上海市虹口区2018届九年级数学上学期期末质量监控试题沪科版
┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),AC=1.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,1)B .(1,1)C .(﹣1,1)D .(1,﹣1)【答案】A 【分析】根据旋转变换的性质得到旋转变换后点A 的对应点坐标,根据平移的性质解答即可.【详解】∵点C 的坐标为(﹣1,0),AC=1,∴点A 的坐标为(﹣3,0),如图所示,将Rt △ABC 先绕点C 顺时针旋转90°,则点A′的坐标为(﹣1,1),再向右平移3个单位长度,则变换后点A′的对应点坐标为(1,1),故选A .【点睛】本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键. 2.抛物线23123y x x =-+-的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)【答案】A【分析】把抛物线解析式化为顶点式即可求得答案.【详解】∵223123=3(2)9y x x x =-+---+,∴顶点坐标为(2,9).故选:A .【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解答此题的关键,即在2()y a x h k =-+中,对称轴为x=h ,顶点坐标为(h ,k ).3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B 【详解】解:∵ABCD 是矩形,∴AD=BC ,∠B=90°,∵翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,∴AO=AD ,CO=BC ,∠AOE=∠COF=90°,∴AO=CO ,AC=AO+CO=AD+BC=2BC ,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°, ∴BE=12CE , ∵AB ∥CD ,∴∠OAE=∠FCO ,在△AOE 和△COF 中,∵∠OAE=∠FCO ,AO=CO ,∠AOE=∠COF ,∴△AOE ≌△COF ,∴OE=OF ,∴EF 与AC 互相垂直平分,∴四边形AECF 为菱形,∴AE=CE ,∴BE=12AE , ∴12AE AE EB AE ==2, 故选B .【点睛】本题考查翻折变换(折叠问题).4.如图,Rt △ABC 中,∠B =90°,AB =3,BC =2,则cosA =( )A .32B .23C .21313D .3133【答案】D【分析】根据勾股定理求出AC ,根据余弦的定义计算得到答案. 【详解】由勾股定理得,AC =22AB BC +=2232+=13,则cosA =AB AC =13=31313, 故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键. 5.二次函数2y ax bx c =++图象如图所示,下列结论:①240b ac ->;②20a b +=;③0abc >;④420a b c ++>;⑤230ax bx c ++-=有两个相等的实数根,其中正确的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】根据图象与x 轴有两个交点可判定①;根据对称轴为12b a-=可判定②;根据开口方向、对称轴和与y 轴的交点可判定③;根据当0x =时0y >以及对称轴为1x =可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x 轴有两个交点可得240b ac ->,此结论正确;②对称轴为12b a-=,即2b a =-,整理可得20a b +=,此结论正确; ③抛物线开口向下,故0a <,所以20b a =->,抛物线与y 轴的交点在y 轴的正半轴,所以0c >,故0abc <,此结论错误;④当0x =时0y >,对称轴为1x =,所以当2x =时0y >,即420a b c ++>,此结论正确; ⑤当3y =时,只对应一个x 的值,即230ax bx c ++-=有两个相等的实数根,此结论正确; 综上所述,正确的有4个,故选:D .【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.6.若关于x 的函数y=(3-a )x 2-x 是二次函数,则a 的取值范围( )A .a≠0B .a≠3C .a <3D .a >3 【答案】B【分析】根据二次函数的定义,二次项系数不等于0列式求解即可.【详解】根据二次函数的定义,二次项系数不等于0,3-a ≠0,则a≠3,故选B【点睛】本题考查二次函数的定义,熟记概念是解题的关键.7.已知二次函数()22y x a b =---的图象如图所示,则反比例函数ab y x=与一次函数y ax b =+的图象可能是 ( )A .B .C .D .【答案】B【分析】观察二次函数图象,找出a >0,b >0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:抛物线()22y x a b =---的顶点坐标()a b -,在第四象限,即00a b >-<,, ∴0a >,0b >. ∵反比例函数ab y x=中0ab >, ∴反比例函数图象在第一、三象限;∵一次函数0y ax b a =+>,,0b >,∴一次函数y ax b =+的图象过第一、二、三象限.故选:B .【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出0a >,0b >.解决该题型题目时,熟记各函数图象的性质是解题的关键.8.下列事件中,属于必然事件的是( )A .明天的最高气温将达35℃B .任意购买一张动车票,座位刚好挨着窗口C .掷两次质地均匀的骰子,其中有一次正面朝上D .对顶角相等【答案】D【解析】A 、明天最高气温是随机的,故A 选项错误;B 、任意买一张动车票,座位刚好挨着窗口是随机的,故B 选项错误;C 、掷骰子两面有一次正面朝上是随机的,故C 选项错误;D 、对顶角一定相等,所以是真命题,故D 选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D .【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.9.如果零上2℃记作+2℃,那么零下3℃记作( )A .-3℃B .-2℃C .+3℃D .+2℃【答案】A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.10.如图是半径为2的⊙O 的内接正六边形ABCDEF ,则圆心O 到边AB 的距离是( )A.2 B.1 C.3D.3 2【答案】C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB=3606︒=60°,根据等腰三角形的性质得到∠AOH=30°,AH=12AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB=3606︒=60°,∵OA=OB,∴∠AOH=30°,AH=12AB=1,∴OH=3AH=3,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.11.关于x的一元二次方程210x mx--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定【答案】A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.12.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( )A .4B .﹣4C .1D .﹣1【答案】D【详解】解:根据一元二次方程根的判别式得,△()224a 0=-⋅-=, 解得a=﹣1.故选D .二、填空题(本题包括8个小题)13.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.【答案】120°【分析】利用圆周角定理得到∠BAC =12∠BOC ,再利用∠BAC+∠BOC =180°可计算出∠BOC 的度数. 【详解】解:∵∠BAC 和∠BOC 所对的弧都是BC ,∴∠BAC =12∠BOC ∵∠BAC+∠BOC =180°, ∴12∠BOC+∠BOC =180°, ∴∠BOC =120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.14.如图,矩形纸片ABCD 中,AB =6cm ,AD =10cm ,点E 、F 在矩形ABCD 的边AB 、AD 上运动,将△AEF 沿EF 折叠,使点A′在BC 边上,当折痕EF 移动时,点A′在BC 边上也随之移动.则A′C 的取值范围为_____.【答案】4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C=22=8(cm);106综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.15.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.【答案】5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD 内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4.设AM =MN =x ,∵MD =5﹣x ,MC =4+x ,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(5﹣x )5=(4+x )5,解得x =3;当∠BNC =90°,N 在矩形ABCD 外部时,如图5.∵∠BNC =∠MNB =90°,∴M 、C 、N 三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4,设AM =MN =y ,∵MD =y ﹣5,MC =y ﹣4,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(y ﹣5)5=(y ﹣4)5,解得y =9,则所有符合条件的M 点所对应的AM 和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.16.当x_____时,|x ﹣2|=2﹣x .【答案】≤2【分析】由题意可知x ﹣2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x ﹣2|=2﹣x ,可得20x -≤,解得:2x ≤.故答案为:≤2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.17.在 ABC 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE =________时,以A 、D 、E 为顶点的三角形与 ABC 相似. 【答案】51235或 【解析】当AE AB AD AC =时, ∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC =时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 18.如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km ,则两点间的距离为______km.【答案】1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km .【详解】∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=AB=AM=1.1(km).故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.三、解答题(本题包括8个小题)19.已知:如图,将△ADE 绕点A 顺时针旋转得到△ABC ,点E 对应点C 恰在D 的延长线上,若BC ∥AE .求证:△ABD 为等边三角形.【答案】证明见解析.【分析】由旋转的性质可得ACB E ∠=∠,AC AE =,可得E ACE ∠=∠,由平行线的性质可得180BCE E ∠+∠=︒,可得60E ∠=︒,则可求60BAD ∠=︒,可得结论.【详解】解:由旋转知:△ADE ≌△ABC ,∴∠ACB =∠E ,AC =AE ,∴∠E =∠ACE ,又BC ∥AE ,∴∠BCE+∠E =180°,即∠ACB+∠ACE+∠E =180°,∴∠E =60°,又AC =AE ,∴△ACE 为等边三角形,∴∠CAE =60°又∠BAC =∠DAE∴∠BAD =∠CAE =60°又AB =AD∴△ABD 为等边三角形.【点睛】本题考查了旋转的性质,等边三角形的性质,平行线的性质等知识,求出60CAE ∠=︒是本题的关键. 20.一个二次函数的图象经过(3,1),(0,-2),(-2,6)三点.求这个二次函数的解析式并写出图象的顶点.【答案】二次函数为222y x x -=-,顶点(1,-3).【分析】先设该二次函数的解析式为y=ax 2+bx+c (a ≠0),利用待定系数法求a ,b ,c 的值,得到二次函数的解析式,然后化为顶点式,即可得到顶点坐标.【详解】解:∵二次函数的图象经过(0,-2),可设所求二次函数为22y ax bx =+-, 由已知,函数的图象不经过(3,1),(-2,6)两点,可得关于a 、b 的二元一次方程组9321,422 6.a b a b +-=⎧⎨--=⎩解这个方程,得1,2.a b =⎧⎨=-⎩∴二次函数为:222y x x -=-;化为顶点式得:2(1)3y x =--∴顶点为:(1,3)-.【点睛】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法以及顶点公式求法等知识,难度不大.21.将一元二次方程232=1x x --化为一般形式,并求出根的判别式的值.【答案】23210x x -+=,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:23210x x -+=∴a=3,b=-2,c=1∴ 根的判别式的值为224(2)4318b ac -=--⨯⨯=-.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根. 22.如图所示的双曲线是函数3(m y m x-=为常数,0x >)图象的一支若该函数的图象与一次函数1y x =+的图象在第一象限的交点为()2,A n ,求点A 的坐标及反比例函数的表达式.【答案】点A 的坐标为()2,3;反比例函数的表达式为6y x=. 【分析】先将x=2代入一次函数1y x =+中可得,点A 的坐标为()2,3,再将点A 的坐标代入3m y x -=可得反比例函数的解析式.【详解】解:点()2,A n 在一次函数1y x =+的图象上,213,n ∴=+=∴点A 的坐标为()2,3.又点A 在反比例函数3(m y m x-=为常数,0x >)的图象上,3236,m ∴-=⨯=∴反比例函数的表达式为6y x=. 【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.23.解下列方程:210252(5)x x x -+=-【答案】x 1=5,x 2=1.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2-10x+25=2(x-5),(x-5)2-2(x-5)=0,(x-5)(x-5-2)=0,x-5=0,x-5-2=0,x 1=5,x 2=1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.24.如图,抛物线y=ax 2 +bx+ 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.【答案】(1)2142y x x =--+顶点D 的坐标为(-1,92) (2)H (34,158) (2)K (-32,358) 【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D 的坐标;(2)根据抛物线的解析式可求出C 点的坐标,由于CD 是定长,若△CDH 的周长最小,那么CH+DH 的值最小,由于EF 垂直平分线段BC ,那么B 、C 关于直线EF 对称,所以BD 与EF 的交点即为所求的H 点;易求得直线BC 的解析式,关键是求出直线EF 的解析式;由于E 是BC 的中点,根据B 、C 的坐标即可求出E 点的坐标;可证△CEG ∽△COB ,根据相似三角形所得的比例线段即可求出CG 、OG 的长,由此可求出G 点坐标,进而可用待定系数法求出直线EF 的解析式,由此得解;(2)过K 作x 轴的垂线,交直线EF 于N ;设出K 点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K 、N 的纵坐标,也就能得到KN 的长,以KN 为底,F 、E 横坐标差的绝对值为高,可求出△KEF 的面积,由此可得到关于△KEF 的面积与K 点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K 点坐标.【详解】(1)由题意,得164404240a b a b -+=⎧⎨++=⎩解得12a =-,b=-1. 所以抛物线的解析式为2142y x x =--+,顶点D 的坐标为(-1,92). (2)设抛物线的对称轴与x 轴交于点M .因为EF 垂直平分BC ,即C 关于直线EG 的对称点为B ,连结BD 交于EF 于一点,则这一点为所求点H ,使DH+CH 最小,即最小为=2CD ==. ∴△CDH 的周长最小值为CD+DR+CH=2. 设直线BD 的解析式为y=k 1x+b ,则11112092k b k b +=⎧⎪⎨-+=⎪⎩解得132k =-,b 1= 2. 所以直线BD 的解析式为y=32-x+ 2. 由于Rt △CEG ∽△COB ,得CE:CO=CG:CB ,所以CG= 2.3,GO= 1.3.G (0,1.3).同理可求得直线EF 的解析式为y=12x+32. 联立直线BD 与EF 的方程,解得使△CDH 的周长最小的点H (34,158). (2)设K (t ,2142t t --+),x F <t <x E .过K 作x 轴的垂线交EF 于N . 则KN=y K -y N =2142t t --+-(12t+32)=2135222t t --+.所以S △EFK =S △KFN +S △KNE =12KN (t+ 2)+12KN (1-t )= 2KN= -t 2-2t+ 3 =-(t+32)2+294. 即当t=-32时,△EFK 的面积最大,最大面积为294,此时K (-32,358). 【点睛】 本题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.25.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()4,2A -, ()3,1B -,()1,2C -. (1)请画出ABC ∆关于x 轴对称的111A B C ∆;(2)以点O 为位似中心,相似比为1:2,在y 轴右侧,画出111A B C ∆放大后的222A B C ∆;【答案】(1)见解析;(2)见解析.【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出ABC ∆轴对称的111A B C ∆.画出111A B C ∆放大后的位似222A B C ∆.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.26.解方程:(1)2x 2+3x ﹣1=0(2)1122 xx x-=+-【答案】(1)x1=3174-+,x2=3174--;(2)x=23【分析】(1)将方程化为一般形式a x2+bx+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴∆=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=-b-317=±∆±,∴x1=3174-+,x2=3174--;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=23,检验:当x=23时,(x+2)(x﹣2)≠0,所以x=23是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.27.公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=8(05)510(515) x xx x⎧⎨+<⎩(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?【答案】(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m 与x 的函数图象,列出m 与x 的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x =70得x =354>5,不符合题意; 如果5x+10=70得x =1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m =40当5<x≤15时,设m =kx+b将(5,40)(15,60)代入,得5401560k b k b +=⎧⎨+=⎩∴2k =且b=30∴m =2x+30①当0≤x≤5时w =(62﹣40)•8x =176x∵w 随x 的增大而增大∴当x =5时,w 最大为880;②当5<x≤15时w =(62﹣2x ﹣30)(5x+10)=﹣10x 2+140x+320∴当x =7时,w 最大为810∵880>810∴当x =5时,w 取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .【答案】B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B .【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.2.如图, 抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1 个B .2 个C .3 个D .4 个【答案】D 【解析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a <0,而抛物线的对称轴为直线x=-b2a=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣12<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.3【答案】B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣12<x <1时,y <0,符合题意; (3)﹣1<x 1<0,3<x 1<4时,x 1离对称轴远,故错误,不符合题意; 故选择:B . 【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.4.点P(-6,1)在双曲线ky x=上,则k 的值为( ) A .-6 B .6C .16-D .16【答案】A【分析】根据反比例函数图象上点的坐标特征可直接得到答案. 【详解】解:∵点P (61-,)在双曲线ky x=上, ∴616k =-⨯=-; 故选:A. 【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 5.下列各组图形中,两个图形不一定是相似形的是( ) A .两个等边三角形 B .有一个角是100︒的两个等腰三角形 C .两个矩形 D .两个正方形【答案】C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A 、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A 正确; B 、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B 正确;C 、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C 错误;D 、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D 正确. 故选:C . 【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.6.如图,PA 是⊙O 的切线,OP 交⊙O 于点B ,如果1sin 2P =,OB=1,那么BP 的长是( )A .4B .2C .1D .3【答案】C【分析】根据题意连接OA 由切线定义可知OA 垂直AP 且OA 为半径,以此进行分析求解即可. 【详解】解:连接OA ,已知PA 是⊙O 的切线,OP 交⊙O 于点B ,可知OA 垂直AP 且OA 为半径,所以三角形OAP 为直角三角形,∵1sin 2P =,OB=1, ∴1sin 2OA P OP ==,OA=OB=1, ∴OP=2,BP=OP-OB=2-1=1. 故选C. 【点睛】本题结合圆的切线定义考查解直角三角形,熟练掌握圆的切线定义以及解直角三角形相关概念是解题关键.7.已知函数ky x=的图象经过点(2, 3 ),下列说法正确的是( ) A .y 随x 的增大而增大 B .函数的图象只在第一象限 C .当x<0时,必y<0 D .点(-2, -3)不在此函数的图象上【答案】C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C 正确.故选C . 8.若角αβ,都是锐角,以下结论:①若αβ<,则sin sin αβ<;②若αβ<,则cos cos αβ<;③若αβ<,则tan tan αβ<;④若90αβ+=,则sin cos αβ=.其中正确的是( ) A .①② B .①②③C .①③④D .①②③④【答案】C【分析】根据锐角范围内sin α 、cos α 、tan α 的增减性以及互余两锐角的正余弦函数间的关系可得. 【详解】①∵sin α随α 的增大而增大,正确; ②∵cos α随α 的增大而减小,错误; ③∵tan α随α 的增大而增大,正确;④若90αβ+=,根据互余两锐角的正余弦函数间的关系可得sin cos αβ=,正确; 综上所述,①③④正确 故答案为:C . 【点睛】本题考查了锐角的正余弦函数,掌握锐角的正余弦函数的增减性以及互余锐角的正余弦函数间的关系是解题的关键.9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( ) A .(2,-3) B .(-3,3)C .(2,3)D .(-4,6)【答案】A【分析】设反比例函数y=kx(k 为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断. 【详解】设反比例函数y=kx(k 为常数,k≠0), ∵反比例函数的图象经过点(-2,3), ∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24, ∴点(2,-3)在反比例函数y=-6x的图象上. 故选A . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AEBC AC=的值为( )A .2:3B .1:2C .3:5D .2:5【答案】D【解析】根据相似三角形的判定和性质,即可得到答案. 【详解】解:∵//DE BC , ∴ADE ∆∽ABC ∆, ∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D. 【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.11.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,AB BC =,∠AOB=60°,则∠BDC 的度数是( )A .20°B .25°C .30°D .40°【答案】C【详解】∵AB BC =,∠AOB=60°, ∴∠BDC=12∠AOB=30°. 故选C .12.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5 B .6C .7D .8【答案】B【分析】设白球的个数为x ,利用概率公式即可求得. 【详解】设白球的个数为x ,由题意得,从14个红球和x 个白球中,随机摸出一个球是白球的概率为0.3, 则利用概率公式得:0.314xx=+,解得:6x =,经检验,x=6是原方程的根, 故选:B. 【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.二、填空题(本题包括8个小题)13.用一个圆心角为120︒的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为_____. 【答案】12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可. 【详解】设这个圆锥的母线长为l , 依题意,有:12024180lππ⨯⨯=, 解得:12l =, 故答案为:12. 【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14.若12y x =,则y x x +=___________.【答案】32【分析】把所求比例形式进行变形,然后整体代入求值即可. 【详解】=1y x y x x ++,12y x =,13=+1=22y x x +∴;故答案为32. 【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.15.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 【答案】y=x 1+1【解析】分析:先确定二次函数y=x 1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x 1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x 1+1. 故答案为y=x 1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 16.点A ()12,y -,B ()21,y -都在反比例函数3y x=-图象上,则1y _____2y .(填写<,>,=号) 【答案】<.【分析】根据反比例函数的增减性即可得出结论.。
《试卷3份集锦》上海市虹口区2017-2018年九年级上学期期末监测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AE BC AC =的值为( )A .2:3B .1:2C .3:5D .2:5【答案】D 【解析】根据相似三角形的判定和性质,即可得到答案.【详解】解:∵//DE BC ,∴ADE ∆∽ABC ∆,∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.2.如图,在Rt OAB 中,OA AB =,90OAB ∠=︒,点P 从点O 沿边OA ,AB 匀速运动到点B ,过点P 作PC OB ⊥交OB 于点G ,线段22AB =,OC x =,POC S y =△,则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .【答案】D【分析】分两种情况:①当P 点在OA 上时,即2≤x≤2时;②当P 点在AB 上时,即2<x≤1时,求出这两种情况下的PC 长,则y=12PC•OC 的函数式可用x 表示出来,对照选项即可判断. 【详解】解:∵△AOB 是等腰直角三角形,AB=22,∴OB=1.①当P 点在OA 上时,即2≤x≤2时,PC=OC=x ,S △POC =y=12PC•OC=12x 2, 是开口向上的抛物线,当x=2时,y=2;OC=x ,则BC=1-x ,PC=BC=1-x ,S △POC =y=12PC•OC=12x (1-x )=-12x 2+2x , 是开口向下的抛物线,当x=1时,y=2.综上所述,D 答案符合运动过程中y 与x 的函数关系式.故选:D .【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.3.抛物线24y x =+与y 轴的交点坐标是( )A .(4,0)B .(-4,0)C .(0,-4)D .(0,4)【答案】D【解析】试题分析:求图象与y 轴的交点坐标,令x=0,求y 即可.当x=0时,y=4,所以y 轴的交点坐标是(0,4).故选D .考点:二次函数图象上点的坐标特征.4.对于问题:如图1,已知∠AOB ,只用直尺和圆规判断∠AOB 是否为直角?小意同学的方法如图2:在OA 、OB 上分别取C 、D ,以点C 为圆心,CD 长为半径画弧,交OB 的反向延长线于点E ,若测量得OE=OD ,则∠AOB=90º.则小意同学判断的依据是( )A .等角对等边B .线段中垂线上的点到线段两段距离相等C .垂线段最短D .等腰三角形“三线合一”【答案】B 【分析】由垂直平分线的判定定理,即可得到答案.【详解】解:根据题意,∵CD=CE ,OE=OD ,∴AO 是线段DE 的垂直平分线,∴∠AOB=90°;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B .【点睛】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断. 5.若一个正多边形的边长与半径相等,则这个正多边形的中心角是( )A .45°B .60°C .72°D .90° 【答案】B【分析】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.故选B .【点睛】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.6.已知二次函数251()143y x =-+,则下列说法:①其图象的开口向上;②其图象的对称轴为直线13x =-;③其图象顶点坐标为1(,1)3-;④当13x <时,y 随x 的增大而减小.其中说法正确的有( ) A .1个B .2个C .3个D .4个 【答案】B 【分析】利用二次函数的图象和性质逐一对选项进行分析即可. 【详解】①因为504a =>其图象的开口向上,故正确; ②其图象的对称轴为直线13x =,故错误; ③其图象顶点坐标为1(,1)3,故错误; ④因为抛物线开口向上,所以在对称轴右侧,即当13x <时,y 随x 的增大而减小,故正确. 所以正确的有2个故选:B .【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.7.如图,在四边形ABCD 中,90DAB ︒∠=,AD BC ∥,12BC AD =,AC 与BD 交于点E ,AC BD ⊥,则tan BAC ∠的值是( )A .14B .24C .22D .13【答案】C【分析】证明ABC DAE ∽,得出AB BC DA AB =,证出2AD BC =,得出22AB BC AD BC BC =⨯=⨯22BC =,因此2AB BC =,在Rt ABC △中,由三角函数定义即可得出答案.【详解】∵AD BC ∥,90DAB ︒∠=,∴18090ABC DAB ︒︒∠=-∠=,90BAC EAD ︒∠+∠=,∵AC BD ⊥,∴90AED ︒=∠, ∴90ADB EAD ︒∠+∠=,∴BAC ADB ∠=∠,∴ABC DAB ∽,∴AB BC DA AB=, ∵12BC AD =, ∴2AD BC =,∴2222AB BC AD BC BC BC =⨯=⨯=, ∴2AB BC =,在Rt ABC △中,2tan 22BC BAC AB BC∠===; 故选:C .【点睛】 本题考查了平行线的性质、相似三角形的判定与性质以及解直角三角形的应用等知识;熟练掌握解直角三角形,证明三角形相似是解题的关键.8.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( ) A .12 B .13 C .23 D .16【答案】B【解析】分析: 先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.详解: 列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=13. 故选B.点睛:本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.9.已知,在Rt ABC 中,39095C AC cosA ∠=︒==,,,则BC 边的长度为( ) A .8B .12C .14D .15 【答案】B【分析】如图,根据余弦的定义可求出AB 的长,根据勾股定理即可求出BC 的长.【详解】如图,∵∠C=90°,AC=9,cosA=35, ∴cosA=AC AB =35,即935AB =, ∴AB=15,∴BC=22AB AC -=22159-=12,【点睛】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.10.已知⊙O 的半径为5cm ,点P 在⊙O 上,则OP 的长为( )A .4cmB .5cmC .8cmD .10cm 【答案】B【分析】根据点与圆的位置关系解决问题即可.【详解】解:∵点P 在⊙O 上,∴OP =r =5cm ,故选:B .【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上,当d <r 时,点在圆内.11.一元二次方程23210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .只有一个实数根 【答案】B【分析】直接利用判别式△判断即可.【详解】∵△=()()22431160---=>∴一元二次方程有两个不等的实根故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式△时,正负号不要弄错了.122a =-,那么( )A .2a <B .2a ≤C .2a >D .2a ≥【答案】B(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><,由此可知2-a≥0,解得a≤2.故选B【点睛】此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><可求解.二、填空题(本题包括8个小题)13.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.【答案】2y x =-等【解析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,所以解析式满足a <0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,例如:2y x =-. 【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.14.如图,点()()()111222,,,,,,n n n P x y P x y P x y 在函数()10y x x=>的图象上, 11212,,POA P A A 3231,,n n n P A A P A A -都是等腰直角三角形.斜边112231,,,,n n OA A A A A A A -都在x 轴上(n 是大于或等于2的正整数),点n P 的坐标是______.【答案】1,1()n n n n --【分析】过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,根据△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3都是等腰直角三角形,可求出P 1,P 2,P 3的坐标,从而总结出一般规律得出点P n 的坐标.【详解】解:过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G , ∵△P 1OA 1是等腰直角三角形,∴P 1E=OE=A 1E=12OA 1, 设点P 1的坐标为(a ,a ),(a >0),将点P 1(a ,a )代入1y x=,可得a=1, 故点P 1的坐标为(1,1),则OA 1=2,设点P 2的坐标为(b+2,b ),将点P 2(b+2,b )代入1y x=,可得21, 故点P 22121),则A 1F=A 221,OA 2=OA 1+A 1A 2=2,设点P 3的坐标为(c+22,c ),将点P 3(c+22,c )代入1y x=, 可得c=32-,故点P 3的坐标为(32+,32-), 综上可得:P 1的坐标为(1,1),P 2的坐标为(21+,21-),P 3的坐标为(21+,21-), 总结规律可得:P n 坐标为1,1()n n n n +---;故答案为:1,1()n n n n +---.【点睛】本题考查了反比例函数的综合,根据等腰三角形的性质结合反比例函数解析式求出P 1,P 2,P 3的坐标,从而总结出一般规律是解题的关键.15.若关于x 的一元二次方程(m ﹣1)x 2+x+m 2﹣1=0有一个根为0,则m 的值为_____.【答案】﹣1.【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m 2-1=0,由此可以求得m 的值.【详解】解:把x =0代入(m ﹣1)x 2+x+m 2﹣1=0得m 2﹣1=0,解得m=±1,而m ﹣1≠0,所以m =﹣1.故答案为﹣1.【点睛】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零. 16.如图,△ABC 中,AB=8厘米,AC=16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间为_________________【答案】167秒或1秒 【分析】此题应分两种情况讨论.(1)当△APQ ∽△ABC 时;(2)当△APQ ∽△ACB 时.利用相似三角形的性质求解即可【详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.AP AQAB AC=,则AP=2t,CQ=3t,AQ=16-3t.于是167=163t8-,解得,t=16 7(2)当△APQ∽△ACB时,AP AQ AC AB=,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是1616=738t-,解得t=1.故答案为t=167或t=1.【点睛】此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.17.如图,A、B、C为⊙O上三点,且∠ACB=35°,则∠OAB的度数是______度.【答案】1【分析】根据题意易得∠AOB=70°,然后由等腰三角形的性质及三角形内角和可求解.【详解】解:∵OA=OB,∴∠OAB=∠OBA,∵∠ACB=35°,∴∠AOB=2∠ACB=70°,∴18070552OAB︒-︒∠==︒;故答案为1.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.18.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.【答案】15︒【分析】根据菱形的性质求∠ACD的度数,根据圆内接四边形的性质求∠AEC的度数,由三角形的内角和求解.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB, ∠DAC=∠DCA∵∠D=70°,∴∠DAC=1801807055 22D,∴∠ACB=55°,∵四边形ABCD是⊙O的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.三、解答题(本题包括8个小题)19.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.【答案】(1)60,10;(2)96°;(3)1020;(4)23 【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=,故答案为60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为82123=.本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.20.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?【答案】6【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系.设二次函数的解析式为2y ax =(a ≠0).∵图象经过点(2,-2),∴-2=4a , 解得:12a =-. ∴212y x =-. 当y=-3时,6x =答:当水面高度下降1米时,水面宽度为26.【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,难度一般.21.已知一个二次函数的图象经过点()1,0A -、()3,0B 和()0,3C-三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.【答案】(1)223y x x =--;(2)对称轴是直线1x =,顶点坐标是()1,4-. 【分析】(1)直接用待定系数法求出二次函数的解析式;(2)根据对称轴和顶点坐标的公式求解即可.【详解】(1)设二次函数解析式为()()13y a x x =+-,∵抛物线过点()0,3C -,∴()()30103a -=+-,解得1a =,∴()()21323y x x x x =+-=--. (2)由(1)可知:223y x x =--,∵a=1,b=-2,c=-3, ∴对称轴是直线12b x a=-=,244ac b a -=-4,顶点坐标是()1,4-. 【点睛】本题考查了用待定系数法求二次函数解析式的方法以及利用公式求二次函数图象的对称轴及顶点坐标. 22.某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?【答案】(1)20;(2)65,1.【分析】(1)每件涨价x 元,则每件的利润是(60-40+x )元,所售件数是(300-10x )件,根据利润=每件的利润×所售的件数列方程,即可得到结论;(2)设每件商品涨价m 元,每星期该商品的利润为W ,根据题意先列出函数解析式,再由函数的性质即可求得如何定价才能使利润最大.【详解】解:(1)设每件商品涨价x 元,根据题意得,(60-40+x )(300-10x )=4000,解得:x 1=20,x 2=-10,(不合题意,舍去),答:每件商品涨价20元时,每星期该商品的利润是4000元;(2)设每件商品涨价m 元,每星期该商品的利润为W ,∴W=(60-40+m )(300-10m )=-10m 2+100m+6000=-10(m-5)2+1∴当m=5时,W 最大值.∴60+5=65(元),答:每件定价为65元时利润最大,最大利润为1元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解. 23.在ABC ∆中,90BAC ∠=︒,AB AC =.(Ⅰ)如图Ⅰ,D 为BC 边上一点(不与点,B C 重合),将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC .求证:(1)BAD CAE ∆∆≌;(2)BC DC EC =+.(Ⅱ)如图Ⅱ,D 为ABC ∆外一点,且45ADC ∠=︒,仍将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC ,ED .(1)BAD CAE ∆∆≌的结论是否仍然成立?并请你说明理由;(2)若9BD =,3CD =,求AD 的长.【答案】(Ⅰ)(1)见解析;(2)见解析;(Ⅱ)(1)仍然成立,见解析;(2)6.【解析】(Ⅰ)(1)根据旋转的性质,得到AD=AE ,∠BAD=∠CAE ,然后根据SAS 证明全等即可; (2)由全等的性质,得到BD=CE ,然后即可得到结论;(Ⅱ)(1)与(Ⅰ)同理,即可得到BAD CAE ∆∆≌;(2)根据全等的性质,得到9BD CE ==,然后利用勾股定理求出DE ,根据特殊角的三角函数值,即可求出答案.【详解】解:(Ⅰ)(1)∵90BAC DAE ∠=∠=︒,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAD CAE SAS ∆∆≌;(2)∵BAD CAE ∆∆≌,∴BD CE =,∴BC BD CD EC CD =+=+;(Ⅱ)(1)BAD CAE ∆∆≌的结论仍然成立,理由:∵将线段AD 绕点A 逆时针旋转90︒得到AE ,∴ADE ∆是等腰直角三角形,∴AE AD =,∵BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,在BAD ∆与CAE ∆中,AD AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()BAD CAE SAS ∆∆≌;(2)∵BAD CAE ∆∆≌,∴9BD CE ==,∵45ADC ∠=︒,45EDA ∠=︒,∴90EDC ∠=︒, ∴2262DE CE CD =-=,∵90DAE ∠=︒,∴262AD AE DE ===. 【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.如图,△ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC 先向右平移4个单位,再向上平移2个单位得到△A 1B 1C 1,请画出△A 1B 1C1;(2)请画出△A 2B 2C 2,使△A 2B 2C 2和△ABC 关于点O 成中心对称.【答案】解:(1)所画△A 1B 1C 1如图所示.(2)所画△A 2B 2C 2如图所示.【分析】(1)图形的整体平移就是点的平移,找到图形中几个关键的点,也就是A,B,C 点,依次的依照题目的要求平移得到对应的点,然后连接得到的点从而得到对应的图形;(2)在已知对称中心的前提下找到对应的对称图形,关键还是找点的对称点,找法是连接点与对称中心O点并延长相等的距离即为对称点的位置,最后将对称点依次连接得到关于O点成中心对称的图形。
┃精选3套试卷┃2018年上海市虹口区九年级质量调研数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数【答案】D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.2.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③【答案】B【解析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A .AB=BEB .BE ⊥DC C .∠ADB=90°D .CE ⊥DE【答案】B 【解析】先证明四边形DBCE 为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD=BC ,又∵AD=DE ,∴DE ∥BC ,且DE=BC ,∴四边形BCED 为平行四边形,A 、∵AB=BE ,DE=AD ,∴BD ⊥AE ,∴▱DBCE 为矩形,故本选项错误;B 、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C 、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE 为矩形,故本选项错误;D 、∵CE ⊥DE ,∴∠CED=90°,∴▱DBCE 为矩形,故本选项错误,故选B .【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 4.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( )A .m 1≥B .1mC .1mD .1m <【答案】D【解析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0,解得:m <1.故选D .【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 5.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A.B.C.D.【答案】A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.2【答案】A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.7.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×105【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度55000用科学记数法表示为5.5×1.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2) 【答案】A 【解析】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG=6,∴AD=BC=2,∵AD ∥BG ,∴△OAD ∽△OBG ,∴OA OB =13, ∴2OA OA +=13, 解得:OA=1,∴OB=3,∴C 点坐标为:(3,2),故选A .9.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .10.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,点P(﹣1,a)在直线y =2x+2与直线y =2x+4之间,则a 的取值范围是_____.【答案】0a 2<<【解析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等. 12.如图,点P (3a ,a )是反比例函k y x=(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.【答案】y=12x 【解析】设圆的半径是r ,根据圆的对称性以及反比例函数的对称性可得:14πr 2=10π 解得:r=10∵点P(3a ,a)是反比例函y=k x(k>0)与O 的一个交点, ∴3a 2=k. 22(3)a a r +=∴a 2=21(210)10⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 13.若关于x 的一元二次方程(a ﹣1)x 2﹣x+1=0有实数根,则a 的取值范围为________.【答案】a≤54且a≠1. 【解析】根据一元二次方程有实数根的条件列出关于a 的不等式组,求出a 的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤54,又a-1≠0,∴a≤54且a≠1. 故答案为a≤54且a≠1. 点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a 的不等式组是解答此题的关键.14.如图,直线4y x =+与双曲线k y x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.【答案】(0,52). 【解析】试题分析:把点A 坐标代入y=x+4得a=3,即A (﹣1,3),把点A 坐标代入双曲线的解析式得3=﹣k ,即k=﹣3,联立两函数解析式得:,解得:,,即点B 坐标为:(﹣3,1),作出点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为点P ,使得PA+PB 的值最小,则点C 坐标为:(1,3),设直线BC 的解析式为:y=ax+b ,把B 、C 的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y 轴的交点为:(0,52). 考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.15.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.【答案】15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算.16.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m ,他在不弯腰的情况下,在棚内的横向活动范围是__m .【答案】1【解析】设抛物线的解析式为:y=ax 2+b ,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x 2+2.4,根据题意求出y=1.8时x 的值,进而求出答案;【详解】设抛物线的解析式为:y=ax 2+b ,由图得知:点(0,2.4),(1,0)在抛物线上, ∴,解得:,∴抛物线的解析式为:y=﹣x 2+2.4, ∵菜农的身高为1.8m ,即y=1.8,则1.8=﹣x 2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.17.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 【答案】-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.18.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________【答案】222()2a b a ab b +=++【解析】由图形可得:()2222a b a ab b +=++三、解答题(本题包括8个小题)19.小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题: 他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.【答案】(1)详见解析;(2)详见解析;(3)3BC AB =【解析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD ,∴∠B=∠BAD ,∵AD=CD ,∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OE四边形ABCD 是矩形 1122OA OB OC OD AC BD ∴===== AE CE ⊥90AEC ∴∠=︒12OE AC ∴=12OE BD ∴= 90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点F四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒ 由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE ∴=AE BC=3BC AB∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=12AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.20.某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【答案】(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.【解析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.由题意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0≤x≤10时,y=(3200﹣2500)x=700x,当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,当x>1时,y=(2800﹣2500)•x=300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y=700x,y=300x均是y随x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,最低价为3200﹣5•(75﹣10)=2875元,答:公司应将最低销售单价调整为2875元.【点睛】本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.21.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?【答案】(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.22.如图,直线y=kx+2与x 轴,y 轴分别交于点A (﹣1,0)和点B ,与反比例函数y=m x 的图象在第一象限内交于点C (1,n ).求一次函数y=kx+2与反比例函数y=m x 的表达式;过x 轴上的点D (a ,0)作平行于y 轴的直线l (a >1),分别与直线y=kx+2和双曲线y=m x交于P 、Q 两点,且PQ=2QD ,求点D 的坐标.【答案】()1一次函数解析式为22y x =+;反比例函数解析式为4y x =;()()22,0D . 【解析】(1)根据A (-1,0)代入y=kx+2,即可得到k 的值;(2)把C (1,n )代入y=2x+2,可得C (1,4),代入反比例函数m y x=得到m 的值; (3)先根据D (a,0),PD ∥y 轴,即可得出P (a,2a+2),Q(a ,4a),再根据PQ=2QD ,即可得44222a a a +-=⨯,进而求得D 点的坐标.【详解】(1)把A (﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C (1,n )代入y=2x+2得n=4,∴C (1,4), 把C (1,4)代入y=m x得m=1×4=4, ∴反比例函数解析式为y=4x ; (2)∵PD ∥y 轴,而D (a ,0),∴P (a ,2a+2),Q (a ,4a ), ∵PQ=2QD ,∴2a+2﹣4a =2×4a, 整理得a 2+a ﹣6=0,解得a 1=2,a 2=﹣3(舍去),∴D (2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.23.如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.【答案】(1)见解析;(2)见解析.【解析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.24.如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.【答案】(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=12a(cm);理由详见解析(3)12b(cm)【解析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∴MN=12AC+12BC=12( AC+BC)=12AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=12a cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC+CB=acm,∴MN=12AC+12BC=12(AC+BC)=12a cm.(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC-CB=bcm,∴MN=12AC-12BC=12(AC-BC)=1b2cm.考点:两点间的距离.25.如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.【答案】(1)423-;(1)8233π-. 【解析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴DE=2223AE AD -= ,∴EC=CD-DE=4-13;(1)∵sin ∠DEA=12AD AE = , ∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S 扇形FAB -S △DAE -S 扇形EAB =904130482232336023603πππ⨯⨯-⨯⨯-=- .【点睛】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE 的长是解题关键.26.如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.【答案】(3【解析】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°,∴tan ∠ACB=AB CB∴tan 3060x x ︒=+∴360x x =+ ∴x=30+30∴建筑物AB 的高度为(30+30)米中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺【答案】B 【解析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴ 1.5150.5x , 解得x=45(尺),故选B .【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.2.下列各数中是有理数的是( )A .πB .0C 2D 35【答案】B【解析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A 、π是无限不循环小数,属于无理数,故本选项错误;B 、0是有理数,故本选项正确;C 2是无理数,故本选项错误;D 35故选B .【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.3.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm【答案】B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.5.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【答案】B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案. 【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.6.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【答案】D【解析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.7.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.5【答案】B【解析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD , ∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点, ∴CP =12BD =1. 故选B .8.如图,在ABC 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒【答案】B【解析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数. 【详解】解:∵DE 是AC 的垂直平分线, ∴DA=DC , ∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°, ∴∠A=56°,∴∠CDA=∠DCE+∠A=112°, 故选B . 【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型. 9.若22a -3,则a 的值可以是( ) A .﹣7 B .163C .132D .12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a-<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.10.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c【答案】A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.二、填空题(本题包括8个小题)11.分解因式:x2-9=_ ▲.【答案】(x+3)(x-3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).12.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解, ∴其整数解为3和4, 则4⩽125a +<5, 解得:8⩽a<13, 故答案为:8⩽a<13 【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键13.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____ 【答案】﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 14.如图,矩形ABCD 中,BC =6,CD =3,以AD 为直径的半圆O 与BC 相切于点E ,连接BD 则阴影部分的面积为____(结果保留π)【答案】94π. 【解析】如图,连接OE ,利用切线的性质得OD=3,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD -S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积. 【详解】连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E , ∴OD =CD =3,OE ⊥BC , ∴四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =32﹣2903360π⋅⋅994π=-, ∴阴影部分的面积199369244ππ⎛⎫=⨯⨯--= ⎪⎝⎭, 故答案为94π. 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定。
(答案)虹口区2018学年第一学期期末数学

虹口区2018学年度第一学期期终学生学习能力诊断测试初三数学试卷评分参考建议2019.1说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.C 2.D 3.A 4.C 5.B 6.B二、填空题(本大题共12题,每题4分,满分48分) 7.528.33a b -r r 9.-2 10.m >1 11.(1,2) 12.> 13.6 14.615.8 16.2 17.165 18三、解答题(本大题共7题,满分78分)19.解:原式212⨯-…………………………………………………………(8分)=3=+……………………………………………………………………(2分)20.解:(1)2246y x x =-- 22(2)6x x =--………………………………………(1分)22(211)6x x =-+-- …………………………………………………(1分)22(1)8x =--……………………………………………………………(2分)∴顶点的坐标为(1,-8) ……………………………………………………(2分)(2)设平移后的抛物线表达式为22(1)8y x m =-+-………………………(1分)把原点代入得202(01)8m =-+-…………………………………………(2分) 解得31m =-或(舍)∴3m =………………………………………………………………………(2分)21.解:(1)在Rt △ABC 中,4cot 683AC BC A =⋅=⨯= …………………………(2分) 在Rt △BCD 中,1tan 632CD BC DBC =⋅∠=⨯= …………………………(2分) ∴835AD =-=…………………………………………………………………(1分)(2)∵DE ∥BC ∴58DE AD BC AC == ∴58DE BC = ∴58DE CB =u u u r u u u r ………………………………………………………(2分)∵AC a =u u u r r ,AB b =u u u r r∴CB CA AB a b =+=-+u u u r u u u r u u u r r r ………………………………………………………(2分) ∴555888DE CB a b ==-+u u u r u u u r r r ………………………………………………………(1分)22.解:过点C 作CG ⊥AB ,垂足为点G由题得EG=CF=0.45………………………………………………………………(1分)设AB 为x 米在Rt △ACG 中,cos 0.80AG AC CAB x =⋅∠≈……………………………………(2分) ∴0.20BG AB AG x =-≈…………………………………………………………(1分)∴ 0.200.20.45x +≈ …………………………………………………………(2分) 解得 1.25x ≈ 即 1.25AB ≈ …………………………………………………(2分) ∴AD=1.8-1.25-0.2≈0.35 ………………………………………………………(1分)答:AB 的长约为1.25米,AD 的长约为0.35米. …………………………………(1分)23.证明:(1)∵AB=AC ,D 是边BC 的中点∴AD ⊥BC ……………………………………………………………… (1分)∵DE ⊥AC∴∠DEC =∠ADC =90°………………………………………………… (1分)又∵∠C =∠C∴△CDE ∽△CAD ……………………………………………………… (1分)∴DE CE AD CD =………………………………………………………… (2分) ∴DE CD AD CE ⋅=⋅ ……………………………………………………(1分)(2)∵D 是边BC 的中点,F 为DE 的中点∴CD =12BC ,DE =2DF ∵DE CE AD CD =即DE AD CE CD = ∴ 212DF AD CE BC = ∴DF AD CE BC= ……………………………………………………………(2分) ∵AD ⊥BC ∴∠C +∠DAC =90°∵DE ⊥AC ∴∠ADE +∠DAC =90°∴∠C =∠ADE ………………………………………………………… (2分)∴△ADF ∽△BCE ……………………………………………………(1分)∴AF AD BE BC =∴=AF BC AD BE ⋅⋅………………………………………………………(1分)24.解:(1) 把O (0,0)和B (4,0)代入2y x bx c =-++0;0164.c b c =⎧⎨=-++⎩ 解得4;0.b c =⎧⎨=⎩ …………………………………………(2分) ∴抛物线的表达式为24y x x =-+ …………………………………………(1分)∴对称轴为直线x=2………………………………………………………………(1分)(2)∵点A (3,m )在抛物线上 ∴m=3∴点A (3,3)………………………………………………………………………(1分) 过点A 作AP ⊥x 轴,垂足为点P过点B 作BQ ⊥AO ,垂足为点Q∵OP=AP ∴∠AOB =45°∴BQ=OQ………………………………………………………………(1分) ∴AQ =AO -OQ………………………………………………………………(1分) ∴tan ∠OAB=2BQ AQ = ……………………………………………………………(1分)(3)设射线AD 交x 轴于点E ,可得∠BAD =∠AOB =45°∵∠ABO =∠EBA∴△ABO ∽△EBA ……………………………………………………………………(1分) ∴AB OB BE AB = 得52BE = ∴E 3(,0)2……………………………………(1分) 设l AE :y=kx +b ’(k ≠0) 把点A 、E 代入得33';30'.2k b k b =+⎧⎪⎨=+⎪⎩ 解得2;' 3.k b =⎧⎨=-⎩ ∴l AE :y=2x -3………………………………………………………………………(1分) 把x =2代入,得y =1∴点D (2,1)………………………………………………………………………(1分)25.(1)根据题意得△ABE ≌△GBE ∴BG=AB=6在Rt △BGF 中,BF = 9cos BG DBC=∠ …………………………………………(2分) 由△ABE ≌△GBE得∠AEB =∠BEG ∵AD ∥BC∴∠AEB =∠EBF∴∠BEF =∠EBF∴FE=FB =9………………………………………………………………………(2分)(2)∵AD ∥BC ∴∠ADB =∠GBF又∵∠A =∠BGF =90°∴△ABD ∽△GFB ∴AD BD BG=即x BF =∴BF =………………………………………………………………(2分) ∵AD ∥BC ∠A =90° ∴∠ABF =90° ∴∠ABG+∠GBF=90°又∵∠GBF+∠EFB =90° ∴∠ABG =∠EFB根据题意得AB=BG 又∵FE=FB∴AB BG FB FE =∴△ABG ∽△EFB …………………………………………………………………(1分) ∴2222236()36(36)36ABG BEF S AB x x S BF x x ∆∆===++…………………………………(1分)∴2236x y x =+(92x ≥) ………………………………………………(1分,1分) (3)①点F 在BC 上∵∠GFC =∠AEG >90°∵△FCG 是等腰三角形 ∴FG=FC设FG=FC=a ,则BF=10-a由题意得a 2+62=(10-a )2 解得165a = ∵∠ADB=∠GBF ∴tan ∠ADB = tan ∠GBF 即16656AD = 解得454AD = ………………………………………………(2分)②点F 在BC 的延长线上∵∠GCF >∠DCF >90°∵△FCG 是等腰三角形 ∴CG=CF∴易得在Rt △BGF 中,BC=CF =10 ∴FG =∵∠ADB=∠GBF ∴tan ∠ADB = tan ∠GBF即6AD = 解得AD = …………………………………………(2分)综合①②, 454AD =或91。
2018-2019学年最新沪科版九年级数学上册期末模拟检测卷及答案解析-精编试题

沪科版九年级上学期期末模拟测试数学试题(考试时间:100分钟,满分:150分)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个结论是正确的。
请把正确结论的代号按要求填涂在答题纸左侧上方的选择题答题区,每题选对得4分;不选、错选或者多选得零分。
】 1. 已知Rt △ABC 中,∠A=90º,则cb是∠B 的( ▲ ). A .正切; B .余切; C .正弦 ; D .余弦;2.关于相似三角形,下列命题中不.正确的是( ▲ ). (A) 两个等腰直角三角形相似; (B) 含有30°角的两个直角三角形相似; (C)相似三角形的面积比等于相似比; (D) 相似三角形的周长比等于相似比.3.下列关于向量的说法中,不正确...的是( ▲ ). (A )33a a =r r; (B )()333a b a b +=+r r r r ;(C )若a kb =r r (k 为实数),则a r ∥b r; (D =,则3a b =r r 或3a b =-r r .4. 在△ABC 中,若错误!未找到引用源。
,则∠C 的度数是 ………… ( ▲ )A .30°B .45°C .60°D .90°5. 关于二次函数122+-=x y 的图像,下列说法中,正确的是( ▲ ). (A )对称轴为直线1=x ; (B )顶点坐标为(2-,1);(C )可以由二次函数22x y -=的图像向左平移1个单位得到; (D )在y 轴的左侧,图像上升,在y 轴的右侧,图像下降.6.如图,Rt△ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t<6),连接DE ,当△BDE 是直角三角形时,t 的值为( ▲ )二.填空题:(本大题共12题,每题4分,满分48分)7.已知43::=y x ,那么=+y y x :)( ▲.8.如图1,已知123////l l l ,如果:2:3AB BC =,4DE =,则EF 的长是____▲_____ 9.若向量与单位向量的方向相反,且,则= ▲ .(用表示)AB CE 32lD 1l FABCD FE G S 3 S 2S 1 10、已知△ABC 中,AB=AC=m ,∠ABC=72°,BB 1平分∠ABC 交AC 于B 1,过B 1做B 1B 2∥BC 交AB 于B 2,作B 2B 3平分∠AB 2B 1交AC 于B 3,过B 3作B 3B 4∥BC 交AB 于B 4,则线段B 3B 4的长度为 _________ (用含有m 的代数式表示).11.在高为100米的楼顶测得地面上某十字路口的俯角为α,那么楼底到这十字路口的水平距离是▲ 米;(用含角α的三角比的代数式表示) 12. 已知抛物线1)1(2+-=x a y 的顶点是它的最高点,则a 的 取值范围是 ▲13. 已知,二次函数f(x) = ax 2 + bx + c 的部分对应值如下表,则f(-2) = ▲ .14.如图,D 、E 、F 、G 是△ABC 边上的点,且DE ‖FG ‖BC ,DE ,FG 将△ABC 分成三个部分,它们的面积比为S 1∶S 2∶S 3=1∶2∶3,那么DE ∶FG ∶BC = ▲ .第14题图 第15题图 第16题图 第18题图15.如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D ,BC=2AC ,则cot∠BCD=▲16.如图,某商场开业,要为一段楼梯铺上红地毯,已知楼梯高AB=6m ,坡面AC 的坡度i=1:,则至少需要红地毯 ▲ m .17、我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can ,如图(1)在△ABC 中,AB=AC ,底角B 的邻对记作canB ,这时canB BC AB ==底边腰,容易知道一个角的大小与这个角的邻对值也是一一对应的。
沪科版九年级上册数学期末考试试卷及答案详解

沪科版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.对于抛物线2-1y x =+,下列判断正确的是()A .顶点坐标为(-1,1)B .开口向下C .与x 轴无交点D .有最小值12.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是()A .2cos55o 海里B .2sin 55︒海里C .2sin55∘海里D .2cos55︒海里3.如图,二次函数2-3y ax bx =+图象的对称轴为直线x=1,与x 轴交于A 、B 两点,且点B 坐标为(3,0),则方程2-3ax bx =的根是()A .123x x ==B .1213x x ==,C .121-3x x ==,D .12-13x x ==,4.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水面AB 的宽度是()cm.A .6B .C .D .5.如图,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于O ,则图中线段的比不能表示sinA 的式子为()A .BD ABB .CD OCC .AE ADD .BE OB6.如图,在 ABCD 中,AB=3,AD=5,AE 平分∠BAD ,交BC 于F ,交DC 延长线于E ,则AEEF的值为()A .53B .52C .32D .27.已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表:x …0123…y…﹣1232…在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是()A .y 1≥y 2B .y 1>y 2C .y 1≤y 2D .y 1<y 28.在平面直角坐标系中,A (-30),,B (30),,C (34),,点P 为任意一点,已知PA ⊥PB ,则线段PC 的最大值为()A .3B .5C .8D .109.在△ABC 中,∠C=90°,若∠A=30°,则sinA+cosB 的值等于()A .1B .132C .132D .1410.如图,在Rt ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为()A .8B .12C .D .二、填空题11.锐角α满足cosα=0.5,则α=__________;12.双曲线(0)k y k x=≠经过点(m ,2)、(5,n ),则m n =__________;13.在Rt ABC ∆中,∠C=90°,tan A =3,tanB=________14.已知:在Rt △ABC 中,∠C=90°,∠A=30°,则tanA=__.15.如图,在△ABC 中,AB=AC ,AH ⊥BC ,垂足为点H ,如果AH=BC ,那么tan ∠BAH 的值是_____.三、解答题16.已知抛物线2-2y ax x c =+与x 轴的一个交点为30A (,),与y 轴的交点为0-3B(,).(1)求抛物线的解析式;(2)求顶点C 的坐标.17.如图,在方格网中已知格点△ABC 和点O .(1)以点O 为位似中心,在△ABC 同侧画出放大的位似△A 1B 1C 1,△ABC 与△A 1B 1C 1的相似比为1∶2;(2)以O 为旋转中心,将△ABC 逆时针旋转90°得到△A 2B 2C 2.18.已知关于x 的二次函数2-(-2)y x k x k =++.(1)试判断该函数的图象与x 轴的交点的个数;(2)当3k =时,求该函数图象与x 轴的两个交点之间的距离.19.从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)20.如图,在△ABC 中,D 为BC 上一点,已知AD 平分∠BAC ,AD=DC .(1)求证:△ABC ∽△DBA ;(2)S △ABD =6,S △ADC =10,求CDAC.21.如图,在平面直角坐标系xOy 中,函数-5y x =+的图象与函数(0)ky k x=<的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC=2:3.(1)求k 的值;(2)求点D 的坐标;(3)根据图象,直接写出当0x <时不等式5kx x+>的x 的解集.22.如图,已知AB 为⊙O 的直径,CD 切⊙O 于C 点,弦CF ⊥AB 于E 点,连结AC.(1)求证:∠ACD=∠ACF ;(2)当AD ⊥CD ,BE=2cm ,CF=8cm ,求AD 的长.23.小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第x 天的销售量与销售单价如下(每天内单价和销售量保持一致):销售量m (千克)40-m x=销售单价n (元/千克)当115x ≤≤时,1202n x =+当1630x ≤≤时,30010n x=+设第x 天的利润w 元.(1)请计算第几天该品种草莓的销售单价为25元/千克?(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量24.如图,设D 为锐角△ABC 内一点,∠ADB=∠ACB+90°,过点B 作BE ⊥BD ,BE=BD ,连接EC .(1)求∠CAD+∠CBD 的度数;(2)若••AC BD AD BC ,①求证:△ACD ∽△BCE ;②求••AB CDAC BD的值.参考答案1.B 【详解】根据二次函数图像的特点进行解答即可.解:A.顶点坐标为(0,1),故不正确;B.∵-1<0,∴开口向下,故正确;C.∵∆=4>0,∴与x 轴有两个交点,故不正确;D.有最大值1,故不正确;故答案为B.【点睛】本题考查了二次函数图像的特点,即对于二次函数y=ax 2+bx+c (a≠0),a 的正负决定了开口方向;b 2-4ac 决定了是否与x 轴有交点;函数的顶点决定了函数的最值.2.A 【分析】由题意得∠NPA=55°,AP=2海里,∠ABP=90°,再由AB//NP ,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt △ABP ,得出AB=APcos ∠A=2cos55°海里.【详解】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB ∥NP ,∴∠A=∠NPA=55°.在Rt △ABP 中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=APcos ∠A=2cos55°海里.故选A .【点睛】本题考查了解直角三角形的应用一方向角问题,掌握平行线的性质、三角函数的定义、方向角的定义是解答本题的关键.3.D 【分析】由二次函数2-3y ax bx =+图像的对称轴为直线x=1且函数图像与x 轴的一个交点为B(3,0),可求另一交点坐标为(-1,0),则可求方程23ax bx =-的解.【详解】解:二次函数2-3y ax bx =+图象的对称轴为直线x=1,与轴交于A 、B 两点,且点B 坐标为(3,0),则点A 的坐标为(-1,0),∴方程23ax bx =-的根是x 1=-1,x 2=3.故答案为D.【点睛】本题考查了二次函数图像与一元二次方程的联系,即理解二次函数图像与x 轴的交点的横坐标为对应一元二次方程的解.4.C 【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴=∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.5.C 【分析】先根据正弦的概念进行判断,然后根据余角的定义找与∠A 相等的角再结合正弦定义解答即可.【详解】解:∵BD ⊥AC 于D ,CE ⊥AB 于E ,∴sinA=BD ECAB AC=,故A正确;∵∠A+∠ACE=90°,∠ACE+∠COD=90°,∴∠A=∠COD,∴sinA=sin∠COD=CDOC,故B正确;∵∠BOE=∠COD,∴∠A=∠BOE,∴sinA=sin∠BOE=BEBO.故D正确故答案为C.【点睛】本题考查了正弦的定义以及根据直角三角形的性质寻找相等的角,其中根据直角三角形的性质寻找与∠A相等的角是解答本题的关键.6.B【分析】由平行四边形的性质可得AB//DE,AD//BC,进而得到∠BAE=∠E,再结合∠EAD=∠BAE 得到∠E=∠EAD,即AD=DE=5;再由线段的和差可得CE=2;然后根据BC//AD得到△AED∽△FEC,最后运用相似三角形的性质解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB//DE,AD//BC,∴∠BAE=∠E,∵AE平分∠BAD,∴∠EAD=∠BAE,∴∠E=∠EAD,∴AD=DE=5,∴CE=DE-CD=5-3=2,∵BC//AD,∴△AED∽△FEC∴25 EF EC AE DE==∴52AEEF .故答案为B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及相似三角形的判定和性质,其中掌握相似三角形的判定和性质是解答本题的关键.7.D【解析】试题分析:抛物线的对称轴为直线x=2,∵﹣1<x1<0,3<x2<4,∴点A(x1,y1)到直线x=2的距离比点B(x2,y2)到直线x=2的距离要大,而抛物线的开口向下,∴y1<y2.故选D.考点:二次函数图象上点的坐标特征.8.C【分析】连接OC、OP、PC由PA⊥PB可得点P在以O为圆心,AB长为直径的圆上;再根据三角形的三边关系可得CP≤OP+OC,则当当点P,O,C在同一直线上,CP的最大值为OP+OC 的长,然后进行计算即可.【详解】解:如图所示,连接OC、OP、PC∵PA⊥PB,∴点P在以O为圆心,AB长为直径的圆上,∵△COP∴CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,又∵A(-3,0),B(3,0),C(3,4),∴AB=6,OC=5,OP=12AB=3,∴线段PC的最大值为OP+OC=3+5=8,故答案为C.【点睛】本题考查了90°所对的弦为圆的直径、三角形的三边关系以及最短路径问题,其中确定最短路径是解答本题的关键.9.A【分析】根据特殊角三角函数值,可得答案.【详解】在△ABC中,∠C=90°,若∠A=30°,得∠B=90°﹣30°=60°.sinA+cosB=sin30°+cos60°=12+12=1,故选:A.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10.C【分析】利用正弦的定义得出AB的长,再用勾股定理求出BC.【详解】解:∵sinB=ACAB=0.5,∴AB=2AC,∵AC=6,∴AB=12,∴=故选C.本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB 的长.11.60【分析】根据特殊角的三角函数值即可完成解答.【详解】解:∵cosA=0.5=12,∠A 为锐角,∴∠A=60°,故答案为60;【点睛】本题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解答本题的关键.12.52【分析】将(m ,2)、(5,n )代入k y x =得到一个方程组,然后解方程组即可.【详解】解:∵曲线(0)k y k x=≠经过点(m,2)、(5,n),∴25k m n m ⎧=⎪⎪⎨⎪=⎪⎩解得m=2k ,n=5k ,∴5225k m k n ==;故答案为52;【点睛】本题考查了反比例函数图像上的点的性质,即理解函数图像上的点满足函数解析式是解答本题的关键.13.13根据解直角三角形,由tan 3a A b==,即可得到tanB.【详解】解:在Rt ABC ∆中,∠C=90°,∴tan 3a A b ==,∴1tan 3b B a ==.故答案为13.【点睛】本题考查了解直角三角形,解题的关键是掌握正切值等于对边比邻边.14【分析】直接利用特殊角的三角函数值计算得出答案.【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴.【点评】此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.15.12【分析】设AH=BC=2x ,根据等腰三角形三线合一的性质可得BH=CH=12BC=x ,然后得出tan ∠BAH 的值.【详解】解:设AH=BC=2x ,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=x ,∴tan ∠BAH=BH x 1AH 2x 2==,故答案为:12【点睛】本题考查了解直角三角形、等腰三角形的性质、锐角三角函数,根据等腰三角形三线合一的性质可得BH=CH=12BC=x 是解题的关键.16.(1)223y x x =--;(2)(1,-4)【分析】(1)根据与坐标轴的两个交点,使用待定系数法进行解答即可;(2)将(1)求得的解析式,化成顶点式即可完成解答。
2018-2019学年沪科版九年级数学上学期期末测试卷及答案

2018-2019学年九年级数学上学期期末测试题(完成时间:100分钟 满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的 相应位置上.】 1.如果一次函数 y 二kx b 的图像经过一、二、三象限,那么k 、b 应满足的条件是(▲)(A ) k 0 ,且 b 0 ; (B ) k :: 0 ,且 b :: 0 ; (C ) k 0,且 b :: 0 ; (D ) k :: 0 ,且 b 0.3 22. 计算(-X )的结果是(▲)(A ) X 5 ;( B ) -X 5 ;( C ) X 6 ;( D ) -X 6 .3. 下列各式中,• x _2的有理化因式是(▲)(A ) X 2 ;(B ) ^2 ;(C ) .. X 2 ;(D ) . x _2 .4. 如图1,在厶ABC 中,/ ACB= 90°, CD 是 AB 边上的高.如果 是(▲)(A ) 3: 2 ;( B ) 2:3 ;(C ) 3: 13 ;( D ) 2: ,13 .如图2,在口ABC 呼,点E 在边AD 上,射线CE BA 交于点F ,下列等式成立的是(▲)(A ) £ABC /DCB ; (B ) /DBC £ACB ; (C ) /DAC £DBC ; (D )匚ACD ZDAC .二、填空题:(本大题共12题,每题4分,满分48分)7. 因式分解:3a 2 a = ▲ .8. 函数y =丄的定义域是 ▲.x+19.如果关于X 的一元二次方程 x 2+2x-a=0没有实数根,那么 a 的取值范围是▲.10. 抛物线y =x 24的对称轴是 ▲.11. 将抛物线y=-x 2平移,使它的顶点移到点 P (-2 , 3),平移后新抛物线的表达式为 —▲ 12. 如果两个相似三角形周长的比是 2:3,那么它们面积的比是▲.13.如图3,传送带和地面所成斜坡 AB 的坡度为1: .3,把物体从地面 A 处送到坡顶B 处时,物体BD =45.A CEACD(A )(B )ED EFE D AFAE FAA EFE (C ) ; (• E D ABE D FC 在梯形ABCDK AG / BC 下列条件中,不能判断梯形6. ABCD1等腰梯形的是(▲)图2所经过的路程是12米,此时物体离地面的高度是▲米.14. 如图4,在厶ABC中,点D是边AB的中点.如果CA =a , CD =b,那么CB = 匚(结果用含a、b的式子表示)15.已知点D E分别在△ ABC的边BA CA的延长线上,且DE BC如果BC=3DE AC=6,那么AE=▲_.16.在厶ABC中, / C- 90°, AC=,点ABC的重心.如果GC=,那么sin^GCB的值是▲17•将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距” •如果两个等边三角形是“等距三角形”么它们周长的差是▲三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:后-(-2]° + 1-J3+2COS30120. (本题满分10分)1 4 x 2解方程:—21.x+2 x -4 x—221. (本题满分10分,第(1)小题5分,第(2)小题5分)和点B( -3 , n),直线AB与y轴交于点C.(1)求直线AB的表达式;,它们的“等距”是1,那18. 如图5,在厶AB(中, AB=7, AC®.A =45,点D E分别在边AB B(上,将△ BDE&着DE所在线翻折,点B落在点P处,PD PE分别交边ACF点M N,如果AD=2, PDL AB垂足为点D,那么MN 的长是▲如图6,在平面直角坐标系xOy中,直线y 二kx • b(k = 0)与双曲线y = —相交于点A( m , 6)图4(2)求AC : CB的值.22. (本题满分10 分)如图7,小明的家在某住宅楼 AB 的最顶层(ABL BC ,他家的后面有一建筑物 CD (CD // AB ), 他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物 CD 的底部C 的俯角是43,顶部D 的仰角是25,他又测得两建筑物之间的距离 BC 是28米,请你帮助小明求出建筑物 CD 的高度(精 确到1米).(参考数据:sin25 °~ 0.42 , cos25 °~ 0.91 , tan25sin43 °~ 0.68 , cos43 °~ 0.73 , tan43 °~ 0.93 .)23. (本题满分12分,第(1)小题4分,第(2)小题8 分)如图8,已知点D E 分别在△ ABC 勺边AC BC 上,线段BD 与 AE 交于点F ,且CD CA CE CB(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC BC 若厶ABC 的面积为6,求此抛物线的表达式;(3) 在第(2)小题的条件下,点 Q 为x 轴正半轴上一点,点 G 与点C,点F 与点A 关于点Q 成中心对称,当△ CGF 为直角三角形时,求点 Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)求证:/ CAE=Z CBD⑵若,求证:AB AD=AF AE .24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(2图8xOy 中,抛物线y = ax bx c a 0与、x 轴相交于点A (-1 , 0)和点B,与y 轴交于点C,对称轴为直线 X =1 .如图9,在平面直角坐标系0.47 ;C图7 BDADC如图10,在边长为2的正方形ABCD^,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB PQ且/ PBC=Z BPQ(1)当QD= QC时,求/ ABP的正切值;(2)设AF=x, CQy,求y关于x的函数解析式;(3) 联结BQ在厶PBC中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.、选择题:(本大题共6题,每题4分,满分24分) 1. A 2 . C ; 3 . C ; 4 . B ; 5 . C ; 6 . D .填空题:(本大题共12题,满分48分) .a ::: 一1;.x = _1 ; 9 7 . a 3a 1 ; 8 10 .直线x = 0或y 车由; 11 12 . 19 . 20 . 2 3 ; 17 . 6.3 ; 18 . 18 7 第19~22题每题10分,第23、24题每题12分,第25题14分, 解:原式=372_1+応_1+2>(丫 . = 5”.2 -2. ”””,””,””,”, 4:9 ; 13. 6; (本大题7题, 14 . 2b -a ; 15 . 2; 16 满分 78分) 8 分)2分) 2解:方程两边同乘 x 2 xd 得 X _2,4x_2 x ・2i=x-4 . 整理,得 x 2 -3x • 2 =0 . 解这个方程得x 1 =1, x 2 =2. 经检验,*2=2是增根,舍去. (2分)( 2分) (1分)4分) (1分)所以,原方程的根是 x=1. 21.解: (1)T 点A ( m , 6)和点B (-3 , n )在双曲线 •••m=1,n =_2.•••点将点 A (1 , 6),点 B (-3 , -2 ).,,,,,,,,,,,,,,,,,,,,,,, k b=6; A B 代入直线y =kx • b ,得 卜3k+b = -2. 解得 •直线 AB 的表达式为:y =2x • 4.,,,,,,,,,,,,,,,,,,, (k=2; b= 4.(2分)2分) 1分) (2)分别过点 A B 作AM L y 轴,BN ^y 轴,垂足分别为点 M N. 则/ AM ©Z BN©= 90°, AM 1, BN =3, • AM / BN 1分) 1分)1分) AC AM 1CB BN 3.,,,,,,,,,,,,,,,,,,,,,,,,,,,,(22 •解:过点 A 作 AE1 CD 垂足为点 E .,,,,,,,,,,,,,,,,,,,, (由题意得,AE = BC =28,Z EAD= 25°,/ EAC= 43° .,,,,,,,,,,,, (2分)在 Rt △ ADE 中,•• / DE• tan. EAD, •AE •- DE =tan25 28=0.47 28 :13.2 .,,,(3 分)在 Rt △ ACE 中,•• •• tan. EAC -CEAE ' • CE =tan4328 =0.93 28 : 26 .,,,(3 分)• DC =DE CE =13.2 26 : 39 (米). ,,,,,,,,,,,,,,,,,,(2分)1分) 1分)答:建筑物CD 的高度约为39米.23 . (1)证明:CDCA^CECB ,CE 二 CACD CB ,1分)•// ECA =/ DCB"厶—L —~% -厶—LaXZ55555555555555555555555555( 1分) • △ CAE^A CBD ,,,,,,,,,,,,,,,,,,,,,,,,,,( 1分) .^/ // ,,,,,,,,,,,,,,,,,,,,,,,,,,(1分)(2)证明:过点 C 作CG / AB 交AE 的延长线于点G.BE AB…EC CG ,(1分)BE ABAB AB• •'EC AC ,…CG AC ,( 1分)1分) * o/ / ^^^^G,,,,,,,,,,,,,,,,,,,,,,,,,,,(1分) T / G=/ BAG ••/ CAG=/ BAG ,”,”,”,””,”,(1分)•••/ CA =/ CBD / AFD=/ BFE • / AD =/ BEF ”,”,””(1分) • △ ADF^A AEB(1分)AD AFAB AD=AF AE .AE AB',,,,,,,,,,,,,,,,,,,(1分)224.解:(1 )•••抛物线 y = ax bx c a -0的对称轴为直线 X =1 ,( x — = 1,得 b - -2a . 2ac— 3a .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(* * ^C (0, —3 a ).,,,,,,,,,,,,,,,,,,,,,,,,,, ,, ((2)T 点A B 关于直线x-1对称,•••点B 的坐标为(3, 0) A^^=4, a .,,,,,,,,,,,,,,,,,,,,,,,,,, ,, (1分) 1分) 1分) 1分)S.ABC -1 . AB OC , (2)1 4 3a =62 ,a =1,•b =-2 ,c =-3 ,5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 52y 二x - 2x -3 .,,,,, 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5( 1 分) ( 1 分)把点A (-1 , 0)代入y =ax2bx c,得a-b ■ c=0 ,(3)设点Q的坐标为(m 0).过点G作GHL x轴,垂足为点H.•••点G与点C,点F与点A关于点Q成中心对称,.• Q(=QG Q/=QI= m+1, QOQl= m, O(=Gb=3,•• QF= m+1, QOQ片m, OCG143,.'. OF= 2 m+1, HF= 1. I .当/ CG& 90° 时,可得/ FGH=Z GQI4Z OQC •m=9•Q的坐标为(9, 0).1分)• tan ._FGH =tan 一OQC ,HF OC GH OQ11n .当/ CFG= 90° 时,可得,tan/FGH =tan/OFC , HF OCGH ~OF1 _ 33 2m 1••• m=4 , Q 的坐标为(4, 0).( 川.当/ GCF= 90° 时, •••/ GCF /FCO<0°,「.此种情况不存在.,,,,,,,,,,,,,,,,, (综上所述,点Q 的坐标为(4, 0)或(9, 0). 25.解:(1)延长PC 交 BC 延长线于点E.设PD =x . •••/ PB &/ BPQ EB=EP ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (•••四边形ABC [是正方形, • AD / BC • PD : CE= QD QC= PQ QE TQD= Q C •- PD=C E PQ= QE ,,,,,,,,,,,,,,,,,,,,(1 • BE= EP= x +2,「. QP= — (x +2)(2 1分)1分)在 Rt △ PDQ 中 , 2 2 1 孑的/曰PD 2 QD 2 二 PQ 2, • •• x 2 12 x 1,解得x =12丿( 2 1 1—A —=— • AP 二 AD - PD = 2 , ••• tan. ABP =竺 3AB32 3°(2)过点B 作BHL PQ 垂足为点H,联结BQ ,,,,,,,, ••• AD / BC ,CBP=Z APBPB(=Z BPQAPB=Z HPB ,,,,,(•••/ A =Z PHB= 90°, • BH = AB =2 , •/ PB = PB , • Rt △ PA 比 Rt △ PHB■ ■ AP = PH =x.,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (•/ BC = BH=2 , BQ = BQ Z C =Z BHQ= 90° ,• Rt △ BHQ Rt △ BCQ • QH = QC= y ,,,,,,,,,,,,,,,,, (1分)1分)1分)(1分)1分) 1分)1分)1分) 1分)2 2 2在 Rt △ PDQ 中 , •/ PD 2 QD 2 二 PQ 2,・.2-X 2-y x y ,4 -2x(3)存在,Z PB = 451分)1分)由(2)可得, 1 1■ PBHABH ■ HBQ HBC2 , 2 ,( 2 分)1 PBQ 二2 AB^.HBC /90 =45 1分)12。
(汇总3份试卷)2018年上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为().A.(0,﹣2)B.(0,﹣4 3)C.(0,﹣53)D.(0,﹣54)【答案】B【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M 点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.【详解】如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得2{211pp p-=--+-=,解得4{2pq==,y=x2+4x+2=(x+2)2-2,M(-2,-2),N点关于y轴的对称点N′(1,-1),设MN′的解析式为y=kx+b,将M 、N′代入函数解析式,得22{1k b k b -+-+-==, 解得13{43k b -==, MN′的解析式为y=13x-43, 当x=0时,y=-43,即P (0,-43), 故选:B .【点睛】本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P 点的坐标是解题关键.2.若2|3|0a b -+-=,则a b 的值为( )A .9B .3C .3D .23 【答案】B【分析】根据算术平方根、绝对值的非负性分别解得a b 、的值,再计算a b 即可.【详解】2|3|0a b -+-=2=3a b ∴=,2=(3)3a b ∴=故选:B .【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.3.如图,正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点.现随机向正方形ABCD 内投掷一枚小针,则针尖落在阴影区域的概率为( )A .18B .14C .13D .12【答案】B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=14.故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.线段B.三角形C.平行四边形D.正方形【答案】B【解析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.【详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:B.【点睛】本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.5.一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了45次手,这次参加会议到会的人数是x 人,可列方程为:( )A .(1)45x x +=B .1(1)452x x -=C .1(1)452x x +=D .(1)45x x -=【答案】B【分析】设这次会议到会人数为x ,根据每两个参加会议的人都相互握了一次手且整场会议一共握了45次手,即可得出关于x 的一元二次方程,此题得解.【详解】解:设这次会议到会人数为x ,依题意,得:1(1)452x x -=. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.若函数 k y x=-与2y ax bx c =++的图象如图所示,则函数y kx b =-的大致图象为( )A .B .C .D .【答案】A【分析】首先根据二次函数及反比例函数的图象确定k 、b 的符号,然后根据一次函数的性质确定答案即可.【详解】∵二次函数的图象开口向上,对称轴2b x a=->0 ∴a>0,b<0, 又∵反比例函数k y x=-的图形位于二、四象限, ∴-k <0,∴k >0 ∴函数y=kx-b 的大致图象经过一、二、三象限.故选: A【点睛】本题考查的是利用反比例函数和二次函数的图象确定一次函数的系数,然后根据一次函数的性质确定其大致图象,确定一次函数的系数是解决本题的关键.7.如图,是二次函数2y ax bx c =++图象的一部分,在下列结论中:①0abc >;②0a b c -+>;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-;其中正确的结论有( )A .1个B .2 个C .3 个D .4个【答案】C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对各个结论进行判断.【详解】解:由抛物线的开口方向向上可推出a >0,与y 轴的交点为在y 轴的负半轴上可推出c=-1<0, 对称轴为210b ax >=->,a >0,得b <0, 故abc >0,故①正确; 由对称轴为直线12b x a =->,抛物线与x 轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,所以当x=-1时,y >0,所以a-b+c >0,故②正确;抛物线与y 轴的交点为(0,-1),由图象知二次函数y=ax 2+bx+c 图象与直线y=-1有两个交点, 故ax 2+bx+c+1=0有两个不相等的实数根,故③错误; 由对称轴为直线2b x a =-,由图象可知122b a<-<, 所以-4a <b <-2a ,故④正确.所以正确的有3个,故选:C .【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,解题时要注意数形结合思想的运用.8.设计一个摸球游戏,先在一个不透明的盒子中放入2个白球,如果希望从中任意摸出1个球是白球的概率为13,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)( ) A .4B .5C .6D .7【答案】A【分析】利用概率公式,根据白球个数和摸出1个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出1个球是白球的概率为13,∴盒子中球的总数=1263÷=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.9.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【答案】B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.10.在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A .(60+2x)(40+2x)=2816B .(60+x)(40+x)=2816C .(60+2x)(40+x)=2816D .(60+x)(40+2x)=2816【答案】A【解析】根据题意可知,挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,据此可列出方程(60+2x)(40+2x)=2816【详解】若设金色纸边的宽为x cm ,则挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,可列方程(60+2x)(40+2x)=2816故答案为A.【点睛】本题考查一元二次方程的应用,找出题中的等量关系是解题关键.11.给出下列一组数:227,0.3•38-•010010001, 3.14π-,其中无理数的个数为( ) A .0B .1C .2D .3 【答案】C【分析】直接利用无理数的定义分析得出答案.【详解】解:227,•0.3,38-•010010001, 3.14π-,其中无理数为•010010001, 3.14π-,共2个数.故选C .【点睛】此题考查无理数,正确把握无理数的定义是解题关键.12.对于题目“抛物线l 1:2(1)4y x =--+(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,确定m 的值”;甲的结果是m =1或m =2;乙的结果是m =4,则( )A .只有甲的结果正确B .只有乙的结果正确C .甲、乙的结果合起来才正确D .甲、乙的结果合起来也不正确【答案】C【分析】画出抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)的图象,根据图象即可判断.【详解】解:由抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)可知抛物线开口向下,对称轴为直线x =1,顶点为(1,4),如图所示:∵m 为整数,由图象可知,当m =1或m =2或m =4时,抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,∴甲、乙的结果合在一起正确,故选:C .【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键.二、填空题(本题包括8个小题)13.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 ▲ .【答案】1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得:AC=PC ,PD=BD , ∴CD 是△APB 的中位线,∴CD=12AB=12×8=1. 故答案为114.一个反比例函数的图像过点()2,3A -,则这个反比例函数的表达式为__________.【答案】6y x=-【分析】设反比例函数的解析式为y=k x (k≠0),把A 点坐标代入可求出k 值,即可得答案. 【详解】设反比例函数的解析式为y=k x (k≠0), ∵反比例函数的图像过点()2,3A -,∴3=2k -, 解得:k=-6,∴这个反比例函数的表达式为6y x =-, 故答案为:6y x=-【点睛】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键. 15.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.【答案】1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一.具体解答过程:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:∵先从鱼塘中捞出后作完记号又放回水中的鱼有100条∴该鱼塘里总条数约为:(条)试题点评:16.如图,某景区想在一个长40m ,宽32m 的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为21140m ,如果横向小桥的宽为xm ,那么可列出关于x 的方程为__________.(方程不用整理)【答案】()()402321140x x --=【分析】横向小桥的宽为xm ,则纵向小桥的宽为2xm ,根据荷花的种植面积列出一元二次方程.【详解】解:设横向小桥的宽为xm ,则纵向小桥的宽为2xm根据题意,()()402321140x x --=【点睛】本题关键是在图中,将小桥平移到长方形最边侧,将荷花池整合在一起计算.17.如图,在矩形ABCD 中,点E 为AB 的中点,EF EC ⊥交AD 于点F ,连接()CF AD AE >,下列结论:①AEF BCE ∠=∠;②AF BC CF +>;③CEF EAF CBE S S S =+; ④若32BC CD =,则CEF CDF ≅. 其中正确的结论是______________.(填写所有正确结论的序号)【答案】①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB ,FE 交于点G ,根据ASA 可证明△AEF ≌△BEG ,可得AF=BG ,EF=EG ,进一步即可求得AF 、BC 与CF 的关系,S △CEF 与S △EAF +S △CBE 的关系,进而可判断②与③;由32BC CD =,结合已知和锐角三角函数的知识可得30BCE ∠=︒,进一步即可根据AAS 证明结论④;问题即得解决.【详解】解:∵EF EC ⊥,90AEF BEC ∴∠+∠=︒,∵四边形ABCD 是矩形,∴∠B=90°,∴90BEC BCE ∠+∠=︒,AEF BCE ∴∠=∠,所以①正确;延长CB ,FE 交于点G ,如图,在△AEF 和△BEG 中,∵∠FAE=∠GBE=90°,AE=BE ,∠AEF=∠BEG ,∴△AEF ≌△BEG (ASA ),∴AF=BG ,EF=EG ,∴S △CEG =S △CEF ,∵CE ⊥EG ,∴CG=CF ,∴AF+BC=BG+BC=CG=CF ,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若32 BCCD=,则132311tan222BC BC BCBCE BE AB CD====⨯=∠,30BCE∴∠=︒,30DCF ECF∴∠=∠=︒,在CEF∆和CDF∆中,∵∠CEF=∠D=90°,ECF DCF∠=∠,CF=CF,CEF∴≌()CDF AAS,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.18.已知x1、x2是关于x 的方程x2+4x-5=0的两个根,则x1+ x2=_____.【答案】-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x 的方程x2+1x-5=0的两个根,∴x1+ x2=-41=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.三、解答题(本题包括8个小题)19.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的1C处,点D落在点1D处,11C D交线段AE于点G.(1)求证:11BC F AGC ∆∆;(2)若1C 是AB 的中点,6AB =,9BC =,求AG 的长.【答案】(1)证明见解析;(2)94AG =.【分析】(1)利用有两组对应角相等的两个三角形相似证明即可;(2)先利用勾股定理求出BF 的长,再利用(1)中相似,列比例式即可.【详解】(1)证明:由题意可知190A B GC F ∠=∠=∠=︒,∴1190BFC BC F ∠+∠=︒,1190AC G BC F ∠+∠=︒,∴11BFC AC G ∠=∠.∴11BC F AGC ∆∆.(2)∵1C 是AB 的中点,6AB =,∴113AC BC ==.在1Rt BC F 中由勾股定理得()22239BF BF +=-,解得:4BF =.由(1)得11BC F AGC ∆∆,∴11AC AG BC BF =,即334AG =, ∴94AG =. 【点睛】此题考查的是相似三角形的判定和勾股定理,掌握用两组对应角相等证两个三角形相似、及折叠问题中相等的边和勾股定理求边是解决此题的关键.20.如图,已知在△ABC 中,AD 是∠BAC 平分线,点E 在AC 边上,且∠AED=∠ADB .求证:(1)△ABD ∽△ADE ; (2)AD 2=AB·AE.【答案】 (1)、证明过程见解析;(2)、证明过程见解析【分析】试题分析:(1)、根据角平分线得出∠BAD=∠DAE ,结合∠AED=∠ADB 得出相似;(2)、根据相似得出答案.【详解】试题解析:(1)、∵AD是∠BAC平分线∴∠BAD=∠DAE 又∵∠AED=∠ADB ∴△ABD∽△ADE(2)、∵△ABD∽△ADE ,∴AB ADAD AE=∴AD2=AB·AE.考点:相似三角形的判定与性质21.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出a=_______,m=_______,第3组人数在扇形统计图中所对应的圆心角是_______度.(2)请补全上面的频数分布直方图.(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?【答案】(1)25,20,126;(2)见解析;(2)60万人.【分析】(1)用抽样人数-第1组人数-第3组人数-第4组人数-第5组人数,可得a的值,用第4组的人数÷抽样人数×100%可以求得m的值,用360°×第3组人数在抽样中所占的比例可得第3组在扇形统计图中所对应的圆心角的度数;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)用市民人数×第4组(40~50岁年龄段)的人数在抽样中所占的比例可以计算出40~50岁年龄段的关注本次大会的人数约有多少.【详解】(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°35100⨯=126°.故答案为:25,20,126;(2)由(1)知,20≤x<30有25人,补全的频数分布直方图如图所示;(3)30020100⨯=60(万人). 答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查了频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A ,C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为213222y x x =--+;(2)抛物线存在点M ,点M 的坐标(32)-,或(0)2,或(2,3)-或(5,18)- 【分析】(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据函数值相等的两点关于对称轴对称,可得B 点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x =0时,y =2,即C (0,2),当y =0时,12x+2=0,解得x =﹣4,即A (﹣4,0). 由A 、B 关于对称轴对称,得B (1,0).将A 、B 、C 点坐标代入函数解析式,得164002a b c a b c c ⎧-+=⎪++=⎨⎪=⎩, 解得12322a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 抛物线的解析式为y =﹣12x 2﹣32x+2; (2)①当点M 在x 轴上方时,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,如图,设M (m ,﹣12x 2﹣32x+2),N (m ,0). AN =m+4,MN =﹣12m 2﹣32m+2, 由勾股定理,得AC 2225AO OC +=,BC 225OB OC +=∵AC 2+BC 2=AB 2,∴∠ACB =90°,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时点M 与点C 重合,M (0,2).当△ANM ∽△BCA 时,∠MAN =∠ABC ,此时M 与C 关于抛物线的对称轴对称,M (﹣3,2). ②当点M 在x 轴下方时,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时直线AM 的解析式为y =﹣12x ﹣2, 由212213222y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得40x y ⎧=-⎨=⎩或23x y ⎧=⎨=-⎩, ∴M (2,﹣3),当△ANM ′∽△BCA 时,∠MAN =∠ABC ,此时AM ′∥BC ,∴直线AM ′的解析式为y =﹣2x ﹣8, 由22813222y x y x x ⎧=--⎪⎨=--+⎪⎩,解得40x y ⎧=-⎨=⎩或518x y ⎧=⎨=-⎩, ∴M (5,﹣18)综上所述:抛物线存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,点M 的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键.23.数学兴趣小组对矩形面积为9,其周长m 的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x ,y ,由矩形的面积为9,得xy =9,即y =9x ;由周长为m ,得2(x+y )=m ,即y =﹣x+2m .满足要求的(x ,y )应是两个函数图象在第 象限内交点的坐标. (2)画出函数图象.函数y=9x(x>0)的图象如图所示,而函数y=﹣x+2m的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=9x(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=9x(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.【答案】(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)m≥1.【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=9x和y=﹣x+2m整理得:2x﹣12mx+9=0,即可求解;(4)由(3)可得.【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①当直线平移到与函数y =9x (x >0)的图象有唯一交点(3,3)时, 由y =﹣x+2m 得:3=﹣3+12m ,解得:m =1, 故答案为1;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y =9x 和y =﹣x+2m 并整理得:x ²﹣12mx+9=0, ∵△=14m ²﹣4×9, ∴0个交点时,m <1;1个交点时,m =1; 2个交点时,m >1;(4)由(3)得:m≥1,故答案为:m≥1.【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可.24.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE .(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG 的长.【答案】(1)见解析;(2)BG=BC+CG=1.【分析】(1)利用正方形的性质,可得∠A=∠D ,根据已知可得AE :AB=DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14 DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【答案】(1)详见解析;(2)14.【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B 、C ,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:41164=. 考点:列表法与树状图法.26.在面积都相等的一组三角形中,当其中一个三角形的一边长x 为1时,这条边上的高y 为1. (1)①求y 关于x 的函数解析式;②当3x ≥时,求y 的取值范围;(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?【答案】(1)①6y x=;②02y <≤;(2)小明的说法不正确. 【分析】(1)①直接利用三角形面积求法进而得出y 与x 之间的关系;②直接利用3x ≥得出y 的取值范围;(2)直接利用x y +的值结合根的判别式得出答案.【详解】(1)①11632S =⨯⨯=, ∵x 为底,y 为高, ∴132xy =, ∴6y x =; ②当3x =时,2y =,∴当3x ≥时,y 的取值范围为:02y ≤<;(2)小明的说法不正确,理由:根据小明的说法得:64x x +=, 整理得:2460x x -+=,∵1a =,4b =-,6c =,∴()224441680b ac =-=--⨯⨯=-<⊿,方程无解,∴一个三角形的一边与这边上的高之和不可能是4,∴小明的说法不正确.【点睛】本题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.27.如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点,请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线.【答案】见解析.【分析】如图①中连接PA,根据等弧所对得圆周角相等,易知∠APB=∠APC,所以PA就是∠BPC的平分线;如图②中,连接AO延长交⊙O于E,连接PE,由垂径定理和圆周角定理易知∠EPB=∠EPC.【详解】如图①中,连接PA,PA就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴∠APB=∠APC.如图②中,连接AO延长交⊙O于E,连接PE,PE就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴BE=EC,∴∠EPB=∠EPC.【点睛】本题主要考查圆周角定理和垂径定理,根据等弧所对的圆周角相等得到角平分线是关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的一元二次方程()2340a x x --+=,则a 的条件是( ) A .1a ≠B .2a ≠C .3a ≠D .4a ≠【答案】C 【解析】根据一元二次方程的定义即可得.【详解】由一元二次方程的定义得30a -≠解得3a ≠故选:C .【点睛】本题考查了一元二次方程的定义,熟记定义是解题关键.2.若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .﹣35【答案】C【分析】将x y y-变形为x y ﹣1,再代入计算即可求解. 【详解】解:∵52x y =, ∴x y y -=x y ﹣1=52﹣1=32. 故选:C .【点睛】考查了比例的性质,解题的关键是将x y y-变形为1x y -. 3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°,∴BE=12CE ,∵AB ∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=12AE,∴12AE AEEB AE=2,故选B.【点睛】本题考查翻折变换(折叠问题).4.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是()A.B.C.D.【答案】A【解析】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】D【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的左侧可知b>0,再由函数图象交y 轴的负半轴可知c<0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=cx的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,故选:D.【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系.6.已知反比例函数1y x=-,下列结论;①图象必经过点(1,1)-;②图象分布在第二,四象限;③在每一个象限内,y 随x 的增大而增大.其中正确的结论有( )个. A .3B .2C .1D .0 【答案】A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点(1,1)-,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y 随x 的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数k y x=(k 是常数,k≠0)的图像是双曲线,当k >0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 k <0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.7.若关于x 的一元二次方程220x x m --= 有实数根,则m 的值不可能是( )A .2-B .1-C .0D .2018【答案】A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△=24b ac -=4+4m ≥0,∴m ≥-1, m 的值不可能是-2.故选:A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.8.如图,网格中小正方形的边长为1个单位长度,△ABC 的顶点均在小正方形的顶点上,若将△ABC 绕着点A 逆时针旋转得到△AB′C′,点C 在AB′上,则'BB 的长为( )A .πB .2πC .7πD .6π【答案】A 【分析】根据图示知∠BAB′=45°,所以根据弧长公式l =180n r π求得BB '的长. 【详解】根据图示知,∠BAB′=45°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
虹口区2017-2018学年第一学期期终教学质量监控测试数学试卷 (考试时间:100分钟 总分:150分)
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )
A .1:3;
B .1:4;
C .1:6;
D .1:9.
2.抛物线224y x =-的顶点在( )
A .x 轴上;
B .y 轴上;
C .第三象限;
D .第四象限.
3.如果将抛物线22y x =--向右平移3个单位,那么所得到的新抛物线的表达式是( ) A .25y x =--; B .21y x =-+;
C .2(3)2y x =---;
D .2(3)2y x =-+-.
4.已知a =3,b =5,且b 与a 的方向相反,用a 表示向量b 为( )
A .35b a =;
B .53b a =;
C .35b a =-;
D .53
b a =-. 5.如图,传送带和地面成一斜坡,它把物体从地面送到离地面5米高的地方,物体所经过路程是13米,那么斜坡的坡度为( )
A .1:2.6;
B .51:13;
C .1:2.4;
D .51:12
. 6.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且5sin A =,那么点C 的位置可以在( )
A .点1C 处;
B .点2
C 处; C .点3C 处;
D .点4C 处.
二、填空题(本大题共12题,每题4分,满分48分)
【请将结果直接填入答题纸的相应位置】
7.如果23x y =,那么4y x x y -=+ . 8.如果点P 把线段AB 分割成AP 和PB 两段(AP >PB ),其中AP 是AB 与PB 的比例中项,那么AP :AB 的值为 .
9.如果2()a x b x +=+,那么x = (用向量、a b 表示向量x )
. 10.如果抛物线2(1)3y x m x =-+-+经过点(2,1),那么m 的值为 .
11.抛物线221y x x =-+-在对称轴 (填“左侧”或“右侧”)的部分是下降的.
12.如果将抛物线22y x =-平移,顶点移到点P (3,-2)的位置,那么所得新抛物线的表达式为 .
13.如果点A (2,-4)与点B (6,-4)在抛物线2(0)y ax bx c a =++≠上,那么该抛物线的对称轴为直线 .
14.如图,已知AD ∥EF ∥BC ,如果AE =2EB ,DF =6,那么CD 的长为 .
15.在Rt △ABC 中,∠C =90°,如果AB =6,1cos 3
A =,那么AC = . 16.如图,在Rt △ABC 中,∠C =90°,边A
B 的垂直平分线分别交边B
C 、AB 于点
D 、
E 如果BC =8,4tan 3
A =,那么BD = . 17.如图,点P 为∠MON 平分线OC 上一点,以点P 为顶点的∠AP
B 两边分别与射线OM 、ON 相交于点A 、B ,如果∠APB 在绕点P 旋转时始终满足2OA OB OP ⋅=,我们就把∠APB 叫做∠MON 的关联角.如果∠MON =50°,∠APB 是∠MON 的关联角,那么∠APB 的度数为 .
18.在Rt △ABC 中,∠C =90°,AC =6,BC =8(如图),点D 是边AB 上一点,把△ABC 绕着点D 旋转
90°得到△A B C
''',边B C''与边AB相交于点E,如果AD=BE,那么AD长为.
三、解答题(本大题共7题,满分78分)
19.(本题满分10分)
计算:
22
sin60sin30 cot30cos30
°°
°°
+
-
.
20.(本题满分10分)
小明按照列表、描点、连线的过程画二次函数的图像,下表与下图是他所完成的部分表格与图像,求该二次函数的解析式,并补全表格与图像.
x…-1 0 2 4 …
y…0 5 9 0 …
21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)
如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.
(1)若AB a
=,AC b
=,用向量、
a b表示向量AG;
(2)若∠B=∠ACE,AB=6,26
AC=,BC=9,求EG的长.
22.(本题满分10分)
如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
23.(本题满分12分,第(1)题满分6分,第(2)题满分6分)
⋅=⋅.如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EF DF BF CF ⋅=⋅;
(1)求证AD AB AE AC
(2)当AB=12,AC=9,AE=8时,求BD
的长与△
△
ADE
ECF
S
S的值.
24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)
如图,在平面直角坐标系xOy中,抛物线与x轴相交于点A(-2,0)、B(4,0),与y轴交于点C(0,-4),BC与抛物线的对称轴相交于点D.
(1)求该抛物线的表达式,并直接写出点D的坐标;
(2)过点A作AE⊥AC交抛物线于点E,求点E的坐标;
(3)在(2)的条件下,点F在射线AE
上,若△ADF∽△ABC,求点F的坐标.
25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)
已知AB=5,AD=4,AD∥BM,
3
cos
5
B=(如图),点C、E分别为射线BM上的动点(点C、E都不与点
B重合),联结AC、AE,使得∠DAE=∠BAC,射线EA交射线CD于点F.设BC=x,AF
y AC
=.
(1)如图1,当x=4时,求AF的长;
(2)当点E在点C的右侧时,求y关于x的函数关系式,并写出函数的定义域;(3)联结BD交AE于点P,若△ADP是等腰三角形,直接写出x的值.。