相似三角形综合题锦(含答案)
相似三角形试题及答案

相似三角形试题及答案
一、选择题
1. 已知两个三角形相似,下列说法正确的是()
A. 对应角相等
B. 对应边成比例
C. 对应角相等且对应边成比例
D. 面积相等
答案:C
2. 若两个三角形的相似比为2:3,则下列说法正确的是()
A. 周长比为2:3
B. 周长比为3:2
C. 面积比为4:9
D. 面积比为9:16
答案:C
二、填空题
1. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则BC:EF=______。
答案:2:3
2. 若三角形ABC与三角形DEF相似,且相似比为1:2,则三角形ABC
的面积是三角形DEF面积的______。
答案:1/4
三、解答题
1. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC和EF 的长度。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例。
因此,BC:EF=AB:DE=6:9=2:3。
设BC=2x,则EF=3x。
由于AB:DE=2:3,所以2x/3x=6/9,解得x=3cm。
因此,BC=6cm,
EF=9cm。
2. 已知三角形ABC与三角形DEF相似,且三角形ABC的面积为24平方厘米,三角形DEF的面积为36平方厘米,求相似比。
答案:设相似比为k,则三角形ABC与三角形DEF的面积比为k^2。
因此,k^2=24/36=2/3,解得k=√(2/3)。
所以相似比为√(2/3)。
相似三角形综合练习及答案 证明题 不错 打印

相似三角形33.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标作为点A,再在河的这一边选点B 和点C,使AB⊥BC,然后再选点E,使EC⊥BC,确定BC与AE的交点为D,如图,测得BD=120米,DC=60米,EC=50米,你能求出两岸之间AB的大致距离吗?34.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC 于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连接FG,如果α=45°,AB=4,AF=3,求FC和FG的长.35如图,已知△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.36.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图23-12,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).37.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s 的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?38.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.39.如图,在矩形ABCD中,AB=12cm,BC=8cm .点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动。
九年级数学相似三角形综合练习题及答案

九年级数学相似三角形综合练习题及答案1.填空(本题14分)(1)若a=8cm ,b=6cm ,c=4cm ,则a 、b 、c 的第四比例项d=___;a 、c 的比例中项x=__。
(2))x 1(:x x :)x 2(-=-。
则x=__________。
(3)在比例尺为1:10000的地图上,距离为3cm 的两地实际距离为______公里。
(4)圆的周长与其直径的比为________。
(5)若35b a =,则b b a -=________。
(6)若a :b :c=1:2:3,且6c b a =+-,则a=________,b=_______,c=________。
(7)如图1,23DE BC AE AC AD AB ===,则(1)=AECE ________(2)若BD=10cm ,则AD=______cm 。
(3)若△ADE 的周长为16cm ,则△ABC 的周长为________。
(8)若点c 是线段AB 的黄金分割点,且CB AC >,=AC AB ________,=AB BC ________。
2.选择题(本题9分)(1)根据ab=cd ,共可写出以a 为第四比例项的比例式的个数是( )A .0B .1C .2D .3(2)若线段a 、b 、c 、d 成比例,则下列各式中一定能成立的是( )A .c bd a = B .bd a c = C .b a c d = D .ab dc = (3)如图:DE//BC ,在下列比例式中,不能成立的是( )A .EC AE DB AD = B .ECAE BC DE = C .AE AC AD AB = D .ACAB EC DB = 3.已知:32b b a =-。
求(1)a 3b a -;(2)b3a 2b 2a 3-+。
(本题10分)4.若x :y :z=2:7:5,6z 3y 2x =+-,求2z y x +的值。
(本题6分)5.已知:32f e d c b a ===,且18f 5d b 2=+-。
相似三角形及其判定练习及参考答案

相似三角形及其判定练习一、选择题:1.下列判断正确的是()A.两个直角三角形相似B.两个相似三角形一定全等C.凡等边三角形都相似D.所有等腰三角形都相似2.下列各对三角形中一定不相似的是()A.△ABC中,∠A=54°,∠B=78°△A′B′C′中,∠C′=48°,∠B′=78°B.△ABC中,∠C=90°,AC=4cm,BC=3cm△A′B′C′中,∠C′=90°,A′C′=12cm,B′C′=15cmC.△ABC中,∠B=90°,AB=5,AC=13△A′B′C′中,∠B′=90°,A′B′=2.5a,B′C′=6aD.△ABC中,∠C=90°,∠A=45°,AB=5△A′B′C′中,∠A′=45°,A′B′=53.如图,AB∥CD,AC、BD交于O,BO=7,DO=3,AC=25,则AC长为()A.10B.12.5C.15D.17.54.在△ABC中,MN∥BC,MC、NB交于O,则图中共有()对相似三角形。
A.1B.2C.3D.4二、填空题1.如图16,已知△ABC中D为AC中点,AB=5,AC=7,∠AED=∠C,则ED= 。
2.在梯形ABCD中,AB∥CD,AC平分∠DAB,DC:AB=1:1.5,则AD:BC= 。
3.如图18在Rt △A B C 中∠ACB =90°,CD ⊥AB ,AC =6,AD =3.6,则BC = , BD = 。
4.已知:图19中AC ⊥BD ,DE ⊥AB ,AC 、ED 交于F ,BC =3,FC =1,BD =5,则AC = 。
三、解答题1.已知:如图20□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。
求:AM :AC 。
2.已知:如图21在△ABC 中EF 是BC 的垂直平分线,AF 、BE 交于一点D ,AB =AF 。
相似三角形练习题及答案

相似三角形练习题及答案相似三角形是几何学中的一个重要概念,它指的是两个三角形的对应角相等,且对应边成比例。
下面是一些相似三角形的练习题及答案,供同学们练习和参考。
练习题1:已知三角形ABC与三角形DEF相似,且AB/DE = 2/3,求BC/EF的比值。
答案1:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边的比值相等。
因此,BC/EF = AB/DE = 2/3。
练习题2:在三角形ABC中,点D在边BC上,且AD是三角形ABC的高。
已知AD = 6cm,AB = 8cm,AC = 10cm,求BD和DC的比值。
答案2:由于AD是三角形ABC的高,根据相似三角形的性质,三角形ABD与三角形ACD相似。
设BD = x,DC = y,则有:\[ \frac{AB}{BD} = \frac{AD}{DC} \]\[ \frac{8}{x} = \frac{6}{y} \]由于三角形ABD和三角形ACD共享边AD,根据相似三角形的面积比等于边长的平方比,我们有:\[ \frac{AB}{AC} = \frac{BD}{DC} \]\[ \frac{8}{10} = \frac{x}{y} \]解得 x = 4.8cm,y = 6cm,所以BD:DC = 4.8:6 = 4:5。
练习题3:已知三角形PQR与三角形XYZ相似,且∠P = ∠X,∠Q = ∠Y,求∠R与∠Z的比值。
答案3:由于三角形PQR与三角形XYZ相似,且对应角相等,根据三角形内角和定理,我们知道∠P + ∠Q + ∠R = 180°,∠X + ∠Y + ∠Z = 180°。
由于∠P = ∠X,∠Q = ∠Y,我们可以得出∠R = ∠Z,所以∠R:∠Z = 1:1。
练习题4:在三角形ABC中,点E在边AB上,点F在边AC上,且EF平行于BC。
已知AE:AB = 1:2,求AF:AC的比值。
答案4:由于EF平行于BC,根据平行线的性质,三角形AEF与三角形ABC相似。
相似三角形综合题锦(含答案)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
中考数学复习---相似三角形综合压轴题练习(含答案解析)

中考数学复习---相似三角形综合压轴题练习(含答案解析)一.平行线分线段成比例(共1小题)1.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE 交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为.【答案】5【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.∵AE平分∠BAC,FM⊥AB,FN⊥AC,∴FM=FN,∴===3,∴AB=3AD,设AD=DC=a,则AB=3a,∵AD=DC,DT∥AE,∴ET=CT,∴==3,设ET=CT=b,则BE=3b,∵AB+BE=3,∴3a+3b=3,∴a+b=,∴△ABC的周长=AB+AC+BC=5a+5b=5,故答案为:5.二.相似三角形的性质和判定2.(2022•鞍山)如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=;②S△EBH:S△DHF =3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).【答案】①③④【解答】解:如图,过点G作GQ⊥DF于点Q,GP⊥EF于点P.设正方形ABCD的边长为2a.∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∵AE=EB=a,BC=2a,∵DF⊥CE,∴∠CFD=90°,∴∠ECB+∠DCF=90°,∵∠DCF+∠CDF=90°,∴∠CDF=∠ECB,∴tan∠CDF=,故①正确,∵BE∥CD,∴===,∵EC===a,BD=CB=2a,∴EH=EC=a,BH=BD=a,DH=BD=a,在Rt△CDF中,tan∠CDF==,CD=2a,∴CF=a,DF=a,∴HF=CE﹣EH﹣CF=a﹣a﹣a=a,∴S△DFH=•FH•DF=×a×a=a2,∵S△BEH=S△ECB=××a×2a=a2,∴S△EBH:S△DHF=a2:a2=5:8,故②错误.∵FM平分∠DFE,GQ⊥EF,GP⊥FE,∴GQ=GP,∵==,∴=,∴BG=DG,∵DM∥BN,∴==1,∴GM=GN,∵S△DFH=S△FGH+S△FGD,∴×a×a=××GP+×a×GQ,∴GP=GQ=a,∴FG=a,过点N作NJ⊥CE于点J,设FJ=NJ=m,则CJ=2m,∴3m=a,∴m=a,∴FN=m=a,∴MG=GN=GF+FN=a+a=a,∴MG:GF:FN=a:a:a=5:3:2,故③正确,∵AB∥CD,∴∠BEF=∠HCD,∵==,==,∴=,∴△BEF∽△HCD,故④正确.故答案为:①③④.3.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∵EF=3,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.4.(2022•东营)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是;③当MN最小时S△CMN=S菱形ABCD;④当OM⊥BC时,OA2=DN•AB.A.①②③B.①②④C.①③④D.①②③④【答案】D【解答】解:∵四边形ABCD是菱形,∴AB=CB=AD=CD,AB∥CD,AC⊥BD,OA=OC,∴∠BAC=∠ACD=60°,∴△ABC和△ADC都是等边三角形,∴∠ABM=∠ACN=60°,AB=AC,∵∠MAN=60°,∴∠BAM=∠CAN=60°﹣∠,∴△BAM≌△CAN(ASA),∴AM=AN,∴△AMN是等边三角形,故①正确;当AM⊥BC时,AM的值最小,此时MN的值也最小,∵∠AMB=90°,∠ABM=60°,AB=2,∴MN=AM=AB•sin60°=2×=,∴MN的最小值是,故②正确;∵AM⊥BC时,MN的值最小,此时BM=CM,∴CN=BM=CB=CD,∴DN=CN,∴MN∥BD,∴△CMN∽△CBD,∴===,∴S△CMN=S△CBD,∵S△CBD=S菱形ABCD,∴S△CMN=×S菱形ABCD=S菱形ABCD,故③正确;∵CB=CD,BM=CN,∴CB﹣BM=CD﹣CN,∴CM=DN,∵OM⊥BC,∴∠CMO=∠COB=90°,∵∠OCM=∠BCO,∴△OCM∽△BCO,∴=,∴OC2=CM•CB,∴OA2=DN•AB,故④正确,故选:D.5.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB =9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.【答案】A【解答】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.6.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE =DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【解答】解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC=∠BEC,∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,∴∠FGE+∠GEC=180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=a,∴AB=AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,∴x2+(2a)2=(2a﹣x)2,解得:x=a,∴DF=×a=a,2OF=2×a=2a,在Rt△AGE中,GE==a,∴GE=DF,OC=2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.7.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③B.①②③C.②③D.①②④【答案】D【解答】解:∵四边形ABCD、四边形BEFG是正方形,∴AB=BC,BG=BE,∠ABC=90°=∠GBE,∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,∴△ABG≌△CBE(SAS),∴∠BAG=∠BCE,∵∠BAG+∠APB=90°,∴∠BCE+∠APB=90°,∴∠BCE+∠OPC=90°,∴∠POC=90°,∴EC⊥AG,故①正确;取AC的中点K,如图:在Rt△AOC中,K为斜边AC上的中点,∴AK=CK=OK,在Rt△ABC中,K为斜边AC上的中点,∴AK=CK=BK,∴AK=CK=OK=BK,∴A、B、O、C四点共圆,∴∠BOA=∠BCA,∵∠BPO=∠CPA,∴△OBP∽△CAP,故②正确,∵∠AOC=∠ADC=90°,∴∠AOC+∠ADC=180°,∴A、O、C、D四点共圆,∵AD=CD,∴∠AOD=∠DOC=45°,故④正确,由已知不能证明OB平分∠CBG,故③错误,故正确的有:①②④,故选:D.8.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.【答案】A【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C =CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.9.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B 点时,点M的运动路径长为()A.B.3C.2D.4【答案】B【解答】解:如图,过点A作AH⊥BC于点H.当点P与A重合时,点F与C重合,当点P与B重合时,点F的对应点为F″,点M的运动轨迹是△ECF″的中位线,M′M″=CF″,∵AB=AC,AH⊥BC,∴BH=CH,∵AE∥BC,AE=BC,∴AE=CH,∴四边形AHCE是平行四边形,∵∠AHC=90°,∴四边形AHCE是矩形,∴EC⊥BF″,AH=EC,∵BC=2,S△ABC=2,∴×2×AH=2,∴AH=EC=2,∵∠BEF″=∠ECB=∠ECF″,∴∠BEC+∠CEF″=90°,∠CEF″+∠F″=90°,∴∠BEC=∠F″,∴△ECB∽△F″CE,∴EC2=CB•CF″,∴CF″==6,∴M′M″=3故选:B.10.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是()A.3B.4C.5D.【答案】B【解答】解:过点D作DH⊥AB于点H,如图,∵四边形ABCD是菱形,∴AD=AB=CD,AB∥CD.∵EF⊥AB,DH⊥AB,∴DH∥EF,∴四边形DHFE为平行四边形,∴HF=DE,DH=EF=.∵点E是边CD的中点,∴DE=CD,∴HF=CD=AB.∵BF:CE=1:2,∴设BF=x,则CE=2x,∴CD=4x,DE=HF=2x,AD=AB=4x,∴AF=AB+BF=5x.∴AH=AF﹣HF=3x.在Rt△ADH中,∵DH2+AH2=AD2,∴.解得:x=±1(负数不合题意,舍去),∴x=1.∴AB=4x=4.即菱形ABCD的边长是4,故选:B.11.(2022•黑龙江)如图,正方形ABCD的对角线AC,BD相交于点O,点F 是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②∠OPA=45°;③AP﹣BP=OP;④若BE:CE =2:3,则tan∠CAE=;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤【答案】B【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD,AC⊥BD,∠ABD=∠DBC=∠ACD=45°.∴∠BOE+∠EOC=90°,∵OE⊥OF,∴∠FOC+∠EOC=90°.∴∠BOE=∠COF.在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴BE=CF.在△BAE和△CBF中,,∴△BAE≌△CBF(SAS),∴∠BAE=∠CBF.∵∠ABP+∠CBF=90°,∴∠ABP+∠BAE=90°,∴∠APB=90°.∴AE⊥BF.∴①的结论正确;②∵∠APB=90°,∠AOB=90°,∴点A,B,P,O四点共圆,∴∠APO=∠ABO=45°,∴②的结论正确;③过点O作OH⊥OP,交AP于点H,如图,∵∠APO=45°,OH⊥OP,∴OH=OP=HP,∴HP=OP.∵OH⊥OP,∴∠POB+∠HOB=90°,∵OA⊥OB,∴∠AOH+∠HOB=90°.∴∠AOH=∠BOP.∵∠OAH+BAE=45°,∠OBP+∠CBF=45°,∠BAE=∠CBF,∴∠OAH=∠OBP.在△AOH和△BOP中,,∴△AOH≌△BOP(ASA),∴AH=BP.∴AP﹣BP=AP﹣AH=HP=OP.∴③的结论正确;④∵BE:CE=2:3,∴设BE=2x,则CE=3x,∴AB=BC=5x,∴AE==x.过点E作EG⊥AC于点G,如图,∵∠ACB=45°,∴EG=GC=EC=x,∴AG==x,在Rt△AEG中,∵tan∠CAE=,∴tan∠CAE===.∴④的结论不正确;⑤∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠AOB=∠BOC=∠COD=∠DOA=90°,∴△OAB≌△OBC≌△OCD≌△DOA(SAS).∴.∴.由①知:△BOE≌△COF,∴S△OBE=S△OFC,∴.即四边形OECF的面积是正方形ABCD面积的.∴⑤的结论正确.综上,①②③⑤的结论正确.故选:B.12.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为.【答案】【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E 作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),∵E为OD中点,∴E(﹣,),设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:,解得,∴直线CE解析式为y=x+,在y=x+中,令x=﹣1得y=,∴G(﹣1,),∴GE==,∵将线段CE绕点C逆时针旋转90°得到CF,∴CE=CF,∠ECF=90°,∴∠MCE=90°﹣∠NCF=∠NFC,∵∠EMC=∠CNF=90°,∴△EMC≌△CNF(AAS),∴ME=CN,CM=NF,∵E(﹣,),C(1,1),∴ME=CN=,CM=NF=,∴F(,﹣),∵H是EF中点,∴H(,0),∴OH=,∴==.故答案为:.13.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是.【答案】3或2【解答】解:在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,当∠APQ=90°时,如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,∵∠APQ=∠ACB=90°,∠CAP=∠BAC,∴△CAP∽△BAC,∴,即,∴AP=3,当∠AQP=90°时,如图2,∵PD⊥AC,PE⊥BC,∠ACB=90°,∴四边形DPEC是矩形,∴CQ=QP,∵∠AQP=90°,∴AQ垂直平分CP,∴AP=AC=2,综上所述,当△APQ为直角三角形时,AP的长是3或2,故答案为:3或2.14.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD ⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.【答案】或5【解答】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10﹣2k,∵CE2=CT2+TE2=(CD)2,∴(3k)2+(10﹣2k)2=[•]2,整理得4k2﹣25k+25=0,∴(k﹣5)(4k﹣5)=0,∴k=5和,∴BE=BT+ET=k+10﹣2k=10﹣k=5或,故答案为:5或.15.(2022•甘肃)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.【答案】【解答】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB﹣AE=6﹣2=4(cm),∵G是EF的中点,∴EG=BG=EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴=,∴=,∴BF=6,∴EF===2(cm),∴BG=EF=(cm),故答案为:.16.(2022•新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心,将△DCE绕点D顺时针旋转90°与△DAF 恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若AQ•DP=3,则BQ=.【答案】【解答】解:如图,连接DQ,∵将△DCE绕点D顺时针旋转90°与△DAF恰好完全重合,∴DE=DF,∠FDE=90°,∴∠DFE=∠DEF=45°,∵四边形ABCD是正方形,∴∠DAC=45°=∠BAC,∴∠DAC=∠DFQ=45°,∴点A,点F,点Q,点D四点共圆,∴∠BAQ=∠FDQ=45°,∠DAF=∠DQF=90°,∠AFD=∠AQD,∴DF=DQ,∵AD=AB,∠BAC=∠=45°,AQ=AQ,∴△ABQ≌△ADQ(SAS),∴BQ=QD,∠AQB=∠AQD,∵AB∥CD,∴∠AFD=∠FDC,∴∠FDC=∠AQB,又∵∠BAC=∠DFP=45°,∴△BAQ∽△PFD,∴,∴AQ•DP=3=BQ•DF,∴3=BQ•BQ,∴BQ=,故答案为:.17.(2022•苏州)如图,在矩形ABCD中,=.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1<v2.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形MA′B′N.若在某一时刻,点B的对应点B′恰好与CD的中点重合,则的值为.【答案】【解答】解:如图,设AD交A′B′于点Q.设BN=NB′=x.∵=,∴可以假设AB=2k,CB=3k,∵四边形ABCD是矩形,∴AD=BC=3k,CD=AB=2k,∠C=∠D=90°,在Rt△CNB′中,CN2+CB′2=NB′2,∴(3k﹣x)2+k2=x2,∴x=k,∴NB′=k,CN=3k﹣k=k,由翻折的性质可知∠A′B′N=∠B=90°,∴∠DB′Q+∠CB′N=90°,∠CB′N+∠CNB′=90°,∴∠DB′Q=∠CNB′,∵∠D=∠C=90°,∴△DB′Q∽△CNB′,∴DQ:DB′:QB′=CB′::NB′=3:4:5,∵DB′=k,∴DQ=k,∵∠DQB′=∠MQA′,∠D=∠A′,∴△DQB′∽△A′QM,∴A′Q:A′M:QM=DQ:DB′:QB′=3:4:5,设AM=MA′=y,则MQ=y,∵DQ+QM+AM=3k,∴k+y+y=3k,∴y=k,∴===,解法二:连接BB′,过点M作MH⊥BC于点H.设AB=CD=6m,CB=9m,设BN=NB′=n,则n2=(3m)2+(9m﹣n)2,∴n=5m,CN=4m,由△BB′C∽△MNH,可得=2m,∴AM=BH=3m,∴===,故答案为:.18.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为.【答案】2+2【解答】解:如图,连接AP,由图2可得AB=BC=4cm,∵∠B=36°,AB=BC,∴∠BAC=∠C=72°,∵AP平分∠BAC,∴∠BAP=∠PAC=∠B=36°,∴AP=BP,∠APC=72°=∠C,∴AP=AC=BP,∵∠PAC=∠B,∠C=∠C,∴△APC∽△BAC,∴,∴AP2=AB•PC=4(4﹣AP),∴AP=2﹣2=BP,(负值舍去),∴t==2+2,故答案为:2+2.19.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.【答案】90°,.【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.∵∠EAF=∠BAD=90°,∴∠DAF=∠BAE,∴=,∴△DAF∽△BAE,∴∠ADF=∠ABE,∵∠DOH=∠AOB,∴∠DHO=∠BAO=90°,∴∠BHD=90°,∵AF=3,AE=4,∠EAF=90°,∴EF==5,∵EF⊥AD,∴•AE•AF=•EF•AJ,∴AJ=,∴EJ===,∵EJ∥AB,∴=,∴=,∴OJ=,∴OA=AJ+OJ=+=4,∴OB===4,OD=AD﹣AO=6﹣4=2,∵cos∠ODH=cos∠ABO,∴=,∴DH=.故答案为:90°,.20.(2022•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有(填结论对应的应号).【答案】①②③【解答】解:由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,∴△ACD≌△ABD′,故①正确;∵AC=AB,AD=AD′,∠BAC=∠D′AD=θ,∴=,∴△ACB∽△ADD′,故②正确;∵△ACB∽△ADD′,∴=()2,∵当AD⊥BC时,AD最小,△ADD′的面积取得最小值.而AB=AC,∴BD=CD,∴当BD=CD时,△ADD′的面积取得最小值,故③正确;故答案为:①②③.21.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是.【答案】②③【解答】解:①∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∵∠ADC=∠B+∠BAD,而∠BAD的度数不确定,∴∠ADC与∠CAD不一定相等,∴AC与CD不一定相等,故①错误;②∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵∠B=∠AED=45°,∴△AEF∽△ABD,∴=,∵AE=AD,AB=BC,∴AD2=AF•AB=AF•BC,∴AD2=AF•BC,故②正确;④∵∠DAH=∠B=45°,∠AHD=∠AHD,∴△ADH∽△BAH,∴=,∴AH2=DH•BH,而BH与AC不一定相等,故④不一定正确;③∵△ADE是等腰直角三角形,∴∠ADG=45°,∵AH⊥DE,∴∠AGD=90°,∵AD=3,∴AG=DG=,∵DH=5,∴GH===,∴AH=AG+GH=2,由④知:AH2=DH•BH,∴(2)2=5BH,∴BH=8,∴BD=BH﹣DH=8﹣5=3,故③正确;本题正确的结论有:②③故答案为:②③.22.(2022•丹东)如图,四边形ABCD是边长为6的菱形,∠ABC=60°,对角线AC与BD交于点O,点E,F分别是线段AB,AC上的动点(不与端点重合),且BE=AF,BF与CE交于点P,延长BF交边AD(或边CD)于点G,连接OP,OG,则下列结论:①△ABF≌△BCE;②当BE=2时,△BOG的面积与四边形OCDG面积之比为1:3;③当BE=4时,BE:CG=2:1;④线段OP的最小值为2﹣2.其中正确的是.(请填写序号)【答案】①②【解答】解:①∵四边形ABCD是菱形,∴AB=BC=AD=CD,∴∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=∠ABC=60°,在△ABF和△BCE中,,∴△ABF≌△BCE(SAS),故①正确;②由①知:△ABC是等边三角形,∴AC=AB=6,∵AF=BE=2,∴CF=AC﹣AF=4,∵四边形ABCD是菱形,∴AD∥BC,OB=OD,OA=OC,∴△AGF∽△CBF,S△BOG=S△DOG,S△AOD=S△COD,∴,∴,∴AG=3,∴AG=,∴S△AOD=2S△DOG,∴S△COD=2S△DOG,∴S四边形OCDG=S△DOG+S△COD=3S△DOG=3S△BOG,故②正确;③如图1,∵四边形ABCD是菱形,∴AB∥CD,∴△CGF∽△ABF,∴,∴,∴CG=3,∴BE:CG=4:3,故③不正确;④如图2,由①得:△ABF≌△BCE,∴∠BCE=∠ABF,∴BCE+∠CBF=∠ABF+∠CBF=∠ABC=60°,∴∠BPC=120°,作等边三角形△BCH,作△BCH的外接圆I,则点P在⊙I上运动,点O、P、I共线时,OP最小,作HM⊥BC于M,∴HM==3,∴PI=IH=,∵∠ACB+∠ICB=60°+30°=90°,∴OI===,∴OP最小=OI﹣PI=﹣2,故④不正确,故答案为:①②.三.相似三角形的应用23.(2022•衢州)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ=km.(2)k=.【答案】1.8;.【解答】解:(1)CD﹣EF﹣GJ=5.5﹣1﹣2.7=1.8(km);(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.由矩形性质得:AZ=CD﹣EF﹣GJ=1.8,BZ=DE+FG﹣CB﹣AJ=4.9+3.1﹣3﹣2.4=2.6,∵点P,A,B,Q共线,∴∠MBQ=∠ZBA,又∵∠BMQ=∠BZA=90°,∴△BMQ∽△BZA,∴=k===.故答案为:1.8;.24.(2022•温州)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD =13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.【答案】10,(10+)【解答】解:解法一:如图,过点O作OP∥BD,交MG于P,过P作PN ⊥BD于N,则OB=PN,∵AC∥BD,∴AC∥OP∥BD,∴=,∠EGF=∠OPM,∵OA=OB,∴CP=PD=CD=6.5,∴MP=CM+CP=8.5+6.5=15,tan∠EGF=tan∠OPM,∴OM=×15=10;∵DB∥EG,∴∠EGF=∠NDP,∴sin∠EGF=sin∠NDP,即=,∴OB=PN=,以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.解法二:如图,设AC与OM交于点H,过点C作CN⊥BD于N,∵HC∥EG,∴∠HCM=∠EGF,∵∠CMH=∠EFG=90°,∴△HMC∽△EFG,∴==,即=,∴HM=,∵BD∥EG,∴∠BDC=∠EGF,∴tan∠BDC=tan∠EGF,设CN=2x,DN=3x,则CD=x,∴x=13,∴x=,∴AB=CN=2,∴OA=OB=AB=,在Rt△AHO中,∵∠AHO=∠CHM,∴sin∠AHO==,∴=,∴OH=,∴OM=OH+HM=+=10(米),以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.故答案为:10,(10+).49。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。
(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C 点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()A. B.C. D.10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
求C、D两点的坐标。
三、构造相似辅助线——A、X字型11.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD 于F。
求证:12.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。
求证:13.在梯形ABCD 中,AB∥CD ,AB=b ,CD=a,E为AD 边上的任意一点,EF ∥AB ,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:(1)当时,EF=;(2)当时,EF=;(3)当时,EF=.当时,参照上述研究结论,请你猜想用a、b和k表示EF的一般结论,并给出证明.14.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。
求BN:NQ:QM.15.证明:(1)重心定理:三角形顶点到重心的距离等于该顶点对边上中线长的.(注:重心是三角形三条中线的交点)(2)角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例.四、相似类定值问题16.如图,在等边△ABC 中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD、CD的延长线分别交AC、AB于点E、F.求证:.17.已知:如图,梯形ABCD中,AB//DC,对角线AC、BD 交于O,过O作EF//AB分别交AD、BC于E、F。
求证:.18.如图,在△ABC中,已知CD为边AB上的高,正方形EFGH的四个顶点分别在△ABC上。
求证:.19.已知,在△ABC中作内接菱形CDEF,设菱形的边长为a.求证:.五、相似之共线线段的比例问题20.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证:(2)如图2,图3,当点在平行四边形ABCD 的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);21.已知:如图,△ABC中,AB=AC,AD是中线,P是AD 上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.22.如图,已知ΔABC中,AD,BF分别为BC,AC 边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H。
求证:DE2=EG•EH23.已知如图,P为平行四边形ABCD的对角线AC上一点,过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H.求证:24.已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD 上有一点P ,且∠BPC 为直角.求证:PD2=AD·DH。
六、相似之等积式类型综合25.已知如图,CD是Rt△ABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F。
求证:26如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:(1)△AED∽△CBM;(2)27.如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F. (1)求证:.(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.28.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:.29.如图,BD、CE分别是△ABC的两边上的高,过D 作DG⊥BC于G,分别交CE及BA的延长线于F、H。
求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH七、相似基本模型应用30.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.31.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.32.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC 于F 。
求证:答案:1.答案:解:(1)∵∠ACB=90°,AC=3,BC=4 ∴AB=5又∵AD=AB,AD=5t∴t=1,此时CE=3,∴DE=3+3-5=1(2)如图当点D在点E左侧,即:0≦t ≦时,DE=3t+3-5t=3-2t.若△DEG与△ACB相似,有两种情况:①△DEG∽△ACB ,此时,即:,求得:t=;②△DEG∽△BCA ,此时,即:,求得:t=;如图,当点D在点E右侧,即:t>时,DE=5t-(3t+3)=2t-3.若△DEG与△ACB相似,有两种情况:③△DEG∽△ACB ,此时,即:,求得:t=;④△DEG∽△BCA ,此时,即:,求得:t=.综上,t 的值为或或或.3.答案:解:(1)证明:∵AD=CD∴∠A=∠ACD∵DE 平分CDB交边BC于点E∴∠CDE=∠BDE∵∠CDB为△CDB的一个外角∴∠CDB=∠A+∠ACD=2∠ACD∵∠CDB=∠CDE+∠BDE=2∠CDE∴∠ACD=∠CDE∴DE∥AC(2)①∠NCE=∠MBE∵EM⊥BD,EN⊥CD,∴△BME∽△CNE,如图∵∠NCE=∠MBE∴BD=CD又∵∠NCE+∠ACD=∠MBE+∠A=90°∴∠ACD=∠A∴AD=CD∴AD=BD=AB∵在Rt△ABC 中,ACB=90°,AC=6,BC=8 ∴AB=10∴AD=5②∠NCE=∠MEB∵EM⊥BD,EN⊥CD,∴△BME∽△ENC,如图∵∠NCE=∠MEB∴EM∥CD∴CD⊥AB∵在Rt△ABC 中,ACB=90°,AC=6,BC=8∴AB=10∵∠A=∠A,∠ADC=∠ACB∴△ACD∽△ABC∴∴综上:AD=5或时,△BME与△CNE相似.4.答案:解(1)由题意:AP=4x,CQ=3x,AQ=30-3x ,当PQ∥BC 时,,即:解得:(2)能,AP=cm或AP=20cm①△APQ∽△CBQ,则,即解得:或(舍)此时:AP=cm②△APQ∽△CQB,则,即解得:(符合题意)此时:AP=cm故AP=cm或20cm时,△APQ与△CQB能相似.5.答案:解:设运动时间为t,则DQ=t,AQ=6-t,AP=2t,BP=12-2t.(1)若△QAP为等腰直角三角形,则AQ=AP,即:6-t=2t,t=2(符合题意)∴t=2时,△QAP为等腰直角三角形.(2)∠B=∠QAP=90°①当△QAP∽△ABC 时,,即:,解得:(符合题意);②当△PAQ∽△ABC 时,,即:,解得:(符合题意).∴当或时,以点Q、A、P为顶点的三角形与△ABC相似.6.答案:解:分两种情况第一种情况,图象经过第一、三象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于y轴的直线交x轴于点C,过点B作BD⊥AC则由上可知:=90°由双垂直模型知:△OCA∽△ADB∴∵A(2,1),=45°∴OC=2,AC=1,AO=AB∴AD=OC=2,BD=AC=1∴D点坐标为(2,3)∴B点坐标为(1,3)∴此时正比例函数表达式为:y=3x 第二种情况,图象经过第二、四象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于x轴的直线交y轴于点C,过点B作BD⊥AC则由上可知:=90°由双垂直模型知:△OCA∽△ADB∴∵A(2,1),=45°∴OC=1,AC=2,AO=AB∴AD=OC=1,BD=AC=2∴D点坐标为(3,1)∴B点坐标为(3,﹣1)∴此时正比例函数表达式为:y =x7.答案:解:情形一:情形二:情形三:8.答案:证明:方法一:连接PC,过点P作PD⊥AC于D,则PD//BC 根据折叠可知MN⊥CP∵∠2+∠PCN=90°,∠PCN+∠CNM=90°∴∠2=∠CNM∵∠CDP=∠NCM=90°∴△PDC∽MCN∴MC:CN=PD:DC∵PD=DA∴MC:CN=DA:DC∵PD//BC∴DA:DC=PA:PB∴MC:CN=PA:PB方法二:如图,过M作MD⊥AB于D,过N作NE⊥AB于E由双垂直模型,可以推知△PMD∽NPE,则,根据等比性质可知,而MD=DA,NE=EB,PM=CM,PN=CN,∴MC:CN=PA:PB9.答案:A解题思路:如图过点D作AB的平行线交BC的延长线于点M,交x 轴于点N,则∠M=∠DNA=90°,由于折叠,可以得到△ABC≌△ADC,又由B(1,3)∴BC=DC=1,AB=AD=MN=3,∠CDA=∠B=90°∴∠1+∠2=90°∵∠DNA=90°∴∠3+∠2=90°∴∠1=∠3∴△DMC∽△AND,∴设CM=x,则DN=3x,AN=1+x,DM =∴3x +=3∴x =∴,则。