高考数学必背公式大全
高中数学必备必考公式大全

高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。
高考数学必考公式归纳

高考数学必考公式归纳高考数学必考公式归纳如下:1. 三角函数公式:sin30°=1/2,sin45°=√2/2,sin60°=√3/2cos30°=√3/2,cos45°=√2/2,cos60°=1/2tan30°=√3/3,tan45°=1,tan60°=√3cot30°=√3,cot45°=1,cot60°=√3/3sin15°=(√6-√2)/4,sin75°=(√6+√2)/4cos15°=(√6+√2)/4,cos75°=(√6-√2)/4sin18°=(√5-1)/4(这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)2. 正弦定理:在△abc中,a/sina=b/sinb=c/sinc=2r(其中,r为△abc的外接圆的半径。
)3. 直线过焦点公式:必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
4. 函数的周期性问题:若f(x)=-f(x+k),则T=2k;若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。
5. 周期函数加周期函数未必是周期函数,如:y=sinx与y=sinπx相加不是周期函数。
以上信息仅供参考,具体考试内容以实际为准。
2024年数学高考必备详细公式

在2024年的数学高考中,学生需要记忆和熟练运用的数学公式非常多。
以下是一些数学高考必备的详细公式。
1.代数公式:- 二次方程公式:若ax²+bx+c=0,其中a≠0,那么它的解为x=(-b±√(b²-4ac))/(2a)。
-勾股定理:在直角三角形中,a²+b²=c²,其中a、b为直角边,c为斜边。
-平方差公式:(a+b)(a-b)=a²-b²。
- 一次函数的解析式:y=kx+b,其中k为斜率,b为y轴截距。
-等差数列求和公式:Sn=(n/2)(a₁+an),其中Sn为前n项和,a₁为首项,an为末项。
-高斯公式:1+2+3+...+n=n(n+1)/2- 二项式定理:(a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b +C(n,2)a^(n-2)b² + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n,其中C(n,k)表示从n个元素中选择k个元素的组合数。
2.几何公式:-两点间距离公式:设平面上有两点A(x₁,y₁)和B(x₂,y₂),则AB的距离为√((x₂-x₁)²+(y₂-y₁)²)。
-直线的斜率公式:设直线上有两点A(x₁,y₁)和B(x₂,y₂),则该直线的斜率为k=(y₂-y₁)/(x₂-x₁)。
-直线方程:(x-x₁)/(x₂-x₁)=(y-y₁)/(y₂-y₁)。
-圆的面积公式:A=πr²,其中A表示圆的面积,r表示半径。
-梯形面积公式:A=(上底+下底)×高/2,其中A表示梯形的面积,上底和下底分别为两个平行边的长度,高为两平行边的距离。
- 三角形的面积公式:设三角形的底边为a,高为h,则三角形的面积A=ah/2-正多边形的内角和公式:内角和=(n-2)×180°,其中n为正多边形的边数。
高考数学必备公式整理

高考数学必备公式整理一、函数与图像1. 二次函数的标准式:y = ax² + bx + c二次函数的顶点坐标:(h,k)二次函数的轴对称线方程:x=h二次函数的对称轴与x轴交点坐标:(h,0)2. 一次函数的标准式:y = kx + b一次函数的斜率:k一次函数的截距:b一次函数的与x轴的交点坐标:(0,b)3. 一元二次方程的求根公式:x = (-b ± √(b² - 4ac)) / 2a一元二次方程的判别式:∆= b² - 4ac当判别式大于0时,方程有两个不相等实根;当判别式等于0时,方程有两个相等实根;当判别式小于0时,方程没有实根。
二、平面几何1.正方形的周长公式:P=4s(s为边长)正方形的面积公式:A=s²2.长方形的周长公式:P=2a+2b(a为长,b为宽)长方形的面积公式:A = ab3.圆的周长公式:C=2πr(r为半径)圆的面积公式:A=πr²4.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为两直角边)等边三角形边长公式:a=b=c(a、b、c为三边的边长)三、立体几何1.球的表面积公式:A=4πr²(r为半径)球的体积公式:V=(4/3)πr³2. 圆锥的侧面积公式:S = πrl (r为底圆半径,l为斜高)圆锥的侧面积公式:S=πr(r+l)3. 圆柱的侧面积公式:S = 2πrh (r为底圆半径,h为高)圆柱的体积公式:V=πr²h4.体积的加法原理:若两个几何体没有相交,则它们的体积相加。
四、三角函数1. 正弦定理:a/sinA = b/sinB = c/sinC (a、b、c为三角形的边长,A、B、C为对应的角)2. 余弦定理:c² = a² + b² - 2abcosC (c为三角形的边长,a、b 为对应的边,C为对应的角)3. 正切函数:tanθ = sinθ/cosθ5.三角函数的性质:(1)sin(-θ) = -sinθ(2)cos(-θ) = cosθ(3)tan(-θ) = -tanθ(4)sin(π±θ) = ±sinθ(5)cos(π±θ) = -cosθ(6)tan(π±θ) = ±tanθ五、概率与统计1.事件的概率公式:P(A)=n(A)/n(S)(P(A)代表事件A发生的概率,n(A)代表事件A的可能结果数,n(S)代表样本空间的大小)2.加法原理:若事件A、B互斥(即事件A发生时事件B不发生),则P(AUB)=P(A)+P(B)3.互斥事件的概率和:P(AUB)=P(A)+P(B)以上是高考数学必备的一些公式整理,希望能对大家复习备考有所帮助。
高考数学必背必记公式

高考数学必背必记公式1、有限集合子集个数:子集个数:2n 个,真子集个数:12n −个;2、集合里面重要结论:①A B A A B ⋂=⇒⊆;②A B A B A ⋃=⇒⊆;③A B A B ⇒⇔⊆ ④A B A B ⇔⇔=3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+−U I5、几个近似值:2 1.414,3 1.732,5 2.236, 3.142, 2.718e π≈≈≈≈≈6、分数指数幂公式:n m n ma a = 7、对数换底公式:log 1log ;log log log c a a c b b b b a a ==8、单调性的快速法:①.增+增→增;增—减→增;②.减+减→减;减—增→减;③.乘正加常,单调不变: ④.乘负取倒,单调不变:9、奇偶性的快速法:①.奇±奇→奇;偶±偶→偶;②.奇()⨯÷奇→偶;偶()⨯÷偶→偶;奇()⨯÷偶→奇;10、函数的切线方程:000()()y y f x x x '−=−11、函数有零点min max ()0()0f x f x ≤⎧⇔⎨≥⎩第一章 集合第二章 函数12、函数无零点max min ()0()0f x f x ⇔≤≥或13、函数周期性:()()f a x f b x +=+的周期Tb a =−; 14、函数对称性:()()f a x f b x +=−的对称轴2a bx +=; 15、抽象函数对数型:若()()()f xy f x f y =+,则()log a f x x =; 16、抽象函数指数型:若()()()f x y f x f y +=,则()x f x a =; 17、抽象函数正比型:若()()()f x y f x f y +=+,则()f x kx =; 18、抽象函数一次型:若()f x c '=,则()f x cx b =+; 19、抽象函数导数型:若()()f x f x '=,则()x f x ke =或()0f x =;20、两个重要不等式:1ln(1)1(0)ln 1x x e x x x e x x x ⎧≥+⇒+≤≤−==⎨≤−⎩当且仅当时“”成立21、洛必达法则:()()()()limlim x ax a f x f x g x g x →→'='(当()0()0f x g x ∞→∞或时使用) 22、恒成立问题:max min(1)()()(2)()()a f x a f x a f x a f x ≥⇔≥<⇔<23、证明()()f x g x >思路:思路1:(1)()()()()0h x f x g x h x =−⇔>(常规首选方法)思路2:min max ()()f x g x >(思路1无法完成)24、等差数列通项公式:1(1)n a a n d =+− 25、等差数列通项公式:11()(1)22n n n a a n n S na d +−==+ 26、等比数列通项公式:11n n a a q −=27、等比数列通项公式:11(1)11n n n a a qa q S q q+−==−−第三章 数列28、等差数列的性质:若m n p q +=+,则m n p q a a a a +=+ 29、等比数列的性质:若m n p q +=+,则m n p q a a a a = 30、等差中项:若,,a A b 成等差数列,则2A a b =+ 31、等比中项:若,,a G b 成等比数列,则2G ab = 32、裂项相消法1:若111(1)1n n nn −++=,则有1111n n T n n =−=++ 33、裂项相消法2:若1111(2)22n n n n −++⎛⎫= ⎪⎝⎭,则有1111(1)2212n T n n =+−−++ 34、裂项相消法3:若111111n nnn a a d a a ++=−⎛⎫⎪⎝⎭,则有11111()nn T d a a +=− 35、裂项相消法4:若1111(21)(21)22121n n n n −+−−+⎛⎫= ⎪⎝⎭,则有11(1)221n T n =−+ 36、错位相减法求和通式:1112()1(1)1n n n n dq b b a b q a b T q q q −=+−−−−37、三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:22r x y =+38、诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。
高考数学必背公式整理

高考数学必背公式整理一、平面几何公式1. 直线的一般方程:Ax + By + C = 02. 两点间的距离公式:AB = √[(x2 - x1)² + (y2 - y1)²]3. 点到直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)4. 两直线夹角的余弦公式:cosθ = (A₁A₂ + B₁B₂) / (√(A₁² + B₁²) √(A₂² + B₂²))5. 两直线平行的条件:A₁ / A₂ = B₁ / B₂ ≠ C₁ / C₂6. 两直线垂直的条件:A₁A₂ + B₁B₂ = 07. 两直线交点的坐标:x = (B₁C₂ - B₂C₁) / (A₁B₂ - A₂B₁),y = (A₂C₁ - A₁C₂) / (A₁B₂ - A₂B₁)二、立体几何公式1. 体积公式:长方体的体积 V = lwh,正方体的体积V = a³,圆柱的体积V = πr²h,圆锥的体积V = (1/3)πr²h,球体的体积 V = (4/3)πr³2. 表面积公式:长方体的表面积 S = 2lw + 2lh + 2wh,正方体的表面积 S = 6a²,圆柱的表面积S = 2πrh + 2πr²,圆锥的表面积S = πrl + πr²,球体的表面积S = 4πr²三、三角函数公式1. 余弦定理:c² = a² + b² - 2abcosC2. 正弦定理:a / sinA = b / sinB = c / sinC3. 三角恒等式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ四、导数公式1. 基本导数:(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x,(cotx)' = -csc²x,(lnx)' = 1/x,(ex)' = ex2. 乘法法则:(uv)' = u'v + uv'3. 除法法则:(u/v)' = (u'v - uv') / v²4. 链式法则:(f(g(x)))' = f'(g(x)) * g'(x)五、积分公式1. 基本积分:∫xⁿdx = (xⁿ⁺¹) / (n⁺¹),∫sinxdx = -cosx,∫cosxdx = sinx,∫sec²xdx = tanx,∫csc²xdx = -cotx,∫1/xdx = ln|x|,∫exdx = ex2. 乘法法则:∫uvdx = ∫u'vdx + ∫uv'dx3. 替换法则:∫f(g(x))g'(x)dx = ∫f(u)du六、概率统计公式1. 排列公式:Aₙₙ = n! / (n - m)!2. 组合公式:Cₙₙ = n! / (m!(n - m)!)3. 二项式定理:(a + b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿₙa⁰bⁿ4. 期望公式:E(X) = Σ(xP(x))5. 方差公式:Var(X) = Σ(x²P(x)) - [E(X)]²以上是高考数学中常用的必背公式。
高考必记数学公式汇总

高考必记数学公式汇总1. 一元一次方程:ax + b = 0-解的公式:x=-b/a2. 一元二次方程:ax^2 + bx + c = 0- 解的公式:x = (-b ± √(b^2 - 4ac)) / (2a)3.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切定理:tanA = a/b4.平面几何:-点到直线的距离:d=,Ax+By+C,/√(A^2+B^2)-平行线的性质:两条直线的斜率相等-垂直线的性质:两条直线的斜率的乘积等于-15.统计与概率:-高斯分布:P(x)=(1/(√(2π)σ))*e^(-((x-μ)^2/(2σ^2))) - 期望值计算:E(x) = ∑(xi * P(xi))- 方差计算:Var(x) = ∑((xi - E(x))^2 * P(xi))6.矩阵:-矩阵乘法:若A是一个mxn的矩阵,B是一个nxp的矩阵,那么它们的乘积C是一个mxp的矩阵,其中C的第i行第j列元素为A的第i行与B的第j列的乘积之和。
7.三角函数补充:- 反正弦函数:sin^(-1)(x)- 反余弦函数:cos^(-1)(x)- 反正切函数:tan^(-1)(x)8.指数与对数函数:-指数函数的性质:a^m*a^n=a^(m+n)- 对数函数的性质:log(a) * log(b) = log(a*b)9.数列与数学归纳法:-等差数列通项公式:an = a1 + (n-1)d-等差数列求和公式:Sn = (n/2)(a1 + an)-等比数列通项公式:an = a1 * r^(n-1)-等比数列求和公式:Sn=a1*(1-r^n)/(1-r)10.导数与微分:- 基本导数公式:(常数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(sinx)' = cosx,(cosx)' = -sinx-链式法则:(f(g(x)))'=f'(g(x))*g'(x)11.不等式与绝对值:-绝对值不等式性质:,a*b,=,a,*,b,a+b,≤,a,+,b- 一次不等式:ax + b > 0 (a ≠ 0)- 二次不等式:ax^2 + bx + c > 0 (a ≠ 0)这些是高考中常见的一些数学公式,掌握并熟练运用它们可以帮助你在数学考试中提高得分。
新高考数学必背公式

一、代数部分平方差公式:公式:a² - b² = (a + b)(a - b)全平方公式:公式:a²± 2ab + b² = (a ± b)²立方和与立方差公式:立方和公式:a³ + b³ = (a + b)(a² - ab + b²)立方差公式:a³ - b³ = (a - b)(a² + ab + b²)因式分解公式:a² - b² = (a + b)(a - b),a³ + b³ = (a + b)(a² - ab + b²),等等。
集合运算性质:并集:A∪B=B∪A,A∪A=A,A∪∅=∅∪A=A交集:A∩B=B∩A,A∩A=A,A∩∅=∅∩A=∅德·摩根定律:(A∩B)=(A)∪(B)(A∪B)=(A)∩(B)不等式性质:如果a<b,c<d,那么a+c<b+d如果a<b,c>0,那么ac<bc如果a<b,c<0,那么ac>bc基本不等式:a+b≥2(a,b∈R+),当且仅当a=b时等号成立柯西不等式:二维柯西不等式:(a+b)(c+d)≥(ac+bd),当且仅当ad=bc时成立伯努利不等式:对于实数x>-1,n≥1时,有(1+x)n≤1+nx成立,当且仅当n=0,1,或x=0时,等号成立。
二、三角函数部分正弦、余弦、正切的定义:sin = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边三角函数的和差公式:sin(α + β) = sinαcosβ + cosαsinβcos(α + β) = cosαcosβ - sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)三角函数的倍角公式:sin2α = 2sinαcosαcos2α = cos²α - sin²αtan2α = 2tanα / (1 - tan²α)三、几何部分圆的周长和面积公式:周长:C = 2πr面积:S = π*r²三角形的面积公式:S = 1/2 * 底 * 高平行四边形的面积公式:S = 底 * 高四、微积分部分导数的定义:(x) = lim(Δx→0) [f(x + Δx) - f(x)] / Δx 积分的基本公式:∫f(x)dx = f(x) + C(C为常数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学必背公式大全
由于高中数学公式很多,同学们复习的时候不方便查阅,下面是给大家带来的高考必背数学公式,希望能帮助到大家!
高考必背数学公式1
两角和公式
sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatan b)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2
和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、
sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b) /2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
等差数列
1、等差数列的通项公式为:
an=a1+(n-1)d (1)
2、前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数
(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar 为Am,An的等差中项.
,
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式.
3、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N_,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
和=(首项+末项)_项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
等比数列
1、等比数列的通项公式是:An=A1_q^(n-1)
2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N_,则有:ap·aq=am·an,
等比中项:aq·ap=2ar ar则为ap,aq等比中项.
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项。