二次根式的有关概念及性质

合集下载

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。

其中“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。

3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。

专题01 二次根式的有关概念和性质(知识点串讲)(解析版)

专题01 二次根式的有关概念和性质(知识点串讲)(解析版)

专题01 二次根式的有关概念和性质知识网络重难突破知识点一 二次根式的有关概念 二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】 1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

【典型例题】1.(2018·黔西县期中)下面式子是二次根式的是( A ) A 21a +B 333C 1-D .12a 2.(2019·朝阳市期中)下列各式中不是二次根式的是(B ) A 21x +B 4-C 0D 2()a b -3.(2018·48n n 是( B ) A .6B .3C .48D .24.(2018·26的值在( D ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(2019·虹桥区期末)在平面直角坐标系中,点M (a ,b )的坐标满足(a ﹣3)22b -0,则点M 在( A )A .第一象限B .第二象限C .第三象限D .第四象限6.(2019·孝感市期中)已知三角形的三边长为a 、b 、c ,如果2(5)12130a b c -+--=,则△ABC 是( C )A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形7.(2019·滨州市期中)下列式子:①13;②3-;③﹣21x +;④327;⑤2(2)-,是二次根式的有(B )A .①③ B .①③⑤C .①②③D .①②③⑤8.(2019·汕头市期末)若211a aa a--=,则a 的取值范围是( D ) A .0a >B .1a ≥C .01a ≤≤D .01a <≤9.(2019·抚顺市期末)若二次根式51x -有意义,则x 的取值范围是( B ) A .x >15B .x≥15C .x≤15D .x≤510.(2018·德州市期末)使代数式34x x --有意义的自变量x 的取值范围是(C ) A .x≥3B .x >3且x≠4C .x≥3且x≠4D .x >311.(2017·东胜市期末)方程有两个实数根,则的取值范围(B )A .B .且C .D .且12.(2018·泉州市期中)若a ab+有意义,那么直角坐标系中点A(a,b)在( A ) A .第一象限B .第二象限C .第三象限D .第四象限知识点二 二次根式的性质 二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。

2、二次根式的定义及性质

2、二次根式的定义及性质

二次根式的定义与性质二次根式基本知识点1.a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)2,(0)a a =≥ (2)==a a 2(3)积的算术平方根的性质:b a ab ⋅=(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积. (4)商的算术平方根的性质b a ba =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.注:注一: 二次根式的概念在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以0a ≥0a ≥)的非负性0a ≥)表示a 的算术平方根,0a ≥)0≥(0a ≥) 这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,0=,则a=0,b=0;||0b =,则a=0,b=0;20b =,则a=0,b=0。

0=,则2018()x y +=____________ a (a >0) a -(a <0) 0 (a =0);注三:二次根式2的性质:2,(0)a a =≥文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

1、 a 是正数还是负数。

若是正数或0,则等于a ||,(0)a a a ==≥若a 是负数,则等于a 的相反数-a,||,(0)a a a ==<;2a 的取值范围可以是任意实数,即不论a3||a ,再根据绝对值的意义来进行化简。

注五:22,(0)a a =≥1、不同点:a 的取值范围不同,化简的结果也可能不同2、相同点:当被开方数都是非负数,即0a ≥时,2=例:1、二次根式有意义(1)、x 的取值范围是 .(2)x 的取值范围是(3)有意义,那么,直角坐标系中点(,)P m n 的位置在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、二次根式定义的运用(1) 若2021y =,则x y +=⇒2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3(2)、当a 1取值最小,并求出这个最小值。

数学中的二次根式与分式

数学中的二次根式与分式

数学中的二次根式与分式在数学中,二次根式和分式是我们经常会遇到的两个概念。

它们在解决方程、计算和简化表达式等方面都具有重要的作用。

本文将详细介绍二次根式和分式的定义、性质以及它们在数学中的应用。

一、二次根式的定义与性质二次根式是指根号下包含二次项的表达式。

具体地说,对于一个非负实数a和正整数n,我们定义二次根式√a为满足以下条件的实数x:x的n次方等于a,即x^n = a。

其中,n称为根式的指数,而a则是根式的被开方数。

二次根式的性质如下:1. 非负性质:二次根式的值不会小于0,即根号下的被开方数必须为非负实数。

2. 分解性质:对于一个二次根式√ab,可以将其分解为√a * √b。

3. 合并性质:对于两个同类项的二次根式√a和√b,可以合并为√(a+b)。

4. 化简性质:如果被开方数能够整除完全平方数,那么二次根式就可以化简为一个有理数。

二、分式的定义与性质分式是数学中的一种表达形式,通常由分子和分母组成,中间用分数线分隔。

分式可以表示两个数之间的关系,其中分子表示被除数,分母表示除数。

分式的定义如下:对于两个整数a和b(其中b≠0),我们定义分式a/b为两个整数a和b的比值。

在分式中,a被称为分子,b被称为分母。

分式的性质如下:1. 除法性质:分式表示的是除法运算,即a/b = a÷b。

2. 分子和分母的性质:在一个分式中,如果分子和分母乘(或除)以同一个非零实数k,则分式的值不变。

3. 分式的简化:如果分子和分母有一个公因数,那么可以进行约分,将分式化简为最简形式。

4. 分式的加减乘除:两个分式的加减可以通过通分和化简的方法进行,两个分式的乘除可以通过分子乘分子、分母乘分母的方法进行。

三、二次根式与分式的联系与应用二次根式和分式在数学中经常会有联系,并在解决问题中应用到一起。

1. 化简分式时可以利用二次根式的性质进行转化。

比如,在分式中出现二次根式时,可以将其转化为最简形式,使得分母中不存在二次根式。

二次根式的性质与化简

二次根式的性质与化简

二次根式的性质与化简二次根式是指含有平方根的表达式,它在数学中有着重要的应用。

本文将探讨二次根式的性质以及化简方法。

一、二次根式的性质1. 二次根式的定义与表示:二次根式是指形如√a的表达式,其中a为非负实数。

二次根式可以用分数指数表示,即a的1/2次方。

2. 二次根式的运算性质:(1)加法与减法:当二次根式的根数相同时,可以进行加法或减法运算。

例如√a + √b = √(a + b),√a - √b = √(a - b)。

(2)乘法与除法:当二次根式的根数相同时,可以进行乘法或除法运算。

例如√a × √b = √(a × b),√a / √b = √(a / b)。

3. 二次根式的化简与分解:对于二次根式而言,有时可以进行化简与分解。

例如√(a^2) = a,√(a/b) = √a / √b。

二、二次根式的化简方法1. 化简含有相同根数的二次根式:当两个二次根式具有相同根数时,可以根据运算规律进行化简。

例如√(a) × √(b) = √(a × b),√(a) / √(b) = √(a / b)。

2. 化简含有不同根数的二次根式:当两个二次根式具有不同根数时,可以通过有理化的方法进行化简。

有理化的目的是将二次根式的分母消去。

具体操作步骤如下:(1)将含有二次根式的分母有理化,即将分母中的二次根式去除。

(2)将有理化后的分母进行分配。

(3)将相同根数的二次根式合并,并进行运算。

3. 示例:化简二次根式√(15) / √(3):(1)将含有二次根式的分母进行有理化,即√(3) × √(3) = 3。

(2)有理化后的分母为3。

(3)利用有理化后的分母,进行分配运算,即(√(15) × √(3)) / 3。

(4)合并二次根式,即√(45) / 3。

(5)化简二次根式,即3√(5) / 3。

(6)最终得到化简后的结果:√(5)。

4. 注意事项:化简二次根式时,需要注意分母不能为零,同时要注意因式分解的方法,以便于简化运算步骤。

二次根式的有关概念和性质

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

二次根式的概念和性质是什么

二次根式的概念和性质是什么

二次根式的概念和性质是什么一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。

下面是店铺给大家整理的二次根式的概念和性质简介,希望能帮到大家!二次根式的概念和性质定义如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

即:若,则叫做a的.平方根,记作x= 。

其中a叫被开方数。

其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。

被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。

最简二次根式最简二次根式条件:1.被开方数的因数是整数或字母,因式是整式;2.被开方数中不含有可化为平方数或平方式的因数或因式。

二次根式化简一般步骤:1.把带分数或小数化成假分数;2.把开方数分解成质因数或分解因式;3.把根号内能开得尽方的因式或因数移到根号外;4.化去根号内的分母,或化去分母中的根号;5.约分。

算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。

负数没有算术平方根,0的算术平方根为0。

二次根式的性质1. 任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形式中被开方数不能有分母存在。

2. 零的平方根是零,即 ;3. 负数的平方根也有两个,它们是共轭的。

如负数a的平方根是。

4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

5. 无理数可用连分数形式表示,如: 。

6. 当a≥0时, ; 与中a取值范围是整个复平面。

7. [任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。

8. 逆用可将根号外的非负因式移到括号内,如(a>0) , (a<0),﹙a≥0﹚, (a<0)。

9.注意:,然后根据绝对值的运算去除绝对值符号。

10.具有双重非负性,即不仅a≥0而且≥0。

二次根式的概念和性质

二次根式的概念和性质

【答案】
2 ,9 5
【解析】
2a 2b c 2a 2b c 4 2 5b c 5a 5b c 5a 25 5
3


3 12 3 3 3 12 9 36 3 6 9

12、 (2013 初二上期末大兴区)若最简二次根式
a _________
1 1 5 1 5; 16 4 16 4
4
2
4, ;
7、估计 88 的大小应( ) A.在 9.1~9.2 之间 B.在 9.2~9.3 之间 C.在 9.3~9.4 之间 D.在 9.4~9.5 之间 【答案】 C 【解析】 设 88 9 x( x是小数部分) ;则有: 9 x 88 ,即: x2 18x 7 ,得 18x 7 , x 0.38 ,
二次根式比较大小的方法 (1) a b 0 a b (2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比 较. (3)估算法 (4)分子有理化 (5)倒数法 七、二次根式的乘除 二次根式的乘除法
第 2 页,共 17 页
二次根式
二次根式的乘法法则: a b ab ( a 0 , b 0 ) . 二次根式的除法法则:
3 2 2 a 4与 6a 2 1 是同类二次根式,则 2 3
【答案】 1 【解析】 该题考查的是二次根式. 满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后, 如果被开方数相同, 这几个二次根式叫做同类二次根式. 根据题意可列: a2 4 6a2 1 解得: a 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的有关概念及性质
一、二次根式的有关概念:
1.二次根式:式子(a≥0)叫做二次根式。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。

如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

如与,a+与a-,-与+,互为有理化因式。

二、二次根式的性质:
1.(a≥0)是一个非负数, 即≥0;
2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);
3.某数的平方的算术平方根等于某数的绝对值,即=|a|=
4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=
(a≥0,b>0)。

三、例题:例1.x为何值时,下列各式在实数围才有意义:
(1)(2)(3)
(4)+(5)(6)+分析:这是一组考察二次根式基本概念的问题,要弄清每一个数学表达式的含义,根据分式和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于零。

解:(1)∵ 6-x≥0,∴x≤6时原式有意义。

(2)∵ x2≥0, ∴ x2+3>0, ∴ x取任意实数原式都有意义。

(3)
∵∴∴当x<3且x≠-3时,原式有意义。

(4)
∵∴∴当-≤x<时,原式有意义。

(5)
∴∴当x≥0且x≠1时,原式有意义。

(6)
∵∴∴ x=2
∴当x=2时,原式有意义。

例2.写出下列各等式成立的条件:
(1)=-3x (2)=-mn(3)=1+2a (4)

(5)-=7
分析:本题考察算术平方根的概念及二次根式的性质。

解:(1)∵=|3x|=-3x,
∴ -3x≥0,3x≤0, ∴x≤0.
(2)∵==|mn|=-mn,
∴mn≤0, ∵成立,隐含m≥0,
∴m≥0且n≤0.
(3)∵=|2a+1|=1+2a
∴1+2a≥0, ∴a≥-.
(4)由题意得∴∴x=±1.
(5)∵-=-
=|x+5|-|2-x|=7
∴只有|x+5|=x+5, |2-x|=x-2时才成立,
∴∴∴x≥2.
例3.化简下列各式:
(1)(2)a2(m<0) (3)+|2-x|+(2<x<3)
(4)(5)(x-y)+(6)
(y<0) (7)+
分析:
在二次根式化简的题目中,若有已知条件或隐含条件,则根据已知或隐含条件化简,若没有已知条件或隐含条件时,则必须加以讨论,特别是对于开方后式中有两个绝对值以上的题目,要采取零点分段的方法逐一加以考虑。

解:(1)∵π>3, ∴=|3-π|=π-3.
(2)∵ m<0, 要使有意义,则a<0,
∴ a2=a2=a2·=-=-a.
(3)∵ 2<x<3, ∴原式=+|2-x|+
=|2-x|+|2-x|+|x-3|
=x-2+x-2+3-x=x-1.
(4)=|3x-1|=
在这里我们分3x-1≥0或3x-1<0两种情况进行了讨论。

(5)(x-y)+∵有意义,∴ y-x>0
∴原式=(x-y)·+
=+|x-y|
=+y-x=-+y-x.
(6)∵ y<0,
∴原式=
=2|xy|
=-2|x|y
当x≥0时, 原式=-2xy,
当x<0时, 原式=2xy。

(7)+
=+=|4-x|+|x+1|
∵若|4-x|=0,则x=4;若|x+1|=0则x=-1,则本题需要将x的取值分成三段,即分x≤-1, -1<x<4, x≥4三段来进行讨论。

当x≤-1时,原式=4-x+(-x-1)=4-x-x-1=3-2x.
当-1<x<4时, 原式=4-x+x+1=5.
当x≥4时,原式=x-4+x+1=2x-3.
例4.把根号外的因式移至根号:
(1)2(2)-5(3)m(m≥0)
(4)x(x≤0)(5)a分析:本题需逆用性质=·(a≥0,b≥0)只能将根号外的正因式移至根号。

解:(1)2=·=。

(2)-5=-·=-。

(3)∵m≥0, ∴ m=·=。

(4)x(x≤0) ∴ x=-·=-。

(5)∵成立,∴隐含a<0,
∴a·=-·=-=-。

例5.(1)已知:y-1=,求:x+2y的值。

(2)若+|x-2y|=0, 求:x2+y2的值。

分析:(1)观察已知条件,等式右边有两个根式,要使两个根式有意义,则∴ x=2,
∴ y=1, 从而可求出x+2y的值。

(1)解:由已知可得:∴ x=2, y=1
当x=2, y=1时
x+2y=2+2×1=4.
(2)解:∵+|x-2y|=0
两个非负数的和为零,则只有每个非负数都为零,
∴∴
当x=0, y=0时
∴ x2+y2=0+0=0.。

相关文档
最新文档