备50条公式和结论

1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;2、若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4,函数奇偶性:1、对于属于R上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6,数列的终极利器,特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学常用公式及结论大全180条新编

高考数学常用公式及结论1.熟悉这些解题小结论,启迪解题思路、探求解题佳径,防止解题易误点的产生,对提升数学成绩将会起到很大的作用。
2.所有定义、概念、公式、解题方法都须熟记,且应在弄清它们的来龙去脉后再熟记。
1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式:();()U U U U U U C A B C A C B C A B C A C B ==I U U I .3.包含关系A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI ()U C A B R ⇔=U4.容斥原理()()card A B cardA cardB card A B =+-U I()()card A B C cardA cardB cardC card A B =++-U U I()()()()card A B card B C card C A card A B C ---+I I I I I .5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n -1个;非空子集有2n-1个;非空的真子集有2n-2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式:()N f x M <<⇔[()][()]0f x M f x N --<; 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于“0)()(21<k f k f ”或“0)(1=k f 且22211k k a b k +<-<”或“0)(2=k f 且22122k a bk k <-<+”9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; 若[]q p a bx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a bx ,2∈-=,则{}min ()min (),()f x f p f q =;若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设2()f x x px q =++,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为()0f m <或2402()0p q p m f m ⎧-≥⎪⎪->⎨⎪≥⎪⎩ .(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()02f m f n p m n ⎧⎪=⎪>⎨⎪⎪<-<⎩或()0()02f n f m p m n ⎧⎪=⎪>⎨⎪⎪<-<⎩ . (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0fn <或2402()0p q pn f n ⎧-≥⎪⎪-<⎨⎪≥⎪⎩ . 11.定区间上含参数的二次不等式恒成立的条件依据:(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∈.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≤(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∈.(3)42()0(0)f x ax bx c a =++>>恒成立的充要条件是020ba c ⎧-≤⎪⎨⎪>⎩或20240b a b ac ⎧->⎪⎨⎪-<⎩. 12.13.14.15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数图象关于y 轴对称,那么这个函数是偶函数. 19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+,并且()y f x =关于x a =对称. 20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b ax -=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a xa --=+++L 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=(2)函数()y f x =的图象关于直线2a b x m+=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称. 25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 26.互为反函数的两个函数的关系:a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是1()y f kx b -=+,而函数1()y fkx b -=+是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,具有性质:()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,具有性质:()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,具有性质:()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,具有性质:'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,具有性质:()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期a =T ;(2)()()f x a f x +=-或)0)(()(1)(≠=+x f x f a x f 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期a 2T =;(3)1(),(()1)1()f x a f x f x +=≠-,则)(x f 的周期a 3T =;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期a 4T =;(5)()()()f x a f x f x a +=--,则)(x f 的周期a 6T =. 30.分数指数幂(1)m na=0,,a m n N *>∈,且1n >);(2)1mnm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质(1)(0,,)r s r s a a a a r s Q +⋅=>∈;(2)()(0,,)r s rsa a a r s Q =>∈;(3)()(0,0,)r r r ab a b a b r Q =>>∈33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2) log log log aa a M M N N=-;(3)log log ()na a M n M n R =∈. 36.设函数)0)((log )(2≠++=a c bx ax x f m ,记acb 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.【对于0=a 的情形,需要单独检验.】 37.平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.38.数列的通项公式n a 与前n 项的和n S 的关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩ .39.等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和n S 公式为:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-. 40.等比数列的通项公式:1*11()n n n aa a q q n N q-==⋅∈;其前n 项的和公式为:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q S na q -⎧≠⎪-=⎨⎪=⎩.41.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q dq q -+-=⎧⎪=+--⎨≠⎪-⎩【用待定系数法来求】 ; 42.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<;(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.43.同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.44.正弦、余弦的诱导公式:奇变偶不变,符号看象限。
高中数学必备的289个公式

(2)f(x+a)=-f(x)⇒T=2a;
(3)f(x+a)=±f(x)⇒T=2a
43.对称轴标志:f(x+a)=-f(b-x)⇒对称中心为(a+b,0);
如常见的对称中心有:f(x+a)=-f(a-x)⇒对称中心为(a,0);f(x+1)=-f(1-x)⇒对称 中心为(1,0).
16.不等式相同性:任意x∈D,证明:
f(x)>g(x)⇔h(x)=f(x)-g(x)>0⇔h(x)min>0;
存在x∈D,证明:f(x)≤g(x)⇔h(x)=f(x)-g(x)≤0⇔h(x)min≤0.
17.不等式相异性:任意x1、x2∈D,证明:f(x1)<g(x2)⇔x∈D,f(x)max<g(x)min;存在x1、x2∈D,证明:f(x1)>g(x2)⇔x∈D,f(x)max>g(x)min.
第2章函数
31.几个近似值:2≈1.414,3≈1.732,5≈2.236,
π≈3.142,e≈2.718,e2≈7.389,
ln3≈1.0986,ln2≈0.693.32.指数公式:(1)am=man;(2)nan={|a|,n为偶数.
33.对数公式:
(1)ax=N⇔x=logaN;(2)alogaN=N;
x1+y1x2+y2≥x1x2+y1y2.
(1+x)n≥xn+nx;n≥1(1+x)n≤1+nx;0≤n≤1
86.洛必达法则:limf(x)=limf'(x)(当f(x)→0或∞时使用).
87.恒成立问题:(1)a≥f(x)⇔a≥f(x)max;(2)a<f(x)⇔a<f(x)min.
高考数学必背公式与结论(理)

高中数学必背公式与结论一、集合:1.元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个. 3.集合的运算:(1)交集:由所有属于A 且属于B 的元素组成的集合,}|{B x A x x B A ∈∈=⋂且。
(2)并集:由所有属于A 或属于B 的元素组成的集合,}|{B x A x x B A ∈∈=⋃或。
(3)补集:若S A ⊆,S 中所有不属于A 的元素组成的集合,}|{A x S x x A C S ∉∈=且。
4.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.5.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=二、简易逻辑:1.一个命题的逆命题、否命题、逆否命题:(1)原命题:若p 则q ; (2)逆命题:若q 则p ;(3)否命题:若p ⌝则q ⌝; (4)逆否命题:若q ⌝则p ⌝。
2.两个命题的等价关系:(1)原命题与其逆否命题同真同假; (2)逆命题与原命题的否命题同真同假. 四个命题中,真命题的个数要么是0,要么是2,要么是4. 3.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.利用真值表判断复合命题的真假:5.命题的否定:对命题的结论否定。
全称命题的否定是特称命题;特称命题的否定是全称命题。
三、函数:1.判断同一函数的依据:两个函数当且仅当定义域和对应关系完全相同时为同一函数。
2.函数的定义域:即求使函数式)(x f 有意义的一切实数x 的集合,主要依据有:(1)分式的分母不能为零: (2)偶次根式被开方数非负:(3)0的0次幂无意义,0的负实数次幂无意义:(4)在对数形式中,真数大于0,底数大于0且不等于1(指数类似): (5)正切函数定义域不能取2ππ+k (Z ∈k ),余切函数定义域不能取πk (Z ∈k )。
高中数学公式大全(完整版)

高中数学常用公式及常用结论1. 包含关系1A. B B A B C U B C U A2 个. B A AA C UBC U A B R.集合{a 1, a 2, ,a n } 的子集个数共有 2n 个;真子集有 2n –1个;非空子集有 2n –1个;非空的真子集有 2n –23.充要条件 1)充分条件:若 p( 2)必要条件:若 q (3)充要条件:若q ,则 p 是 q 充分条件 . p ,则 p 是 q 必要条件 .q ,且 q p ,则 p 是 q 充要条件 .注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然4. 函数的单调性 (1) 设 x 1x 2 a,b ,x 1 x 2那么数. (x 1 x 2 ) (x 1 x 2 ) (2) 设函数 f (x 1) f (x 2) f (x 1) f (x 2) f (x 1) f (x 2) x 1 x 2f (x 1) f (x 2) x 1 x 2 y f (x) 在某个区间内可导,如果 f (x) f (x)在 a,b 上是增函数; f (x)在 a,b 上是减函数 . 0,则 f (x) 为增函数;如果 f (x) 0,则 f(x) 为减函 5.如果函数 f(x)和 g(x)都是减函数 ,则在公共定义域内 ,和函数 f(x) g( x)也是减函数 ; 如果函数 f (u)和 u g(x)在其对应的定义域上都是减函数 ,则复合函数 y f[g(x)] 是增函数 . 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称 ; 反过来,如果一个函数的图象关于原点对称,那么 这个函数是奇函数;如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数. 7. 对于函数 y f (x) ( x R ), f (x a) f (b x) 恒成立 , 则函数 f (x) 的对称轴是函数 x ab ; 两个函2数 y f (x a)与 y f (b x) 的图象关于直线 xa b 对称 .2 8. 几个函数方程的周期 ( 约定 a>0) ( 1) f (x)f (x 2), f(x a) a),则 f(x) 的周期 T=a ; 1 1 (f (x) 0),或 f(x f (x) a) 1 f(x)(f(x) 0),则 f(x) 的周期 T=2a ; 9. 分数指数幂 1 nma 10.根式的性质m(1) a na 0,m,n N ,且 n 1 ) .(2) m a n 1 m ( a n a 0,m,n N ,且 n 1) . 1)(n a)na .(2)当 n 为奇数时, n a na ;当 n 为偶数时, n a n|a|a,a 0a,a 011.有理指数幂的运算性质(1) a ra sa r s(a 0,r,s Q) .(2) (a r )s12.指数式与对数式的互化式 log a N ba brsa rs(a 0,r,s Q) .(3) N (a 0,a 1,N 0) 0,③ .底的(ab)rrra b (a 0,b0,r Q) .幂的对数:log a M n nlog a M;log a m bnlog a bm13. 对数的换底公式log a NNlog m alog m0, 且a 1, m 0,且m 1, N 0).推论log a m ba 15. a nlog a b(a mn10, 且a 1, m,n 0,且m 1, n 1, N 0).s n s n 1,n 2(数列{a n} 的前n 项的和为s n a1 a2 a n ).16. 等差数列的通项公式a n a1 (n 1)d dn a1 d(n );其前n 项和公式为s n n(a1 a n )2 na1n(n 1)d(a1 12d)n.17. 等比数列的通项公式na n a1qa1 nq (n a1(1其前n 项的和公式为s nq)1qqn,q 1或s n);na1,q18. 同角三角函数的基本关系式2 2 sin sin cos 1 ,tan = a1 a n q,q ,q 1q na1,q 1cos 19 正弦、余弦的诱导公式n sin(n2n1)2 sinn1(n 为偶数) 1) 2 cos (n 为奇数)20 和角与差角公式sin( cos(sin cos cos sincos cos sin sin tan(tanasin bcos = a2b2sin(21、二倍角的正弦、余弦和正切公式:⑴ sin22sin cos .⑵ cos2 cos2sin22cos2⑶ tan22tan 1 tan222. 三角函数的周期公式函数y sin( x ),tan1 tan tan)( 辅助角1 2sin2x∈R 及函数y cos( x所在象限由点(a,b) 的象限决定cos21 cos2 2 ,sin2, tanb).acos2).22) ,x∈R(A, ω, 为常数,且A≠0,ω>0)的周期T ;0.sin A sin B sinC24. 余弦定理a 2b 2c 22bc cos A ; b 2c 2 a 2 2ca cos B ; c 2 a 2 b 2 2abcosC .1 1 125. 面积定理Sab sin C bcsin A casin B (2)22 226. 三角形内角和定理在△ ABC 中,有 A B CC(A B)C A B2C 2 2(A B).22227. 实数与向量的积的运算律设λ、μ为实数,那么(1) 结合律:λ ( μ a)=( λ μ) a;(2) 第一分配律: (λ +μ)a=λa+μa; (3) 第二分配律:λ (a+b)= λa+λ b28. 向量的数量积的运算(1) a ·b= b ·a (交换律) ;(2) ( a )·b= (a ·b )= a ·b= a ·( b );(3) (a +b )· c= a ·c +b ·c. 30.向量平行的坐标表示设 a=(x 1, y 1),b=(x 2,y 2),且 b 0,则 a b (b 0) x 1y 2 x 2y 1 0.31. a 与 b 的数量积 (或内积 )a ·b=| a || b|cos θ.32. 数量积 a · b 等于 a 的长度 |a|与 b 在 a 的方向上的投影 |b|cos θ的乘积. 33. 平面向量的坐标运算(1)设a=(x 1,y 1),b=(x 2,y 2),则 a+b= (x 1 x 2,y 1 y 2).(4) 设a=(x, y), R ,则 a=( x, y). (5) 设a=(x 1,y 1),b=(x 2,y 2),则 a ·b=(x 1x 2 y 1y 2).(x 2 x 1)2 (y 2 y 1)2(A (x 1 ,y 1) , B (x 2,y 2))36 向量的平行与垂直设a=(x 1, y 1), b=(x 2,y 2), 且b 0,则A|| b b=λ a x 1 y 2x 2 y 1 0.a b(a 0)a · b=0 x 1x 2 y 1y 20.37. 三角形的重心坐标公式△ ABC 三 个 顶 点 的 坐 标 分 别 为 A (x 1,y 1) 、 B (x 2,y 2 ) 、 C (x 3,y 3 ) , 则 △ ABC 的 重 心 的 坐 标 是38. 常用不等式:(1) a,b R a 2 b 2 2ab (当且仅当 a =b 时取“ =”号). (2) a,b R a b ab (当且仅当 a =b 时取“ =”号).2( 3) a b a b a b .39已知 x, y 都是正数,则有( 1)若积 xy 是定值 p ,则当 x y 时和 x y 有最小值 2 p ;2R .y 1).G(x 1x 2 3x 3y 1 y 2 y 3)3)设O 为 1) O 为 3)O 为ABC 所在平面上一点,角 A,B,C 所对边长分别为 a, b, c ,则O2C )OOA 为ABC 的重心(2) 设 a=(x 1,y 1),b=(x 2, y 2), (3) 设 A (x 1, y 1),B (x 2,y 2), 则y 1 y 2) .(x 2 x 1,y 234. 两向量的夹角 公式 cos 35. 平面两点间的距离公式a=(x 1,y 1) ,b=(x 2,y 2)).ABC 的外心 ABC 的垂心x x2)若和 x y 是定值 s ,则当 x y 时积 xy 有最大值40. 含有绝对值的不等式当 a> 0 时, 2ax 12s .4 2 aaxa .2axa 或xa .41.斜率公式 k y 2 x 2y1( x 1P 1(x 1,y 1)、P 2(x 2,y 2) ).42.直线的五种方程(1) 点斜式y y 1k(x x 1) (直线 l 过点 P 1(x 1,y 1), 且斜率为 k ). (2)斜截式 ykxb (b 为直线 l 在 y 轴上的截距 ).(3) 两点式y y 1x x 11 ( y 1 y 2)( P 1(x 1, y 1) 、P 2(x 2,y 2) ( x 1y 2y 1x 2 x 1(4) 截距式 x y1( a 、b 分别为直线的横、纵截距,a 、b 0)a b(5) 一般式 Ax By C 0(其中 A 、B 不同时为0).x 2 )).43.两条直线的平行和垂直 (1)若l 1: y k 1x b 1,l 2: y (2)若l 1: A 1x B 1y C 1 0,l 2 :A 2x B 2 y C 2 A 1 k 2x b 2 ①l 1 ||l 2 k 1 k 2,b 1 b 2 ;② l 0,且 A 1、A 2、 1 l 2 k 1k 2 1.B 1、B 2 都不为零 , ①l 1 ||l 2 B 1C 1 A 2 (l 1 : A 1x B 1y C 1 ;② l 1 l 2 A 1A 2 B 2 C 20,l 2: A 2x B 2y C 2 0,A 1A 2 B 1B 2 0 ;B 1B 2 0). 直线 l 1 l 2 时, 45.点到直线的距离 直线 l 1 与 l 2的夹角是 . 2 C| (点 P(x 0,y 0) ,直线 l : Ax | Ax 0 By 0 A 2 B 2 ByC 0). 46. 圆的四种方程 (1)圆的标准方程 (2)圆的一般方程 47. 直线与圆的位置关系 直线 Ax By C d r相离 (x 2 x a)2 2 y (y Dx b)2 Ey r 2 F 0( D 2 E 2 4F >0). d r 相交 0 与圆 (x 0;d a)2 r 0.其中 d 48. 两圆位置关系的判定方法 设两圆圆心分别为 O 1, 外离 r 1 r 1 r 2 d r 1 r 2r1r 2Aa (y 相切 Bb b)2 A 2 B 2O 2,半径分别为 r 1,r 2, 4条公切线 ; d r 1 相交2条公切线 内含 无公切线 .49. 圆的切线方程 (1) 已知圆 x 2 y 2①过圆上的 P 0(x 0,y 0) 点的切线方程为 x 0x22Dx Ey F 0 .(2)2 r 2 的位置关系有三种 :0;O 1O 2 d 外切 r 2 r 2 ;dr 13条公切线 ; 内切 1条公切线 ;已知圆y 0y2x2 r ;50. 椭圆 x 2 y 2 1(a b 0)的参数方程是 a b yacos bsin2251. 椭圆 x2 y2 1(a a 2 b252.椭圆的的内外部b 0) 焦半径公式 PF 1 e(xa 2), PF 22e(ax) .c1)点 P(x 0,y 0)在椭圆 2)点 P(x 0,y 0)在椭圆 2 x 2a 2 x 2a 2y 2 1(a b b 2 2 y 2 1(a b b 0) 的内部 0) 的外部 2253. 双曲线 x 2 y 2 1(a a 2 b 2 54. 双曲线的方程与渐近线方程的关系 2 x 2a 0,b 0) 的焦半径公式 (1 )若双曲线方程为 2 y b 2 2 x 渐近线方程: 2 a (2) 若渐近线方程为 0 双曲线可设为2x 02y 02ab 22 2x 0 y 022ab 2 2 a 2)c |e(xy22xy2 2 ab 2 c1.1. PF 1|,b x . a2 yb 2 PF 22|e(ax)|. c(3) 2 若双曲线与 x 2a 2 2 y 2 55. 抛物线 2 yb 2 2px 的焦半径公式 1有公共渐近线, 可设为 2 x 2 a 2 y b 2 0 ,焦点在 x 轴上, 0 ,焦点在 y 轴上). 抛物线 y 22px(p 0) 焦半径 p2 x 2 56. 直线与圆锥曲线相交的弦长公式 过焦点弦长 CD x 1 22 k 2)(x 2 x 1)2|x 1CF x 0 x 1 ABx 2 p . (x 1 x 2)2 (y 1 y 2)2 或 |y 1 y 2| 1 cot 2(弦端点 A (x 1,y 1),B(x 2,y 2) ,由方 | 1 tan 2 AB (1 y kx b 消去 y 得到 ax 2 bx F(x,y) 0 57(1) 加法交换律: a +b=b + a .(2) 59 共线向量定理 对空间任意两个向量 a 、b(b ≠0 ), P 、A 、B 三点共线AP || AB60. 向量的直角坐标运算 设 a =(a 1,a 2,a 3),b = (b 1,b 2,b 3)则 (1) a +b =(a 1 b 1,a 2 b 2,a 3 b 3) ;(2) a - b = (a 1 b 1,a 2(4) a · b =a 1b 1 a 2b 2 a 3b 3 ; 61.设 A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 ABx 2 加法结合律:0, 为直线 AB 的倾斜角, k 为直线的斜率) (a +b)+c=a +(b +c).(3) 数乘分配律: λ ( a + b)= λ a +λ b .a=λ(1b 2,a 3 b 3) ; (3) λa = ( a 1, a 2, a 3) ( λ∈R);(x 2x 1,y 2 y 1,z 2 z 1) .62.空间的线线平行或垂直设a (x 1,y 1,z 1),b (x 2,y 2,z 2),则 a b63. 夹角公式zzy设 a =(a 1,a 2,a 3),b = (b 1,b 2,b 3),则 cos 〈a , b 〉a 1b 1 a 2b 2 a 3b 3a 22 a 32b 12 b 22 b 32|a b|64.异面直线所成角 cos |cos a,b |= |a b||a||b ||x 1x 2 y 1y 2 z 1z 2 |22 y 2 z22 2 2 2 x 1 y 1 z 1 x 2若66.67. 球的半径是 R ,则43其体积 VR 3, 其表面积 S 4 3(3) 球与正四面体的组合体 :R 2.棱长为 a 的正四面体的内切球的半径为126 a ,外接球的半径为 168V 柱体Sh ( S 是柱体的底面积、69. 分类计数原理( 加法原理) h 是柱体的高) .V 锥体6a .411Sh ( S 是锥体的底面积、 h 是锥体的高) 3m 1m 270. 排列数公式 A n m =n(n 1) (n1)= n !m n .71. 组合数公式 C n m72. 组合数的两个性质= A n m n(n =A m m (1)1)1mnC n =C n(n m)! m 1) m !(n m)! 1 =C n m 1 .注:规定 C n 0m ∈ N *,且 m n ) . 注:规定 0! 1.155. 组合恒等式 (1)C n mnmmmA n mm !(nm;(2) C n m +C n m C n m 1;(2)C n mC n m. n 个元素中取 n !( n ∈ N , m N ,且m n ).1.nC n m 1;(3)C n mnmn m 1C n 1mn4) C n r =2n ;r073. 排列数与组合数的关系74.单条件排列以下各条的大前提是从 (1)“在位”与“不在位” ①某(特)元必在某位有A n 1 种;②某(特)元不在某位有 A n A A n m 1 A 1m 1A n m 11 (着眼元素)种 . ( 2)紧贴与插空(即相邻与不相邻) ①定位紧贴: k (k m n )个元在固定位的排列有 A k k A n m k k 种. m 个元素的排列 .m m 1 n A n 1 补集思想) A n 1 1A n m 11(着眼位置) ②浮动紧贴: n 个元素的全排列把 k 个元排在一起的排法有 A n n k k 11A k k 种.注:此类问题常用捆绑法; ③插空:两组元素分别有 k 、 h 个( k h 1 ),把它们合在一起来作全排列, k 个的一组互不能挨近的所有排 列数有 A h h A h k 1种. (3)两组元素各相同的插空 m 个大球 n 个小球排成一列,小球必分开,问有多少种排法? A n当 n m 1 时,无解;当 n m 1时,有 m n 1A n n(4)两组相同元素的排列:两组元素有 m 个和 75.分配问题 (1) C m n 1种排法 .n 个,各组元素分别相同的排列数为 C n . mnN C m n n (2) (平 均分组有 归属问 题)将相异 的 m 、 n n (mn )! C 2n C n m . 2n n (n!)m (平均分组无归属问题 )将相异的 m · n 个物体等分为无记号或无顺序的 m n 个物 件等 分给 m 个人 ,各得 n 件 ,其 分配方法 数共有 C n C n C mn n C mn 2n 其分配方法数共(3)(非平均分组有归属问题 )将相异的 P(P=n 1+n 2+ +n m )个物体分给 m 个人,物件必须被分完,分别得到 n 1,n 2 ,⋯,n m 件,且n 1,n 2,⋯,n m 这m 个数彼此不相等, 则其分配方法数共有 N C p n 1C pn 2 n 1...C n n m mm! p!m! .1 mn 1!n 2!...n m !n 0 n 1 n1 2 n 2 2 r n r r n n76. 二项式定理 (a b)n Cn 0a n C 1na n 1b Cn 2a n 2b 2 Cn r a n r b r Cn n b n ;二项展开式的通项公式 T r 1 C n r a n r b r (r 0,1,2 ,n).77.n 次独立重复试验中某事件恰好发生 k 次的概率 P n (k) C n k P k (1 P)n k . 78.离散型随机变量的分布列的两个性质( 1) P i0(i 1,2, ); (2) P 1 P 21. 79. 数学期望 Ex 1P 1 x 2P 2x n P n80.. 数学期望的性质( 1) E(a b) aE( )b . (2)若 ~B(n, p),则E np .81. 方差 Dx 1 Ep 12 x 2Ep 2x n Ep n 标准差 = D82. 方差的性质 (1) D aba 2D ;(2 )若B(n,p),则 D np(1 p).83.. f (x) 在 (a, b)的导数 f (x)dy df y lim y lim f (x x) f(x).dx dxx 0 x x 0 x84.. 函数 y f (x) 在点 x 0处的导数的几何意义函数 y f(x)在点 x 0处的导数是曲线 y f (x)在P(x 0, f (x 0))处的切线的斜率 f (x 0) ,相应的切线方程是 y y 0 f (x 0)(x x 0) . 85.. 几种常见函数的导数(1) C 0 (C 为常数) .(2) (x n )' nx n 1(n Q) .(3) (sin x) cosx .1 x 1x x x x(4) (cos x ) sinx (5) (lnx) ; (log a ) (6) (e ) e ; (a ) a lna .x xln a86.. 导数的运算法则' ' ' ' ' 'u ' u 'v uv '(1)(u v) u v .(2)(uv) uv uv .(3)( ) 2 (v 0).vv87.. 复合函数的求导法则设函数 u (x)在点x 处有导数 u x ' '(x),函数 y f(u)在点 x 处的对应点 U 处有导数 y u ' f '(u) ,则复合函数 y f( (x))在点 x 处有导数,且 y 'x y u ' u 'x ,或写作 f x '( (x)) f '(u) '(x).89. 复数的相等 a bi c di a c,b d . ( a,b,c,d R )90.复数 z a bi 的模(或绝对值) | z|=|a bi |= a 2 b 2 .91.复数的四则运算法 (1) (a bi) (c di) (a c) (b d)i (2) (a bi) (c di) (a c) (b d)i ;ac bd bc ad 222215、正弦函数、余弦函数和正切函数的图象与性质:。
高考数学必修公式大全

数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B U交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=>f (– x ) = – f ( x ),偶函数 <=>f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f (x ),若任意的x 1, x 2∈D ,且x 1< x 2① f ( x 1) < f ( x 2) <=> f ( x 1) – f ( x 2) < 0<=>f (x )是增函数 ② f ( x 1) > f ( x 2) <=> f ( x 1) – f ( x 2) > 0<=>f (x )是减函数 2、复合函数的单调性:同增异减三、二次函数y =ax 2 +bx +c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛−−a b ac a b 44,22, 对称轴:a bx 2−=,最大(小)值:a b ac 442−2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =−+≠; (3)两根式12()()()(0)f x a x x x x a =−−≠. 四、指数与指数函数 1、幂的运算法则:(1)a m • a n =a m + n ,(2)n m n m a a a −=÷,(3)(a m )n =a m n (4)(ab )n = a n • b n(5) n n nb a b a =⎪⎭⎫⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=− (8)m n m n a a =(9)m n m naa 1=−2、根式的性质(2)当na =; 当n ,0||,0a a a a a ≥⎧==⎨−<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a (N M) = log a M -- log a N(8)log a N b = b log a N (9)换底公式:log a N =aNb b log log (10)推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 221x x y == 11−==x xy七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +−=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学常用公式及结论200条1高考数学常用公式及结论200条集合● 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. ● 德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.● 包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=● 容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.● 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.● 集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;二次函数,二次方程● 二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. ● 解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. ● 方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+. ● 闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;高考数学常用公式及结论200条2[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.● 一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .● 定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.高考数学常用公式及结论200条3简易逻辑●● 常见结论的否定形式● 四种命题的相互关系● 充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.高考数学常用公式及结论200条4函数● 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.● 如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. ● 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;● 若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.● 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. ● 若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.● 多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. ● 函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.高考数学常用公式及结论200条5(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.● 两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.● 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.● 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.● 若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. ● 几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. ● 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.指数与对数高考数学常用公式及结论200条6● 分数指数幂(1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).● 根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.● 有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.● 指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.● 对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).● 对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈.● 设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. ● 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++<.(2)2log log log 2a a am nm n +<. ● 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).高考数学常用公式及结论200条7数列● 等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. ● 等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.● 等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. ● 分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).三角函数● 常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.● 同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. ● 正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩高考数学常用公式及结论200条8sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=). ● 半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+- ● 二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.● 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.● 三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. ● 正弦定理 2sin sin sin a b cR A B C===. ● 余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.● 面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅. ● 三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. ● 在三角形中有下列恒等式:高考数学常用公式及结论200条9① sin()sin A B C +=②tan tan tan tan .tan .tan A B C A B C ++= ● 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.● 最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈. ● 角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-向量● 实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb . ● 向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. ● 平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. ● 向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.● a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. ● a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. ● 平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.高考数学常用公式及结论200条10(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. ● 两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).● 平面两点间的距离公式 ,A B d=||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).● 向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. ● 线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). ● 三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. ● 点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k . ● “按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .● 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==.(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.不等式● 常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R+∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. ● 极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.● 一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.● 含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.高考数学常用公式及结论200条12(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. ● 指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩直线方程● 斜率公式 ①2121y y k x x -=-(111(,)P x y 、222(,)P x y ).② k=tanα(α为直线倾斜角)● 直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).● 两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②两直线垂直的充要条件是 12120A A B B +=;即:12l l ⊥⇔12120A A B B +=● 夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. ●1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π. ● 四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.● 点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).● 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。