英语文献翻译-钟腾龙
第1章科技英语文体概述分析解析

班长
公鸡 鸟 猴子 狐狸
监视器
旋塞,吊车 飞机,火箭 活动扳手,起重机 绳索
科技英语词汇的特点
3、半技术性词汇( Semi-technical Words )
电气工程 transmission 输送 电气工程 power 电力,动力 土壤学 phase 分段 相位 位相 相 战斗阶段 幂,乘方 电工学 机械工具 数学 功率 物理学 放大率 军事学 发射,播送 传动,变速 数学 机械学 透射 物理学 遗传 光学 无线电 机械学 物理学 医学
科技英语简介
定义: 科技英语( English for science and technology,简称EST): 专门用途英语的一个分支。在文体学上统称为科技散文 (Scientific Prose)。 专门用途英语(English for specific purposes,ESP):指 与某种职业或学科相关的英语,如外贸英语、法律英语、 医学英语、商务英语、心理学英语、金融英语等。 分类: 刘宓庆、陈新、董益坤等学者。(课本:4-5)
bug-free 无故障的
heartman
若干分开写的单词构成的合成词 stem cell 干细胞 optical drive 光驱 hover craft 气垫船 既有连字符连接又有分写的单词组合而成 faster-than-light velocity 超光速 water-drained soil 畅水土
第一章
科技英语文体概述
制作人:任朝迎 rzhaoying@ 2014年2月
第1章 科技英语文体概述
主要内容
Lead-in 科技英语简介 中国科技翻译发展 科技英语文体的特点 科技翻译的标准 科技翻译适应理论 科技翻译技巧概说 篇章实践:科普类 课后练习 科普英语常用词汇
论《译者的任务》中intention的翻译

论‘译者的任务“中intention 的翻译肖 娴(重庆理工大学,重庆 400054) 摘 要:随着经济全球化和学术思想自由化的发展,越来越多的学术著作被译介到中国,术语汉译如何规范化也理所当然地成为译界关注的焦点㊂通过对‘译者的任务“中intention 的研究,发现该术语的翻译存在一词多译或同名异译的现象㊂基于此,文章试图从深层次挖掘相关概念的区别和联系,希望对intention 的翻译做正本清源式的讨论㊂关键词:术语,翻译,意向中图分类号:H059;N04 文献标识码:A 文章编号:1673-8578(2014)02-0025-05On the Translation of Intention”in the Task of the TranslatorXIAO XianAbstract :With the development of economic globalization and academic liberalization ,more and more academic works have been translated into Chinese.How to standardize the translation of terms has become a big concern in the translation circle.This paper finds that the term intention ”in the Task of Translator by Benjamin has many different versions through some researches and thus attempts to find out the differences and relationship among these versions ,with an aim to clarify the misunderstandings of this term.Keywords :term ,translation ,intention收稿日期:2013-10-25作者简介:肖娴(1981 ),女,重庆人,重庆理工大学讲师,硕士,研究方向为翻译学㊁符号学㊂通信方式:bettinaxiao @㊂一 问题的提出作为翻译界里程碑式的著作,‘译者的任务“关于翻译的一些独特见解一直吸引着大批国内外翻译学者㊂其中,最核心的观点即 纯语言”说㊂本雅明指出: all suprahistorical kinship of languages rests in the intention underlying each language as a whole⁃an intention,however,no single language can attain by itself but which is realized only by the totality of their intentions supplementing each other:pure language.”[1]沙特尔沃思(Shuttleworth)和考伊(Cowie)将 纯语言”作为词条收入到‘翻译学词典“中,指出 本雅明的纯语言观传达的是各种语言间的一种亲缘性 所有语言都是一种更大的语言可辨认的碎片”[2]㊂某种程度上说, 纯语言”为我们理解 翻译是什么” 翻译㊁人类以及语言之间的深层次关系是什么”等一系列问题提供了更为合理㊁客观的解释,对于本体论指向上的翻译研究意义重大㊂然而,国内许多学者在进行译介和评价时,出现多种译本:1)袁文斌虽然没有直接给出 纯语言”定义的译文,但在‘论本雅明的翻译批判“一文中从语言批判㊁接受之维㊁解构学思想三个维度对‘译者的任务“一文进行剖析,将intention翻译为 意象”,指出 意象是语言本身的特性,包含在句子中,而不在人的意识中”[3]㊂2)陈永国和马海良翻译的‘本雅明文选“中,将纯语言译为 语言间相互补充的总体意念”[4]㊂3)胡庆平和周述栋将纯语言翻译为: 所有超越历史的语言间的亲属关系都存在于每一种语言各自的整体意指之中”[5]㊂朱林的译文也与之类似,将纯语言理解为抽象的意指集合[6]㊂4) 意图”是目前采用最多的一种译法㊂冯文坤的翻译为: 所有超越历史的语言之间的亲属关系都存在于每一种语言各自的整体意图中 然而这种意图不是任何单一的语言可以通过其自身实现的,而只能通过各种语言一切互补的意图的总体来实现,这种总体意图即是纯语言㊂”[7]周晔谈到 纯语言是一种语言关系的总和,即总体意图”[8]㊂喻锋平的翻译是 在作为整体的每一种语言中,所指的事物都是同一个㊂然而,这同一个事物不是单独一种语言所能表达的,而只能借助语言间相互补充的总体的意图”[9]㊂黄海荣指出 从纯语言的整体中分裂开来的各个语言,尽管它们的意指方式各异,却有着相同的所指:所有这些语言碎片相互补充的整体性意图指向就是纯语言”[10]㊂5)曹明伦的译法是 所有语言意向互补之总和”[11]㊂可以看到,译文的分歧主要体现在 intention”的翻译上,目前主要有 意象” 意念” 意指” 意图”和 意向”五种译法,术语译名不统一的现象不仅带来概念的混乱和读者理解上的困难,还不利于学术思想的传播和发展㊂根据术语 单义性”原则,一个术语应该有且只有一个译名和与之相对应的概念㊂基于此,本文试图从深层次挖掘这些相关概念的区别和联系,希望对 intention”的翻译作正本清源式的讨论㊂二 相关概念的辨析1.意象还是意念?意象”,顾名思义,指的是主观的 意”和客观的 象”的结合,最早源于孔子 书不尽言,言不尽意”的讨论㊂言是意的载体,言以传意,但由于语言表达的局限性,意是不能全然传达的㊂那么,如何传意呢?‘易经㊃系辞上“中给出了答案㊂概念虽然不能清楚表达,但可以通过物象,所谓 立象以尽意”㊂看似认知主体对于事物的客观描写,其实是主观情感的抒发㊂通过赋予具体物象某种特殊含义和文学意味,以达到抒发感情的目的㊂简言之,就是借物抒情㊂可见,物象与意象是紧密联系的㊂物象是意象产生的基础和前提,意象是物象的升华和发展㊂这种特殊的审美方式与 取之象外”或者 象外之象”有异曲同工之妙,其中第一个 象”是物象,建立在 言”的基础上;第二个 象”就是意象,构筑的是一个想象的空间㊂南朝梁代刘勰进一步把意象理论置于文学创作中来考察,在‘文心雕龙“中用运斧制器的比喻,生动形象地说明了 意象”在诗人创作构思中的重要地位,所谓 独照之匠,窥意象而运斤㊂”那么,什么是意念呢?意念,又称思绪㊁念头㊂在文学创作中,认知主体基于具体的经验,在脑海中产生某种特殊的情感和思想,希望借助客观物象来表达的想法就是意念㊂例如,白居易‘琵琶行“中的诗句 其间旦暮闻何物,杜鹃啼血猿哀鸣”就很好地说明了诗人的意念如何经过心智加工到意象语言表征的过程㊂白居易在被贬为江州司马后,一直心存郁闷而无处宣泄㊂一年秋天的夜晚,当他送客江头,偶逢琵琶女,由其悲惨遭遇联想到自己政治上失意,触发了诗人创作的意念㊂诗人寓主观情感于客观物象中,通过 杜鹃” 猿啼”意象的叠加㊁并置,描绘出一幅凄凉愁苦㊁孤单寂寞的画面㊂童丹和白文昌指出 对译者而言,一首诗字面上表现为词语的连缀,但从诗人思维角度看,则是意念的流动”[12]㊂2.意指还是意图?在结构主义中,符号是一种二元关系,包括能指和所指两个要素,它们的结合便形成了符号㊂然而它们如何结合呢?在语言符号化的过程中,是否所有的能指和所指都能结合为符号呢?答案是否定的,因为交通路口信号灯的能指与玫瑰花象征爱情的所指就没有任何关联㊂这就是说,一个能指之所以能够同一个所指结合成为符号,还必须有第三个要素,这个要素就是 意指”,即能指和所指之间的关系㊂罗兰㊃巴特进一步阐明 意指”的含义,指出 符号是音响,视象等的一块(双面)切片㊂意指可以被理解为一个过程,它是将能指与所指结成一体的行为”[13]㊂换句话说,意指(signification)是一个动态的 符号化过程”,是能指与所指相互作用的结果㊂同时,意指也是一个共时㊁静态的概念,代表符号意义的一个维度,即通常意义上符号的字面意义㊂在符号化过程中,符号与客观世界直接发生联系形成一级符号,滋生出语义内容㊂这个语义内容逐渐固化下来㊁脱离语境成为相对稳定的阐释项,换句话说,一个符号经历了个体发生和种系发生之后形成约定俗成的意义,这叫作意指(signifi⁃cation)㊂意图,本是一个心理学术语,指的是行动之前的态度,如行动的目的㊁想法㊁指向等㊂20世纪50年代,奥斯汀(Austin)将该概念引入到语用学中,用于解释形式逻辑不能解决的自然语言现象㊂奥斯汀认为任何言语行为实际上是说话者表述和解释语用意图的交际行为,是说话人通过 说话”这一动作实施的行为,包括许诺㊁请求㊁询问等[14]㊂在此基础上,奥斯汀提出言语行为理论,即言内行为㊁言外行为和言后行为,并着重区分了言内行为和言外行为:前者是语义学所关注的字面意义,后者指话语者自身的意图㊂例如,在图书馆的自习室中,A学生问B学生 这是你的书吗?”表面上是询问,实质上是希望对方为自己腾出空位的请求㊂格赖斯(Grice)提出了会话的合作原则,从说话者对数量准则㊁质量准则㊁关联准则和方式准则的角度研究说话人的真实意图[15]㊂施佩贝尔(Sperber)和威尔逊(Wilson)的关联论中把意图分为信息意图(informative intention)和交际意图(communicative intention),认为说话者任何明示性交际活动首先是实现信息意图,但更重要的是交际意图[16]㊂而听者对说话者交际意图的识别必须在关联原则的指导下,根据信息的筛选和语境的补充,借助演绎推理而获得㊂三 概念的澄清郭尚兴指出术语翻译必须追本溯源,挖掘隐藏于术语背后的概念㊁所使用的语境和背后的视域[17]㊂通过分析,不难发现 intention”的几种译文 意象” 意念” 意指” 意图”分别有自己独特的内涵以及适用语境和背景:意象(image)在中国古典文论中是一个审美概念,指的是审美主体(主观情感)和审美客体(外在物象)的结合;意念(idea)是一个心理学术语,是基于事物或事件产生的一种想法;意指(signification)是一个符号学术语,既指符号能指和所指结合的行为过程,也指这一过程的结果;意图(intention)即我们行动之前心存的目的,在语用学中,指的是说话者意欲表达的真实含义,包括象征意义㊁规约会话隐含等㊂这些译法不但不能准确揭示出 intention”的本质内涵,还可能歪曲原作者的本意㊂应该看到,本雅明的翻译本质上是一个语言学或哲学的问题,因此对 intention”内涵的追问必须归结到语言哲学的视域上㊂郭建中指出 本雅明论翻译,是在语言哲学的框架下,探讨文本的可译性㊁翻译的语言和语言的翻译问题”[18]㊂从语言哲学的视角来看,‘译者的任务“中阐述的应是带有现象学印记但又有别于现象学的一种思想㊂而胡塞尔的现象学本质上是一种意识哲学,如果要用一个词汇来概括其哲学思想,这就是 意向性”㊂因此,要准确理解 intention”,必须从意向性理论入手㊂意向性(intentionality),来源于拉丁语intendere,意思是 指向”㊂意向性的研究最早可以追溯到柏拉图㊂柏拉图在‘克拉底鲁篇“中用了一个形象的隐喻来说明, 思想和信念就像弓箭一样,瞄向的是某种东西”[19]㊂意向性就是在瞄向(abzielew)的形象中表现出的行为特性㊂中世纪的经院哲学家托马斯㊃阿奎那(Thomas Aquinas)从本体论的角度出发,指出人不能直接把握外在对象,必须通过心灵感知㊁思想等思维活动使对象在内心世界呈现出来,因此意向性可以理解为人类把握外在对象的方式㊂然而,真正的意向性研究还是肇始于布伦塔诺(Brentano)㊂布伦塔诺将意向性用于区分心理学研究对象和物理学研究对象的差别,在此基础上创立了实证心理学㊂布伦塔诺指出,意向性是人类心理现象的本质特征,所有的心理现象都具有意向性㊂他的学生胡塞尔批判和继承了这种观点,认为意向性虽是人类意识的根本属性,但真正具有意向性的心理现象必定指向特定的外部事物㊂换句话说,意向性的根本属性是 指向”㊂胡塞尔进一步指出,人的意识总是指向某一客体的,每一种意识都是关于某种事物的意识,没有脱离客体而存在的意识㊂因此,可以这样理解,人的意识都是关于某种对象的意向性意识,而任何对象又内在于人的意识之中㊂因此,意向就是关于对象的意识活动,而意向性是纯粹意识的本质特性,意向性 是一般本质体验领域的一个本质特性 是严格说明意识特性的东西”[20]㊂某种程度上说,本雅明主要受到了胡塞尔意向性思想的影响,但是本雅明并没有对其理论简单地模仿㊁重复㊂在本雅明看来,意向性是语言本身所固有的特性, 我们在思考概念时,不是在概念中思考,而是在意向性中思考”[21]㊂本雅明指出意向性既不存在于概念中,也不存在于符号中㊂一方面,概念与客体之间不是意向性的,而是一种派生的关系㊂另一方面,符号也不包含意向性,因为符号直接但并不是必须指向客体㊂因此,意向性只能且必须存在于名之中㊂ 通过名的力量,词才获得了对物的意向性,词通过名参与到客体中”[21]㊂可以看出,在本雅明这里,意向性不再是意识的基本性质和结构,而是语言本身所固有的特性㊂意向性存在于所有语言之中,个体语言是意向性的语言,而纯语言又是所有语言相互补充之意向总和㊂因此,本雅明的意向性理论虽源于胡塞尔,但在本质上却与之不同㊂总之, intention”的翻译首先应从该词的内涵和使用语境进行思考㊂这个概念本质上是一个意识理论,是 关于某事物或别的事物的意识”[22]㊂在本雅明那里,意向性是语言本身所固有的特性㊂正是因为意向性,任何一种语言都会指向其他语言;也正是通过翻译,各种语言才会形成一个意向整体,才能尽可能地接近纯语言㊂从这层意义上,笔者同意曹明伦教授的译文,将 intention”译为 意向”㊂四 结 语通过以上的讨论,可以看出在将国外学术著作译介到中国的时候,术语翻译尤为重要㊂术语好比一篇文章的引子,一种思想的灵魂㊂术语翻译准确与否直接影响着信息的传递和思想的传播,因此术语翻译需遵循准确性原则,即准确体现概念的内涵㊁使用的语境和背后的视域㊂当然,术语翻译绝非易事,并非一人所能及,因此需要学界前辈和同人相互讨论㊁共同研究,更好地推动术语翻译的规范化㊁标准化㊂参考文献[1]Benjamin,Walter.The Task of the Translator[C]// Edited.by Qiyi Liao.Contemporary Translation Studies in the Western World.Chongqing:Sichuan International Studies University,1921:18-21.[2]Shuttleworth,Mark&Cowie,Moira.Dictionary of Trans⁃lation Studies.[M].上海:上海外语教育出版社, 2006:135.[3]袁文彬.语言批判接受之维解构诠释 论本雅明的翻译批判[J].安徽大学学报,2006(3):39.[4]瓦尔特本雅明.本雅明文选[M].陈永国,马海良,译.北京:中国社会科学出版社,2011:295-296.[5]胡庆平,周树栋.从 纯语言”哲学思想角度浅析本雅明翻译观[J].中国电力教育,2009(2):260.[6]朱林.本雅明翻译观与解构主义的形神探析[J].安徽工业大学学报,2008(6):70.[7]冯文坤.论本雅明的 可译性”及关于翻译的哲学思考[J].四川师范大学学报,2006(3):110.[8]周晔.本雅明翻译思想研究[M].上海:上海译文出版社,2011:161-205.[9]喻锋平.论本雅明翻译思想的哲学基础[J].江西社会科学,2010(3):21-218.[10]黄海荣.本雅明翻译观述评[J].中国翻译,2007(4):21.[11]曹明伦.翻译之道:理论与实践[M].河北:河北大学出版社,2007:156.[12]童丹,白文昌.中国古典诗词俄译文本的探析 以意象转换为视角[J].外语学刊,2012(4):114. [13]罗兰巴特.符号学原理[M].王东亮等译.北京:三联书店,1999:39.[14]Austin,J.L.How to Do Things with Words?[M].Oxford:The Clarendon Press,1962.[15]Grice.H.P.Logic and conversation[J].In Cole,P.Syntax and Sematics,Vol.3:Speech Acts,New York: Academic Press,1975:307-308.[16]Sperber,Dan&Wilson,Deirdre.Relevance:Commun⁃ication and Cognition[M].Oxford:Basil Blackwell,1986.[17]郭尚兴.论中国传统哲学术语英译认知过程的语境本体性[C]//魏向清,裴亚军主编.术语翻译研究 面向翻译的术语研究”全国学术研究会.南京:南京大学出版社,2011:104.[18]郭建中.当代美国翻译理论[M].武汉:湖北教育出版社,2000:180.[19]胡塞尔.逻辑研究[M].第2卷.上海:上海译文出版社,2006:445.[20]胡塞尔.纯粹现象学通论[M].李幼蒸,译.北京:商务印书馆,1992:210.[21]Benjamin,Walter.Selected Writing(Volume I.19131926)[C]//Edited by Marcus Bullock and Michael W.Jennings.Harvard University Press,1999:88-90. [22]菲莱斯达尔.胡塞尔的意向相关项概念[J].张浩军,译.世界哲学,2010(5):118-124.(上接第17页)技名词数据产品的创新能力㊂第一,要从科技名词规范工作入手,提高基础科技名词数据的生产质量;第二,要加强对科技创新的实时跟踪㊁了解,最新成果应该及时反映到科技名词数据中来,提高科技名词数据的时代性和现实性;第三,应当从用户需求出发,开展基于基础科技名词数据的二次产品设计与开发,最大限度发挥现有科技名词数据资源的潜能㊂5.确立科技名词数据资源共享的广泛合作机制㊂公益性科技名词数据的应用相当广泛,作为公益性科技名词数据的主要生产者,全国科技名词委应当在规范科技名词数据资源供给中发挥主导作用,同时充分调动相关部门㊁高等院校㊁科研院所㊁行业协会㊁企业㊁个人用户等各方面积极性,参与科技名词数据资源整合与建设,探索多种利益分配模式,提高科技名词数据共享水平㊂五 结 语公益性科技名词数据是一种重要的科技数据资源,也是一种重要的公共资源,应当被全社会平等共享㊂公益性科技名词数据资源的共享机制,就是以资源共享为核心,以相关资源系统整合为主线,坚持以人为本,遵循市场经济规律,充分利用现代信息技术和各方资源,搭建布局合理㊁功能完善㊁体系健全㊁共享高效的数据共享平台,通过对具有公益性㊁基础性㊁战略性的科技名词数据资源进行战略重组和系统优化,突破科技名词规范化工作和推广普及工作中的瓶颈,从而达到推动科技名词规范化工作长期可持续发展,发挥科技名词作为科技创新和教育发展基础支撑地位的目的㊂参考文献[1]李娟,刘德洪,江洪.国际科学数据共享研究[J].图书馆建设,2009(2).[2]Viktor Mayer⁃Schönberger,Kenneth Cukier.大数据时代[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2013: 109-110.[3]李娟.国际科学数据共享原则和政策研究[J].图书情报工作,2008(12):77-80.[4]科技部㊁发展改革委㊁教育部㊁财政部.2004 2010年国家科技基础条件平台建设纲要[EB/OL].[2014-01-17]. /kytj/xgwj/0607201.htm.。
英语文献

Measurements and inverse calculations of spectral radiation intensities of a turbulentethylene/air jet flameYuan Zheng,Jay P.Gore *Maurice J.Zucrow Laboratories,School of Mechanical Engineering,Purdue University,West Lafayette,IN 47907,USAAbstractFast (6250Hz)line-of-sight measurements of infrared spectral radiation intensities (I k )from a luminous flame and a new deconvolution technique for the estimate of local scalar properties using inverse radiation calculations are reported.Time series data of I k for one diametric and nine chord-like radiation paths in a representative horizontal plane were measured.Statistical properties of I k ,including mean,root mean square (rms),probability density function,autocorrelation coefficient,and power spectral density,were obtained from the time series data.The measured statistical properties of I k at two representative wave-lengths,which are dominated by carbon dioxide (CO 2)and soot radiation,respectively,are reported.The autocorrelation coefficient data show large negative loops with repeatable zero crossings at 20ms and minimum values as low as À0.2at 30–40ms.Radial distributions of mean and rms CO 2mole fractions and temperatures were estimated using inverse calculations of mean I k at two different wavelengths dom-inated by CO 2radiation in conjunction with the relationship of these quantities to mixture fractions.Soot volume fraction distributions were also estimated using inverse calculations of mean I k at a wavelength dominated by continuum soot radiation.The estimated local mixture fraction distributions were in reason-ably good agreement with sampling data from similar flames.The calculated mean I k from 1.4to 4.8l m other than those used in the inverse calculations matched the experimental data well.The present method provides non-intrusive measurements of major gas species and temperature statistics in turbulent soot con-taining flames not accessible to other optical diagnostics.Ó2004The Combustion Institute.Published by Elsevier Inc.All rights reserved.Keywords:Flames;Non-intrusive diagnostics;Radiation;Turbulence1.IntroductionTurbulent flows and luminous flames are com-monly encountered in unwanted fires and indus-trial furnaces,where thermal radiation is the dominant heat transfer mode.Time series mea-surements of line-of-sight spectral radiation inten-sities (I k )contain detailed albeit convoluted information about participating scalar properties and their statistics in combustion environments.Recently,Zheng et al.[1,2]obtained comprehen-sive I k data on standard turbulent non-luminous flames [3]using a fast infrared array spectrometer (FIAS).The evaluations of molecular band radia-tion models and turbulence–radiation interaction effects were facilitated by the existence of a de-tailed scalar database from Sandia [3].However,similar scalar property databases are not available1540-7489/$-see front matter Ó2004The Combustion Institute.Published by Elsevier Inc.All rights reserved.doi:10.1016/j.proci.2004.08.255*Corresponding author.Fax:+17654949321.E-mail address:gore@ (J.P.Gore).Proceedings of the Combustion Institute 30(2005)727–734/locate/prociProceedings of theCombustion Institutefor luminous soot containingflames and in fact the laser-based technologies used at Sandia re-quire soot freeflames.Few techniques such as cohesive anti-Stokes Raman spectroscopy may work for luminousflames but have certainly not been applied to heavily sootyflames such as ethyl-ene/air and acetylene/air.Measurements of soot volume fractions and temperatures in turbulent luminousflames have relied on intrusive optical sampling probe mea-surements[4–6].Measurements of soot volume fractions using laser induced incandescence have been reported by others[7–9].However,optical measurements of carbon dioxide(CO2)concentra-tions using intrusive local emission measurements in luminous turbulentflames are not available ex-cept[10].The availability of fast infrared array spectrometers and recently developed algorithms for spectral tomographic inversion allow the extension of this technique to simultaneous mea-surements of gas phase temperature and CO2con-centrations.These extensions of scalar statistics and fast I k measurements to turbulent luminous flames can provide useful information for many engineering applications.The FIAS acquires I k at80wavelengths(k)at a scanning rate of6250Hz[1,11],and therefore time scales longer than0.3ms can be resolved. These unique features of FIAS provide good po-tential for the reconstruction of multiple scalar properties of turbulentflames using inverse I k ing tomographic reconstruction tech-niques,Best et al.[12]obtained distributions of temperatures and species(soot,carbon dioxide, and water vapor)concentrations in a round lami-nar ethylene/airflame.Measurements and inverse calculations of emission and transmission were conducted by these authors[12]at multiple wave-lengths from1.5to5l m.In round turbulent jet flames,the distributions of instantaneous scalar quantities are no longer axi-symmetric.The distri-butions of statistical scalar properties,however, are still axi-symmetric.Zheng et al.[2]utilized this fact and reconstructed integral length and time scales of scalarfluctuations in non-luminous tur-bulentflames using inverse calculations of root-mean-square(rms)and autocorrelation coefficient of I k.Extensions of multi-wavelength tomo-graphic inverse radiation calculation to turbulent luminousflames are very interesting,although more challenges are expected owing to the exis-tence of soot particles.In turbulent combustion environments,the mean radiation quantities are determined not only by the mean scalar quantities but also by their fluctuations.This is the result of turbulence–radi-ation interactions(TRI)as referred in the litera-ture[13,14].Thus,inverse calculations of mean I k at multiple wavelengths can be used to estimate both mean andfluctuating scalar properties pro-vided that the effects of TRI are treated appropri-ately.To account for TRI in I k calculations,two-time/two-point scalar statistics are generally re-quired[1];therefore,the computations are more complicated than those utilizing only one-point statistics.Fortunately,computational studies on small-size turbulent non-luminousflames[15,16] indicated that the use of one-point statistics may be sufficient for mean I k calculations.Based on this,it is conjectured that mean I k calculations adapting one-point scalar statistics are also appli-cable to small turbulent luminousflames.Motivated by this,the present study consisted of the following:1.Time series of I k for diametric and manychord-like radiation paths were measured ina horizontal plane of a round turbulent ethyl-ene/air jetflame using the FIAS.Mean,rms, probability density function(PDF),autocorre-lation coefficient(q(D s)),and power spectral density(PSD)of I k were obtained from the time series data.Experimental investigations of mean and PDF of I k for luminous turbulent flames were reported in the literature[17,18].These studies,however,were limited to dia-metric paths only.2.Local mean and rms temperatures and CO2mole fractions were estimated adapting a tomographic inversion in conjunction with the relationship of these quantities to mixture fraction(Z).The calculated mean I k at two dif-ferent wavelengths(4.47and4.51l m)domi-nated by CO2radiation were used tofit the measured mean I k iteratively for each radia-tion path from theflame edge to the axis. 3.The local soot volume fractions were estimatedusing tomographic inversion of emission inten-sities at1.99l m in conjunction with a form for the local relationship between soot volume fractions and mixture fractions.4.Mean I k for all the radiation paths at80wave-lengths werefinally calculated by integration of the radiative transfer equation(RTE) including self-absorption.The scalar proper-ties for the mean I k calculations were deter-mined approximately using the local mean and rms mixture fractions along the radiation paths,in conjunction with presumed one-point PDFs of Z estimated from the CO2concentra-tions and temperatures.2.Experimental methodThe turbulent ethylene/air jetflame under con-sideration has a nominal Reynolds number of 15,200based on exit velocity,cold gas properties, and fuel injector diameter.The jet burner,on which the ethylene(C2H4)flame is stabilized,is a long tube with an inner diameter(D)of8mm ta-728Y.Zheng,J.P.Gore/Proceedings of the Combustion Institute30(2005)727–734pered to a thin edge.The fuel(purity>99%)was issued vertically from the tube and burned in still air.The fuelflow rate was metered using a critical flow orifice,which was calibrated by a standard dry test meter.At the normalized height above the fuel injector(x/D)of40,time series of I k for the diametric and nine chord-like paths were mea-sured using the FIAS as depicted in Fig.1.The ra-dial distance(r)between the radiation paths was 5mm.In the FIAS,incident radiation is split into its spectral components by two calciumfluoride prisms,and is dispersed over a staggered linear ar-ray PbSe detector[11].The spectral range of the FIAS was from1.4to4.8l m with a mean resolu-tion of44nm,covering most part of the contin-uum soot radiation and important molecular radiation bands of water vapor(H2O)and CO2. The spatial resolution of the present measure-ments was2mm based on the FIAS optics.For each radiation path,6000samples were collected. The experimental uncertainties(95%confidence) of I k measurement were of the order of10%[1] and repeatable within this range.The uncertain-ties were dominated by the effect offinite sampling time available in the continuous scanning process [1,16].putational methodIn present study,theflame section was divided into10virtual circles with a common center on the jet axis as described in Fig.1.The scalar statis-tics within the inner circle and within each of the outer rings were assumed to be statistically homo-geneous and independent of the scalar statistics of the other rings.The mean I k for a non-homoge-nous radiation path with n homogenous segments was calculated by integration of the RTE as fol-lows[16,19]I k;mean¼X ni¼1Z1I b k;ið1Às k;iÞP iðZÞd ZÁY nj¼iþ1Z1s k;j P jðZÞd Z!;ð1Þwhere,P i(Z)is the mixture fraction PDF of the i th segment;s k,i is the transmissivity of the i th seg-ment with a length of D s i,and is equal to ex-p(Àj k,i D s i).The local Planck function(I b k,i)and spectral absorption coefficient(j k,i)were deter-mined from the local temperature(T)and species concentrations.j k of gaseous molecules,including H2O,CO2,methane(CH4),and carbon monoxide (CO),were calculated using the RADCAL pro-gram[20],which utilizes a narrow band model and a combination of tabulated spectral proper-ties and theoretical approximations to the vibra-tional–rotational molecular bands.Soot particles were treated in the Rayleigh limit and therefore scattering was neglected.j k of soot was calculated using optical constants given by Dalzell and Sar-ofim[21].Local temperature and species mole fractions were related to the mixture fraction by using the laminarflamelet combustion model[22].State-re-lationships of T,C2H4,O2,N2,CO2,CO,H2O, and H2were obtained using the simulation of a non-premixed laminar opposed-flow C2H4flame.A modified version of the OPPDIF program[23] with GRI-Mech2.11[24]for the gas phase chem-istry was used in the plicated pro-cesses of soot formation and oxidation were treated by a simplified mechanism of Leung et al.[25],and radiative heat transfer was handled using a two-flux model with self-absorption[26]. The resulting state relationships are in good agree-ment with the experimental data of Gore and Faeth[22]but provide higher resolution in the mixture fraction domain.3.1.Mixture fraction estimationFor the estimation of the PDF of mixture frac-tion at each of the n segments,the PDF parame-ters were estimated using inverse calculation of mean I k at wavelengths dominated by CO2radia-tion(>98%).The efficacy of estimating mixture fraction therefore depends only on the application of state-relationship concept for CO2and T.It is known that CO2and T correlate much better with mixture fraction compared to intermediates such as CO,H2,and pollutants such as soot.The mixture fraction PDF was assumed to be clipped Gaussian with two parameters,l and r,determined from Z mean and Z rms.A table of l and r in terms of Z mean and Z rms was pre-stored and consulted during the computations.The radial distributions of Z mean and Z rms in the present tur-bulent C2H4flame at x/D=40were estimated using a tomographic procedure of inverse radia-tion calculation.The outermost chord-like radiation path(Fig.1)was consideredfirst.Z mean and Z rms of the out-ermost ring were estimated simultaneously with initial guesses of0.01.Mean I k at two wave-lengths of(k1)4.47and(k2)4.51l m were calcu-lated using Eq.(1).I k at these two wavelengths were dominated by band radiation from CO2.A least mean square(LMS)scheme[2,16]was adapted to determine the optimal Z mean and Z rms as follows:Step1:Guess Z mean and Z rms,and calculate mean I k at the two selected wavelengths.Step2:Obtain the square of errors between calcu-lations and measurements in mean I k for k1and k2.Step3:Obtain the mean square error.Step4:Use PowellÕs conjugate gradient method [27]to obtain new estimates of Z mean and Z rms until the optimal values are obtained.The second chord-like radiation path was con-sidered next using the Z mean and Z rms from the pre-vious calculation for the two outermost segments and for the initial guesses of the second ring(Fig.1).This tomographic procedure for the estimate of Z mean and Z rms was carried out until the diamet-ric path was considered.The iterative inverse pro-cess for the estimate of Z mean and Z rms involved between6and10iterations,depending on the location before convergence to the LMS error. 3.2.Soot volume fraction estimationThe soot volume fractions(f v)show a much greater level of scatter in laminar and turbulent flames when correlated with mixture fraction [4,5,10,22].In particular,significant dependence on the distance from the burner exit was observed, and the main variation was in the peak f v[22]. Therefore,an additional degree of freedom in the form of a constant C s was adapted in the pres-ent work.The functional form of the soot volume fractions of the presentflame was assumed as ‘‘f v=C s·f v(Z),’’and f v(Z)is a best-fit curve cor-relating f v and Z based on measurements from laminar C2H4flames[22].The constant C s was estimated using inverse radiation calculations for I k at1.99l m.It should be noted that this approx-imation does not impact the present measure-ments of mixture fraction and its statistics.After the radial distributions of Z mean and Z rms were estimated,the optimal constant C s was ob-tained by a similar LMS scheme as follows:Step1:Guess C s of the outermost ring,and calcu-late mean I k at1.99l m using Eq.(1).Flame radi-ation at this wavelength was dominated(>85%) by continuum soot radiation,and radiation from H2O is deducted before the inverse calculation.C s equal to unity is the natural initial guess. Step2:Obtain the square of error between calcu-lation and measurement in mean I k.Step3:Use BrentÕs line minimization algorithm [27]to obtain new estimates of C s until the opti-mal value is achieved.The second chord-like radiation path was con-sidered next using the C s from the previous calcu-lation for the two outermost segments(Fig.1). This tomographic procedure for the estimate of C s was carried out until the diametric path was considered.The major error in the de-convoluted scalar quantities originates in the10%uncertainties in the spectral radiation intensity measurements. The uncertainty of the inverse scalar measurement was estimated by repeating the inverse calcula-tions with±5%artificial perturbations in the mean I k data.The uncertainty varies with loca-tion,and the spatial averaged uncertainties are 11%and12%for mean and rms Z,6%and11% for mean and rms T,and13%and14%for mean and rms f v,respectively.Mean I k at wavelengths from1.4to4.8l m of all the radiation paths werefinally calculated using Eq.(1)in conjunction with the estimated Z mean, Z rms,and C s.Same spectral resolutions as the measurements were utilized in the calculations. Band radiation from alkanes and alkenes,includ-ing ethylene and methane,is important in the spectral range from3.0to3.5l m[12].The present calculations,however,considered only the radia-tion from ethylene while adapting radiation prop-erties of methane as afirst approximation.4.Results and discussion4.1.Mean andfluctuating spectral radiation intensitiesFigure2illustrates the measurements of mean and rms of I k at1.99(soot),4.47(CO2),and4.51 (CO2)l m as a function of the normalized radial distance.The visible meanflame radial position (r/x=0.12)obtained by a Nikon Coolpix990dig-ital camera is also marked for reference.The mean I kfirst increase then decrease with increasing ra-dial distance.The mean I k have maxima at the normalized radial location r/x=0.05but not at r/x=0,even though the latter is the longest geo-metric path.The mean I k distributions indicate that the maximum mean temperature and concen-trations of emitting species appear in a region away from the jet axis at this axial location.Past730Y.Zheng,J.P.Gore/Proceedings of the Combustion Institute30(2005)727–734studies on non-luminous turbulent round jet flames[2,16]revealed that the maximum mean temperature always appears at a radial location that is a little farther from the jet axis than the location of the chord-like path having the maxi-mum mean I k.It is expected that the meanflame front at this axial location,which is defined by a mean stoichiometric mixture fraction of0.0637is farther from the jet axis than r/x of0.05.The bottom panel of Fig.2illustrates rms/ mean values of I k plotted as a function of r/x. The rms/mean for the CO2radiation is around 0.25at the axis and remains constant at this value until r/x=0.06before increasing rapidly to very large values between r/x=0.08and0.14.The rms/mean for the soot radiation is much larger than that for the CO2radiation.The large rms/ mean is probably indicative of much larger inter-mittency of soot.Figure3presents the measured PDFs of I k, which were normalized by I k,mean and I k,rms,at two wavelengths for three typical radiation paths. Significant differences in the PDFs of I k for soot (1.99l m)and CO2(4.51l m)radiation were ob-served for all the radiation paths.However,the PDFs of CO2radiation at4.47and4.51l m are similar and hence only the latter is shown as rep-resentative.PDFs of CO2radiation of the diamet-ric path(r/x=0)and the chord-like path having the maximum mean I k(r/x=0.05)are nearly symmetric and very close to the Gaussian distri-bution.PDFs of soot radiation of these two paths, however,are skewed toward the lower I k side. Skewness in PDFs of soot radiation of diametric paths was also reported on propylene[17]and methane[18]flames.Past studies on turbulent non-luminousflames[2,16]showed that PDFs of CO2and H2O radiation of diametric paths were symmetric and nearly Gaussian in shape.The sig-nificant differences between soot and CO2in radi-ation PDFs reflect the differences between soot and CO2distributions in turbulentflames.For the radiation path away from the jet axis at r/ x=0.11,the shape of PDF of CO2radiation intensity shows a low-end cut-offand a high-end tail in the I k distribution,indicating strong scalar intermittency[2].The PDFs of I k at1.99l m,how-ever,show much stronger soot intermittency.Soot occurs with significant intermittency at all loca-tions and has a strong PDF near the low-end cut-off.Figure4depicts the measured autocorrelation coefficients of I k at1.99and4.51l m for three typ-ical radiation paths.It is observed that the q(D s) decays from one to zero in about20ms and then oscillates around zero.Except the radiation path having the maximum mean I k(r/x=0.05),signif-icant negative q(D s)(less thanÀ0.2)is observed for both soot and CO2radiation.Significant neg-ative q(D s)for CO2radiation from diametric paths,however,was not observed in turbulent non-luminousflames[2,16].Negative q(D s)of Ikat1.99l m is possible if the hot soot in the obser-verÕs view cools down and then is replaced by hot soot periodically.Negative q(D s)of I k at4.51l m indicates periodic arrival of hot and cold CO2.Figure5depicts the measured PSDs of I k at 1.99and4.51l m for three radiation paths.The PSD profile has a low-frequency energy-contain-ing region up to a cut-offfrequency.Except the radiation path having the maximum mean I k(r/ x=0.05),the PSD profiles exhibit prominent peaks near the cut-offfrequency.This characteris-tic of PSD is consistent with the observation of q(D s)and can be attributed to the possible peri-odic behavior of the scalarfields.4.2.Inverse scalar estimatesEstimated radial distribution of mean mixture fractions at x/D=40is illustrated in the top panel of Fig.6.The estimated Z mean decreases with r from the jet axis toflame edge.The distribution of Z mean indicates that the meanflame front may exist around r/x=0.07.The present mixture fraction data are in reasonable agreement with past probe measurements in similarflames[28]. Also,the mixture fraction at axis is higher thanthat observed in a non-luminousflame[3]with identical Reynolds number and burner exit diam-eter but lower fuel density.The bottom panel of Fig.6shows the rms of mixture fraction plotted as a function of normal-ized radius.Z rmsfirst increases and then decreases (in the general trend)with increasing r.The rms is relatively low near theflame axis but increases rapidly with radius reaching close to0.12at r/ x=0.03.The rms/mean mixture fractionisFig. 6.Estimated radial distributions of mixturefractions.732Y.Zheng,J.P.Gore/Proceedings of the Combustion Institute30(2005)727–734around 30%at the peak rms location,which is reasonable based on measurements in non-lumi-nous flames [3].Figure 7shows inverse measurements of mean and rms temperature as a function of r /x .The cen-terline temperature is 920K and increases rapidly to the maximum of 1500K at r /x =0.06.Owing to strong radiative heat loss,the maximum mean temperature is significantly lower than those in non-luminous flames.At larger r /x values,the mean temperature decreases to the ambient value.The rms divided by mean temperatures is approx-imately constant at relatively low values in the re-gion between the axis and the maximum mean temperature location,but increases rapidly at far-ther radial locations.This trend is very similar to that observed in non-luminous flames [3].Figure 8shows inverse measurements of mean and rms soot volume fractions plotted as a func-tion of r /x .Very low levels of soot exist near the jet axis followed by a rapid increase to a peak va-lue of 0.4ppm for the mean f v near r /x =0.06.It is noted that the mean temperature at the peak f v location is around 1500K in agreement with past data.At larger r /x locations,the mean and rms f v decrease rapidly.However,the rms values de-crease faster than the mean.The rms values show clear evidence of soot intermittency with rms/mean approaching factors of 2–3.Hu et al.[6]measured mean f v for an ethylene flame (D =4.56mm,Re =13,500)using an intrusive optical probe technique.Radial distributions of mean f v at x /D =60and 90were reported,and a peak value of 0.58ppm near r /x =0.08at x /D =60was observed [6].The magnitude and thetrend of the present mean f v measurements at x /D =40is in reasonable agreement with the data of Hu et al.[6].Using the scalar properties obtained from I k data at three wavelengths,mean I k at the remain-ing 77wavelengths were calculated and compared with measurements in Fig.9.The agreementbe-Fig.7.Estimated radial distributions oftemperatures.Fig.8.Estimated radial distributions of soot volumefractions.tween measurements and calculations is very good in all spectral regions supporting the present methodology.5.ConclusionsSpectral radiation intensities of diametric and various chord-like paths in a round turbulent eth-ylene/air jetflame were studied experimentally and computationally.A new multiple-wavelength inverse radiation analysis method was developed to estimate the mean and rms of the local mixture fractions,soot volume fractions,and tempera-tures.The specific conclusions of the present study are as follows:1.The PDFs of spectral radiation intensities cor-responding to soot radiation of all the paths are skewed toward the lower intensity levels.2.Significant negative autocorrelation coeffi-cients of spectral radiation intensities corre-sponding to soot and CO2radiation are observed even for the diametric paths.3.The inverse radiation calculations using mea-surements of I k provide good estimates of local mean and rms mixture fractions,temperatures, and soot volume fractions.4.The resulting computations of mean I k in thespectral range from 1.4to 4.8l m matched the experimental data very well. References[1]Y.Zheng,R.S.Barlow,J.P.Gore,ASME J.HeatTransf.125(2003)678–686.[2]Y.Zheng,R.S.Barlow,J.P.Gore,ASME J.HeatTransf.125(2003)1065–1073.[3]International Workshop on Measurement and Com-putation of Turbulent Non-premixed Flames,Sandia National Laboratories,2003.Available from: </TNF>.[4]J.H.Kent,D.Honnery,Combust.Sci.Technol.54(1987)383–397.[5]Y.R.Sivathanu,J.P.Gore,J.Dolinar,Combust.Sci.Technol.76(1991)45–66.[6]B.Hu,B.Yang,U.O.Koylu,Combust.Flame134(2003)93–106.[7]A.Coppale,D.Joyeux,Combust.Flame96(1994)275–285.[8]B.Quay,T.-W.Lee,R.J.Santoro,Combust.Flame97(1994)384–392.[9]H.Geitlinger,T.H.Striebel,R.Suntz,H.Bock-horn,Combust.Sci.Technol.149(1999)115–134.[10]Y.R.Sivathanu,J.P.Gore,Combust.Sci.Technol.80(1991)1–21.[11]J.Ji,J.P.Gore,Y.R.Sivathanu,J.Lim,Rev.Sci.Instru.75(2004)333–339.[12]P.E.Best,P.L.Chien,R.M.Carangelo,P.R.Solomon,M.Danchak,I.Ilovici,Combust.Flame 85(1991)309–318.[13]J.P.Gore,S.-M.Jeng,G.M.Faeth,ASME J.HeatTransf.109(1987)165–171.[14]G.Li,M.F.Modest,J.Quant.Spectrosc.Radiat.Transf.73(2002)461–472.[15]P.J.Coelho,O.J.Teerling,D.Roekaerts,Combust.Flame133(2003)75–91.[16]Y.Zheng,Spectral and Total Radiation Properties ofTurbulent Non-luminous Jet Flames,Ph.D.Thesis, Purdue University,2003.[17]Y.R.Sivathanu,M.E.Kounalakis,G.M.Faeth,bust.Inst.23(1990)1543–1550.[18]S.J.Brookes,J.B.Moss,Combust.Flame116(1999)49–61.[19]J.P.Gore,U.-S.Ip,Y.R.Sivathanu,ASME J.HeatTransf.114(1992)487–493.[20]W.L.Grosshandler,RADCAL:A Narrow-bandModel for Radiation Calculations in a Combustion Environment,NIST Technical Note1402,U.S.Government Printing Office,Washington,1993. [21]W.H.Dalzell,A.F.Sarofim,ASME J.Heat Transf.91(1969)100–104.[22]J.P.Gore,G.M.Faeth,bust.Inst.21(1986)1521–1531.[23]A.E.Lutz,R.J.Kee,J.F.Grcar, F.M.Rupley,OPPDIF:A Fortran Program for Computing Opposed-flow Diffusion Flames,SAND96-8243,San-dia National Laboratories,1997.[24]C.T.Bowman,R.K.Hanson,D.F.Davidson,W.C.Gardiner,V.Lissianski,G.P.Smith,D.M.Golden, M.Frenklach,M.Goldenberg,GRI-Mech.Available from:</grimech/>. [25]K.M.Leung,R.P.Lindstedt,W.P.Jones,Combust.Flame24(87)(1991)289–305.[26]X.L.Zhu,J.P.Gore,A.N.Karpetis,R.S.Barlow,Combust.Flame129(2002)342–345.[27]R.P.Brent,Algorithms for Minimization withoutDerivatives,Dover Publications,Mineola,New York,2002.[28]J.P.Gore,A Theoretical and Experimental Study ofTurbulent Flame Radiation,Ph.D.Thesis,The Pennsylvania State University,1986.734Y.Zheng,J.P.Gore/Proceedings of the Combustion Institute30(2005)727–734。
外文译文

毕业论文(设计)外文译文题目广安渠江大学学生公寓设计系部建筑与土木工程专业土木工程年级 2008级学生姓名唐志华学号 080812025指导教师李静Tall Building BehaviorAbstract: This paper first pair of high-rise building construction history of thedevelopment of a brief introduction. Subsequent adoption of high-rise building in Kennedy to load and wind load and seismic load, The complex structure of the stress analysis after each draw : the major component between the vertical shear vertical structure of the resistance level of load which is in the importance of the vertical component's Intergovernmental have another form of interaction, the level of interaction is also increasedstructural rigidity to the important role.Key words:Tall tower and buildings shear rigidityTall tower and buildings have fascinated mankind from the beginning of civilization, their construction being initially for defense and subsequently for ecclesiastical purposes. The growth in modem tall building construction ,however, which began in the 1880s, has been largely for commercial purpose.Tall commercial buildings are primarily a purpose to the demand by business activities to be as close to each other, and to the city center, as possible, thereby putting intense pressure on the available land space. Also because they form distinctive landmarks, tall commercial buildings are frequently developed in city centers as prestige symbols for corporate organizations. Further, the business and tourist community, with its increasing mobility, has fuelled a need for more, frequently high-rise, city center hotel accommodations.The rapid growth of the urban population and the consequent pressure on limited space have considerably influenced city residential development. The high cost of land, the desire to avoid a continuous urban sprawl, and the need to preserve important agricultural production have all contributed to drive residential buildings upward. In some cities, for example, Hong Kong and Rio de Janeiro, local topographical restrictions make tall buildings the only feasible solution for housing needs.Ideally, in the early stages of planning a buildings, the entire design team, including the architect, structural engineer, and services engineer, should collaborate to agree on a form of structure to satisfy their respective requirements of function, safety and serviceability, and servicing. A compromise between conflicting demands will be almost inevitable. In all but the very tallest structures, however, the structural arrangement will be subservient to the architectural requirements of space arrangement and that will tax the ingenuity; and probably the patience, of the structural engineer.The two primary types of vertical load-resisting elements of tall buildings are columns and walls, the latter acting either independently as shear walls or in assemblies as shear wall cores. The building function will lead naturally to the provision of walls to divide and enclose space, and of cores to contain and convey services such as elevators. Columns will be provided, in otherwise unsupported regions. To transmit gravity loads and, in some types of structure, horizontal loads also.The inevitable primary function of the structural elements is to resist the gravity loading from the weight of the building and its contents. Since the loading on different floors tends to be similar the weight of the floor system per unit floor area is approximately constant, regardless of the building height of a building, the weight of columns per unit area increases approximately linearly with the building height.The highly probable second function of the vertical structural elements is to resist also the parasitic load caused by wind and possibly earthquakes, whose magnitudes will be obtained from National Building Codes or wind tunnel studies. The bending moments on the building caused by these lateral forces increase with at least the square of the height, and their effects will become progressively more important as the building height, and their will become progressively more important as the building height increase.Once the functional layout of the structure has been decided, the design process generally follows a well-defined iterative procedure. Preliminary calculations for member sizes are usually based on gravity loading augmented by an arbitrary increment to account for wind forces. The cross-sectional areas of the vertical members will be based on the accumulated loading from their associated areas, with reductions to account for the probability that not all floors will be subjected simultaneously to their maximum live loading. The initial sizes of beams and slabs method of gravity load analysis, such as two-cycle moment distribution, or from codified mid-and end-span values.A check is then made on the maximum horizontal, and the forces in the major structural members, using some rapid approximate analysis technique. If the deflection is excessive, or some of the members are inadequate, adjustments are made to the members sizes or the structural arrangement. If certain members attract excessive loads, the engineer may reduce their stiffness to redistribute the load to less heavily stressed components. The procedure of preliminary analysis, checking, and adjustment is repeated until a satisfactory solution is obtained.Invariably, alterations to the initial layout of the building will be required as theclient’s and architect’s ideas of the building evolve. This w ill call for structural modifications, or perhaps a racial rearrangement, which necessitates a complete review of the structural design. The various preliminary stages may therefore have to be repeated a mumber of times before a final solution is reached.Speed of erection is a vital factor in obtaining a return on the investment involved in such large-scale projects. Most tall buildings are constructed in congested city sites, with difficult access; therefore careful planning and organization of the construction sequence become essential. The story-to-story uniformity of most multistory building encourages construction through repetitive operations prefabrication techniques. Progress in the ability to build tall has gone hand in hard with the development of more efficient equipment and improved methods of construction, such as slip-and flying-formwork, concrete pumping, and the use of tower, climbing, and large mobile cranes.A reasonably accurate assessment of a proposed high-rise structure’s behavior is necessary to form a properly representative model for analysis. A high-rise structure is essentially a vertical cantilever that is subjected to axial loading by gravity and to transverse loading by wind to earthquake.Cravity live loading acts on the slabs, which transfer it horizontally to the vertical walls and columns through which it passes to the foundation. The magnitude of axial loading in the vertical components is estimated from the slab tributary areas, and its calculation is not usually considered to be a difficult problem. Horizontal loading at each level of a building a shear ,a moment ,and some times, a torque, which have maximum values at the base of that structure that increase ra paidly with the building’s height. The response of a structure to horizontal loading, in having to carry the external shear, moment, and torque, is more complex than its first-order response to gravity loading. The recognition of the structure’s behavior under horizontal loading and the formation of the corresponding model are usually the dominant problems of analysis. The principal criterion of a satisfactory model is that under horizontal loading it should deflect similarly to the prototype structure.The resistance of the structure to the external moment is provided by flexure of the vertical components, and by their axial action acting as the chords of the vertical truss. The allocation of the external moment between the flexural truss. The allocation of the external moment , between the flexural and axial actions of the vertical component depends on the vertical shearing stiffness of the “web” system connecting the vertical components, that is ,the girders, slabs, and bracing. The stiffer the shear connection, the larger the proportion of the external moment that is carried by axialforces in the vertical members, and the stirrer and more efficiently the structure behaves.The described flexural and axial actions of the vertical components and the shear action of the connecting members are interrelated, and their relative contribution define the fundamental characteristics of the structure. It is necessary in forming a model to components so that the resulting flexural and axially generated moments will be apportioned properly.The horizontal shear at any level in a high-rise structure is resisted by shear in the vertical members and by the horizontal component of the axial force in any diagonal bracing at that level. If the external shear will automatically be properly apportioned between the components.Torsion on a building is resisted mainly by shear in the vertical components, by the horizontal components, by the horizontal components of axial warping torque resistance of elevator, stair, and service shafts. If the individual bents, and vertical components with assigned torque constants, are correctly simulated and located, their contribution to the torsional resistance of the structure will be correctly represented also.A structure’s resistance to bending and torsion can be significantly influenced also by the vertical shearing action between connected orthogonal bents or walls. It is important therefore that this is properly included in the model by ensuring the vertical connections between orthogonal components.The preceding discussion of a high-rise structure’s behavior has emphasized the importance of the role of the vertical shear interaction between the main vertical components in developing the structure’s lateral load resistance .An additional mode of interaction between the vertical components, a horizontal force interaction, can also play a significant role in stiffening the structure, and this also should be recognized when forming the model. Horizontally force interaction, occurs when a horizontally deflected system of vertical components with dissimilar lateral deflection characteristics,for example, a wall and a frame, is connected horizontally. In constraining the different vertical components to deflect similarly, the connecting links or slabs are subjected to horizontal interactive forces that redistribution the horizontal loading between the vertical components. For this reason, in a tall wall-frame structure the wall tends to restrain the frame near the base while the frame restrains the wall near the top. Simi-larly, horizontal components twists. In constraining the different vertical components to displace about a center of rotation and to twist identically at each level, the torque between the vertical components andincrease the torque resistance of the structure.高层建筑结构及性能摘要:本文首先对高层建筑的建设的历史发展简要介绍。
毕业论文英文翻译文献

毕业论文英文翻译文献随着全球化的发展,英语在全球的运用越来越广泛。
下文是店铺为大家整理的关于毕业论文英文翻译文献的内容,欢迎大家阅读参考! 毕业论文英文翻译文献(一)1. 谢天振主编. 《当代国外翻译理论导读》. 天津:南开大学出版社,2008.2. 包惠南、包昂. 《中国文化与汉英翻译》. 北京:外文出版社, 2004.3. 包惠南. 《文化语境与语言翻译》. 北京:中国对外翻译出版公司. 2001.4. 毕继万. 《世界文化史故事大系——英国卷》. 上海:上海外语教育出版社, 2003.5. 蔡基刚. 《英汉汉英段落翻译与实践》. 上海:复旦大学出版社, 2001.6. 蔡基刚. 《英汉写作对比研究》. 上海:复旦大学出版社, 2001.7. 蔡基刚. 《英语写作与抽象名词表达》. 上海:复旦大学出版社, 2003.8. 曹雪芹、高鄂. 《红楼梦》.9. 陈定安. 《英汉比较与翻译》. 北京:中国对外翻译出版公司, 1991.10. 陈福康. 《中国译学理论史稿》(修订本). 上海:上海外语教育出版社. 2000.11. 陈生保. 《英汉翻译津指》. 北京:中国对外翻译出版公司. 1998.12. 陈廷祐. 《英文汉译技巧》. 北京:外语教学与研究出版社. 2001.13. 陈望道. 《修辞学发凡》. 上海:上海教育出版社, 1979.14. 陈文伯. 《英汉翻译技法与练习》. 北京:世界知识出版社. 1998.15. 陈中绳、吴娟. 《英汉新词新义佳译》. 上海:上海翻译出版公司. 1990.16. 陈忠诚. 《词语翻译丛谈》. 北京:中国对外翻译出版公司, 1983.17. 程希岚. 《修辞学新编》. 吉林:吉林人民出版社, 1984.18. 程镇球. 《翻译论文集》. 北京:外语教学与研究出版社. 2002.19. 程镇球. 《翻译问题探索》. 北京:商务印书馆, 1980.20. 崔刚. 《广告英语》. 北京:北京理工大学出版社, 1993.21. 单其昌. 《汉英翻译技巧》. 北京:外语教学与研究出版社. 1990.22. 单其昌. 《汉英翻译讲评》. 北京:对外贸易教育出版社. 1989.23. 邓炎昌、刘润清. 《语言与文化——英汉语言文化对比》. 北京:外语教学与研究出版社, 1989.24. 丁树德. 《英汉汉英翻译教学综合指导》. 天津:天津大学出版社, 1996.25. 杜承南等,《中国当代翻译百论》. 重庆:重庆大学出版社, 1994.26. 《翻译通讯》编辑部. 《翻译研究论文集(1894-1948)》. 北京:外语教学与研究出版社. 1984.27. 《翻译通讯》编辑部. 《翻译研究论文集(1949-1983)》. 北京:外语教学与研究出版社. 1984. .28. 范勇主编. 《新编汉英翻译教程》. 天津:南开大学出版社. 2006.29. 方梦之、马秉义(编选). 《汉译英实践与技巧》. 北京:旅游教育出版社. 1996.30. 方梦之. 《英语汉译实践与技巧》. 天津:天津科技翻译出版公司. 1994.31. 方梦之主编. 《译学辞典》. 上海:上海外语教育出版社. 2004.32. 冯翠华. 《英语修辞大全》,北京:外语教学与研究出版社, 1995.33. 冯庆华. 《文体与翻译》. 上海:上海外语教育出版社, 2002.34. 冯庆华主编. 《文体翻译论》. 上海:上海外语教育出版社. 2002.35. 冯胜利. 《汉语的韵律、词法与句法》. 北京:北京大学出版社, 1997.36. 冯志杰. 《汉英科技翻译指要》. 北京:中国对外翻译出版公司. 1998.37. 耿占春. 《隐喻》. 北京:东方出版社, 1993.38. 郭建中. 《当代美国翻译理论》. 武汉:湖北教育出版社. 2000.39. 郭建中. 《文化与翻译》. 北京:中国对外翻译出版公司. 2000.40. 何炳威. 《容易误译的英语》. 北京:外语教学与研究出版社. 2002.41. 何刚强. 《现代英汉翻译操作》. 北京:北京大学出版社. 1998.42. 何刚强. 《现代英语表达与汉语对应》. 上海:复旦大学出版社. 1994.43. 何刚强. 《英汉口笔译技艺》. 上海:复旦大学出版社, 2003. 毕业论文英文翻译文献(二)1. 何自然、张达三、杨伟钧等译. 《现代英语语法教程》. 北京:商务印书馆, 1990.2. 何自然. 《语用学概论》. 长沙: 湖南教育出版社, 1988.3. 侯维瑞. 《英语语体》. 上海:上海外语教育出版社, 1988.4. 胡庚申. 《怎样起草与翻译合同协议》. 合肥:中国科技大学出版社, 1993.5. 胡曙中. 《英汉修辞比较研究》. 上海:上海外语教育出版社, 1993.6. 胡晓吉. 《实用英汉对比翻译》. 北京:中国人民大学出版社. 1990.7. 胡燕平,张容建. 《实用英汉翻译类典》. 重庆:重庆出版社, 1997.8. 胡裕树. 《现代汉语》. 上海:上海教育出版社, 1987.9. 胡兆云. 《美学理论视野中的文学翻译研究》(第2版). 北京:现代教育出版社. 2009.10. 胡兆云. 《语言接触与英汉借词研究》. 济南:山东大学出版社. 2001.11. 胡壮麟. 《语篇的衔接与连贯》. 上海:上海外语教育出版社, 1994.12. 胡壮麟. 《语言学教程》. 北京:北京大学出版社, 1988.13. 黄伯荣, 廖序东. 《现代汉语》. 兰州:甘肃人民出版社, 1981.14. 黄国文. 《语篇分析概要》. 长沙:湖南教育出版社, 1988.15. 黄龙. 《翻译技巧指导》. 沈阳:辽宁人民出版社, 1986.16. 黄任. 《英语修辞与写作》. 上海:上海外语教育出版社, 1996.17. 黄雨石. 《英汉文学翻译探索》. 西安:陕西人民出版社. 1988.18. 黄振定. 《翻译学:艺术论与科学论的统一》. 长沙:湖南教育出版社. 1998.19. 黄振定. 《翻译学的语言哲学基础》. 上海:上海交通大学出版社. 2007.20. 黄忠廉. 《变译理论》. 北京:中国对外翻译出版公司. 2002.21. 贾尔斯英译. 《孙子兵法》. 长沙:湖南出版社, 1993.22. 贾文波. 《汉英时文翻译: 政治经济汉译英300句析》. 北京:中国对外翻译出版公司, 1999.23. 贾玉新. 《跨文化交际学》. 上海:上海外语教育出版社, 1997.24. 金隄. 《等效翻译探索》. 北京:中国对外翻译出版公司. 1998.25. 金惠康. 《汉英跨文化交际翻译》. 贵阳:贵州教育出版社. 1998.26. 金惠康. 《跨文华交际翻译》. 北京:中国对外翻译出版公司, 2003.27. 金惠康. 《跨文华交际翻译续编》. 北京:中国对外翻译出版公司, 2004.28. 金立鑫. 《语法的多视角研究》. 上海:上海外语教育出版社, 2000.29. 居祖纯. 《新编汉英语篇翻译》. 北京:清华大学出版社, 2002.30. 柯平. 《对比语言学》. 南京:南京师范大学出版社, 1999.31. 孔慧怡. 《翻译·文学·文化》. 北京:北京大学出版社. 1999.32. 李定坤. 《汉英辞格对比与翻译》. 武汉:华中师范大学出版社, 1994.33. 李国南. 《辞格与词汇》. 上海:上海外语教育出版社, 2002.34. 李国南. 《英汉修辞格对比研究》. 福州:福建人民出版社, 1999.35. 李明编著. 《英汉互动翻译教程》. 武汉:武汉大学出版社. 2006.36. 李瑞华(主编). 《英汉语言文化对比研究》. 上海:上海外语教育出版社. 1996.。
关联理论视角下的古诗英译——以《江雪》为例

- 236-校园英语 / 翻译研究关联理论视角下的古诗英译——以《江雪》为例东北师范大学外国语学院/王超龙一、引言翻译作为跨越千年的语言交际活动一直以来都在文化的传播、思想的交流方面扮演着重要角色。
其重要的意义也不断地推动各种翻译理论的发展与完善,并吸纳其他学科理论以应用于翻译实践的指导活动,关联理论便是其中不可或缺的一支。
自Sperber 和Wilson 于1986年出版了《关联性:交际与认知》(Relevance :Communication and Cognition)一书之后,关联理论就此走入人们的视野。
另一方面作为翻译活动一部分的古诗英译从1897年美国诗人Stuart Merrill 的英译本《玉书》算起至今已经走过120年的历程,虽说发展时间不算太久却有着极其重要的意义,是发展中国璀璨文化活动中不可忽视的一支。
从关联理论的视角出发来进行古诗英译研究更为符合诗歌英译认知推理的活动特点,也能更为全面彻底地了解古诗英译的过程。
二、关联理论与翻译1986年Sperber 和Wilson 在《关联性:交际与认知》一书中对关联理论进行了介绍,提出了明示—推理交际这一概念,分别从说话人和听话人的角度以完整并成功的交际为前提所进行的阐释,说话人需要尽力使自己的言语明确地表达一种意图,而听话人需要对其话语信息进行分析以充分理解说话人的意图以此来完成交际。
除此之外,还有认知语境因素。
所谓的认知语境与宽泛的传统语境不同,传统语境概念几乎包括万象,对实际的语用推理交际作用不大,而关联理论中的认知语境是交际双方互为显映的一部分,听话人在双方显映的这一部分的帮助下理解说话人意图,以认知语境来寻找关联意图,完成交际。
翻译的过程也是认知推理的过程,译者对原文进行解读推理,在了解原文作者意图之后,再将其以接收者的语言特点进行传达。
这个过程和关联理论的明示—推理交际概念颇为相似。
翻译可以被看做是两种语言的言语交际活动,其过程涉及源语作者、译者、译文读者三方面因素包含了对语言的三重认知推理过程,译者解读源语作者的言语代码并转换为目标语的代码,这一转换过程需要译者对源语的内容进行认知推理了解作者意图,然后再对译文读者的认知语境进行某种合理的假设,以译文读者的接受为目的进行代码转换——也就是选择合适的词汇与叙述风格。
科技英语的文体特征及翻译策略——以石油英语翻译为例

- 236-校园英语 / 翻译探究科技英语的文体特征及翻译策略——以石油英语翻译为例中国石油大学文学院/杨晓【摘要】随着现代科学技术的发展,科技英语已成为一种重要的英语文体,而阅读和翻译科技英文文献也成为科研上作者一项基本素质。
石油科技英语具有“客观性”、“规范性”、“科学性”和“现实性”等一般科技语篇特征。
本文以笔者的翻译实践为例,辅以其它译例,拟就石油科技英语的文体特征,从词汇、词法、句法、修辞四个方面对比科技文体的英汉翻译并对科技英语的翻译策略进行探析。
【关键词】科技英语 文体特征 翻译策略科技文体是自然科学和技术人员从事专业活动时使用的一种文体。
科学著作、学术论文、实验报告、产品说明书都属于科技文体。
科技文体不以语言的艺术美为追求目标,而是讲究逻辑的条例清楚和叙事的准确严密。
粗略来说,科技文体可以分成正式科技文体和科普文体。
翻译原文:①Hydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for hydrocarbon deposits beneath the Earth's surface, such as oil and natural gas. ②Oil and gas exploration are grouped under the science of petroleum geology.③Visible surface features such as oil seeps, natural gas seeps, pockmarks (underwater craters caused by escaping gas) provide basic evidence of hydrocarbon generation (be it shallow or deep in the Earth). ④However, most exploration depends on highly sophisticated technology to detect and determine the extent of these deposits using exploration geophysics.⑤ Areas thought to contain hydrocarbons are initially subjected to a gravity survey, magnetic survey, passive seismic or regional seismic reflection surveys to detect large-scale features of the sub-surface geology.⑥ Features of interest (known as leads) are subjected to more detailed seismic surveys which work on the principle of the time it takes for reflected sound waves to travel through matter (rock) of varying densities and using the process of depth conversion to create a profile of the substructure. ⑦Finally, when a prospect has been identified and evaluated and passes the oil company's selection criteria, an exploration well is drilled in an attempt to conclusively determine the presence or absence of oil or gas.译文:①油气勘探(或石油和天然气勘探)是指石油地质学家和地球物理学家寻找地下的油气藏,如石油和天然气。
字幕翻译类论文参考文献

字幕翻译类论文参考文献bibliographies:[1] samour, l.a. and r.e porter. intercultural communication: a reader(5thed) [m].wadsworth publishing co., .[2] goodman k. s. reading: a psycholinguistic guessing game [j]. journalof reading, .[3] anderson rc. frame works for comprehending discourse [j]. american educational research journal, ,14: 369.[4] 胡文仲主编. 文化与交际[m]. 北京:外语教学与研究出版社,.[5] 肖健壮. 英语学习策略[m]. 北京:现代出版社,.[6] 马博森. “阅读教学中的话语分析模式”,外语教学与研究[m]. XX年第2期63-66页.[7] 廖道胜.“中国学生英语阅读中的文化障碍”,外语教学[m]. XX年第4期73-77.biographical datawang lin, holds a doctorate in comparative literature and is vice-professor and dean of the english department of foshan university. he specializes in english literature and translation. he teaches english reading, translation, english literature, english poetry and has translated more than twenty english fictional and non-fictional works, such as aesop’s fables, the black pearl, the naturalism, the president lady, and oscar wilde and his fairy tales. he has published over ten academic papers, among the major ones; astudy on dubin's life, a study on translating criticism of creation society, oscar wilde and tian han,and a plan to explore the oral english teaching for students of non-english major.英语专业论文选题可以分成以下几个学科方向一、语言学(语言学一般理论的研究);二、英美文学(英美文学的文化研究、作品分析等);三、翻译学(翻译理论与实践探讨、译本研究以及名家名著翻译作品对比研究等);四、英美文化(英美提澳新等西方国家文化以及与汉文化的比较研究);五、教学法(英语教学法、测试学等方面的研究)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
削减国际会计服务贸易壁垒:为什么重要,及前景如何劳伦斯·怀特摘要货物贸易总协定关于削减专业服务贸易壁垒的谈判中,会计服务已经成为重点议题。
这绝非偶然。
会计服务正在逐步形成国际体系。
最大的几家会计事务所拥有了全世界的主要的会计服务,并且渴望在更加自由的环境中运行。
会计已经日益作为为金融服务一个关键基础元素来理解,随着金融的日益全球化,会计服务业应该全球化。
此外,大型企业普遍国际化也使得国际会计服务的需求扩大。
尽管主要的会计事务所都有大量的国际服务机构,几乎所有国家都保持有各种各样的贸易保护壁垒,来限制会计服务的跨国界流动。
其后果是增加会计服务成本,降低会计服务质量和工作效率,和降低了许多国家的会计服务质量标准。
我们可以也应该做出进步来削减目前的会计服务贸易壁垒以促进会计服务的国际自由化。
1、引言会计师和会计服务是任何公司不可或缺的基本组成元素,尽管经常被低估。
公司的财务报表对经理、董事和投资人都是很关键的,其对决定贷款人和投资人是否、何时以及如何向公司提供资金发挥着关键性的作用。
所以,会计是现代经济体中一个重要的组成部分。
一般来说,跨国公司的成长,具体来说,跨国会计事务所都将注意力集中于有关国际会计服务贸易的问题。
这种关注反过来助长了人们对更广泛的国际服务的兴趣。
1999年11月到12月间世界贸易组织在西雅图召开的部长级会议的街道级别的中断是国际货物和服务贸易自由化总体进程中的一次不幸的放缓。
着眼于过去的50年来削减货物贸易壁垒的进程和最近对推进服务贸易自由化的浓厚兴趣,这次西雅图事件看起来似乎只是国际贸易自由化道路上的一次失足而已。
在这次部长级会议之前,在建立自由的会计服务贸易的国际承诺方面已经取得了实质性的进展,并且这一进展的继续是有可能的。
该进展的原因以及它的重要性将是本文的重点所在。
第二节将就已经取得的进展的性质简要地介绍其背景。
第三节将回顾服务贸易与货物贸易的不同点,以及为什么在更广泛的贸易中获得经济收益对服务和货物是一样的重要。
第四节将描述现代会计服务和现代会计行业的基本特征。
第五节将聚焦于阻碍会计服务跨国界的有效流动的因素。
第六节将探索围绕这一问题,即不同国家使用的不同的会计标准和框架是否构成了会计服务自由化的一个严重障碍,和这些标准的趋同化是否是会计服务贸易自由化的正确做法的问题。
第七节将探讨服务贸易谈判的框架,以及所取得的成就。
第九节便具体讨论了会计服务贸易谈判的前景。
最后,第十节给出了本文研究简单的结论。
2、背景二十世纪70年代以来,人们日益意识到服务贸易将是下一个削减壁垒的主要领域。
第二次世界大战后,通过关税贸易总协定组织的一系列轮回谈判,货物贸易壁垒的削减已经取得了实质性的进展。
尽管国际货物贸易并不是没有任何保护和限制,以及可以取得更多的进步,服务贸易却很少涉及。
在二十世纪80年代后期的乌拉圭回合谈判中,服务贸易成为了一个主要的论题。
那些谈判最终导致了世界贸易组织的诞生,其作为关贸总协定的继续和发展以及形成了服务贸易总协定,其作为一个关于削减国际服务贸易壁垒谈判的特殊的平台或者媒介。
一项关于专业服务的重大举措是这些谈判中的的一个部分。
世界贸易组织专业服务工作小组(WPPS)成立于1995年,并选择会计服务作为第一个专业服务项目,以促进一系列多边纪律的发展,这些多边纪律有助于减轻国内那些适用于会计师和会计服务的保护和限制程度。
这些多边纪律由世界贸易组织的服务贸易协会于1998年12月采纳,并将成为将来贸易谈判结果中用于削减国际限制的基础。
更早的时候(1997年),世界贸易组织专业服务工作小组(WPPS)完成了双边协议的谈判的指南的完善,这将应用于各国的专业会计服务的资格审查中。
这些指南被该协会与1997年五月采纳。
选择会计服务作为削减壁垒的首要领域不是偶然的。
会计服务正在逐步形成国际体系。
最大的几家会计事务所拥有了全世界的主要的会计服务,并且渴望在更加自由的环境中运行。
会计已经日益作为为金融服务一个关键基础元素来理解,随着金融的日益全球化,会计服务业应该全球化。
此外,大型企业普遍国际化也使得国际会计服务的需求扩大。
尽管主要的会计事务所都有大量的国际服务机构,几乎所有国家都保持有各种各样的贸易保护壁垒,来限制会计服务的跨国界流动。
服务贸易总协定的广阔的规定以及世界贸易组织1998年采纳的多边会计准则只有在进一步的谈判完成后才能实施。
中期,世界贸易组织成员妥协于“瘫痪”的协定,他们将忍耐不把高度的贸易壁垒加之在会计服务中。
目前已有的大量的贸易壁垒给削减服务贸易壁垒和消除服务贸易限制的努力了提高了主要的目标。
即使是在西雅图经历后,实质性的进展还是能够并且应该取得的。
3、为什么国际服务贸易和国际货物贸易相同(或者不同)?国际服务贸易在很多方面都与国际货物贸易有显著的不同。
诚然,服务贸易的多边谈判是在货物贸易多边谈判进行了40年后才开始的事实便是它们不同的佐证。
另一方面,服务贸易至少有一方面是没有不相同的,即提高一国的资源的优化配置从而提升其整体的生活水平。
为了推进本文中的关于削减会计服务贸易壁垒的重要性的讨论,这部分将首先探讨后一种观点。
然后,我们将转而讨论服务是不同的方面。
A、服务贸易并非不同:在提高效率方面。
削减或消除贸易壁垒的基本的经济学观点在于其能够提高一国的资源配置效率。
事实上,贸易使一国更加注重他的相对于别国更加具有优势的资源和能源,从而进口那些本国低效生产的产品,而出口那些本国能够高效生产的产品来支付其进口的费用。
尽管有合理的理论例外排斥自由贸易的观点,但是自由贸易的基本事实更是另外一个强大的说服力量,并且,它已经具备了数十年的经验证据表明削减贸易壁垒总体上能够得到预期的好的结果。
虽然自由贸易的事实几乎总是用货物流动这样的措辞,然而,同样的原则也适用于服务贸易。
如果一个国家与其他国家相比在生产一套服务上效率较低,那么这个国家应该在一般情况下允许别的国家提供该服务,而本国却专注于利用自己的优势资源提供更加高效的服务。
本质上,自由贸易的好的结果的情况只是竞争市场,扩大到国际竞争市场的的一种情况。
这种情况同等有效地适用于服务和货物贸易,自由贸易的情况亦然。
B、服务贸易不同的方面明白国际货物贸易相对简单一些。
货物是可见的。
他们以实物的形式越过国界。
货物的流动很容易被看到,许多阻碍货物流动的手段也容易被看到,例如关税、配额,甚至是更加微妙的障碍,如,海关拖延,有利于本国生产业而不利于外国生产者的监管程序等。
相比之下,服务贸易却是不同的,至少在以下两个方面。
首先是服务通常是无形的。
它们看不见、抬不起、摸不着也闻不到。
他们通常不像货物一样以实物形式通过国界。
然后是服务通常广泛地受政府管理——比货物贸易广泛的多。
领会清楚二者的区别对理解为什么服务贸易自由化的谈判比货物贸易自由化谈判迟了40年之久是很有用的。
1、服务是无形的。
因为服务是不可见的,他们不像货物那样的传送。
服务贸易总协定的第一款列明了以下四种传送服务的方式,其经常被描述为服务贸易总协定下的服务供应的四种模式。
a、跨境交付。
一些服务确实跨越了国界。
一些电子信息或者金融服务(例如A国的一家银行向位于B国的顾客贷款或者接受其存款)就是这种情况。
但是这些服务不用在海关对其检查和分类时而停下来等待在进口国的港口上。
然而,它们不断地和无形地流动。
b、境外消费。
即一国服务提供者向另一国消费者在改过提供的服务。
旅游业是一个普遍的例子。
c、商业存在。
即服务提供者通过在国外的商业存在提供服务。
例如,总行在A国的一家银行在B国建立分行以在向B国的顾客提供服务。
许多长期服务关系通过建立商业存在而得到了提升和加强。
d、自然人流动。
即服务贸易提供者通过国外的自然人存在提供服务。
娱乐服务(如到外国的乐队或者摇滚明星的访问演出),短期的咨询服务或者施工服务属于此列。
2、政府管理。
服务更加倾向于接受各种各样的政府管理或者直接的国家所有和经营。
二十世纪70年代,列在美国政府管理最严格的典型行业清单中就有运输服务(航空、铁路、陆路和水路运输),通讯服务(广播和电话),金融服务(银行、保险、保安)和电力行业。
此外,专业服务(例如医疗、法律、会计、建筑、工程)常常处于直接或者间接的政府管制下。
直接管理是通过正规的政府机构的行动实现的。
而间接管理是在政府授权一些专业组织许多本应该由政府扮演的管理角色,但是即使这种授权,最终的管理权力仍属于政府。
政府广泛涉足这些服务提供的原因多种多样,但是保护消费者的权益是其中的一个主要方面。
4、国际会计服务:快照A、会计服务。
会计服务的范围通常被认为是包括会计/簿记(测量和记录资金流动和一家公司的资信情况),审计(核实和证明/认证的财务状况的准确性对企业内部和外部的影响结果),和税务筹划。
这三项活动显然密切相关。
此外,近年来,大型的会计事务所(尤其在美国)积极提供管理咨询服务,而且这个领域的发展比传统的服务快很多。
管理咨询服务是大型会计事物所的一项自然的协同相关的服务。
通过提供其传统的会计/审计/税务筹划服务,他们掌握了大量有关企业操作的详细信息,他们对其进行利用,并结合专业知识,帮助企业实现其战术和战略目标。
B、国际维尽管在下一节中会讨论到会计事务所在国际活动中所遇到的种种限制,最大的几家会计事务所已经在全世界范围内建立起大量的国际存在。
大部分国际存在的诞生和传播是由于他们的顾客的国际化以及个体顾客的需要。
最大会计事务所的专业知识和声望使得他们获得海外客户,这些海外客户在会计事务所所在国没有任何的机构设置,或者与当地的会计事务所建立母子公司关系,在同一品牌下形成伙伴关系,从而构建了一个网络。
尽管大型会计事务所在全世界范围内拥有大量的分支机构以及大额的交易额,当地政府的会计服务管理却使这些国际操作显得困难穷穷,并且增加了其运作成本。
接下来我们将来了解这些障碍之所在。