数据结构课程设计 多关键字排序 高考排序

合集下载

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

数据结构课程设报告—各种排序算法的比较

数据结构课程设报告—各种排序算法的比较

数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。

排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。

每种排序过程中均显示每一趟排序的细节。

程序的输入:输入所需排序方式的序号。

输入排序的数据的个数。

输入具体的数据元素。

程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。

b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。

开始时建立一个初始的有序序列, 它只包含一个数据元素。

然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。

c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。

等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。

d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。

多关键字排序_数据结构-设计

多关键字排序_数据结构-设计

多关键字排序_数据结构-设计多关键字排序_数据结构设计在计算机科学中,数据的排序是一项基础且重要的任务。

多关键字排序作为排序问题的一个重要分支,在实际应用中具有广泛的需求。

当我们面对复杂的数据集合,其中每个数据项包含多个属性或关键字时,如何高效地对其进行排序就成为了一个关键的问题。

想象一下,我们有一个学生成绩的数据集,每个学生的记录包含了学号、姓名、语文成绩、数学成绩、英语成绩等多个关键字。

如果我们想要按照总成绩从高到低对学生进行排序,这就是一个典型的多关键字排序问题。

又或者在一个电商平台上,商品的信息包含了价格、销量、评价得分等关键字,要根据用户的需求对商品进行排序展示,也需要用到多关键字排序。

多关键字排序的基本思想是,将多个关键字看作一个整体,通过比较这些关键字的组合值来确定数据项的顺序。

常见的多关键字排序方法有两种:一种是基于比较的排序方法,另一种是基于分配的排序方法。

基于比较的多关键字排序方法,最常见的就是冒泡排序、插入排序、选择排序、快速排序等。

以快速排序为例,它的基本思想是选择一个基准元素,将待排序的序列划分成两部分,一部分的元素都小于等于基准元素,另一部分的元素都大于等于基准元素,然后对这两部分分别进行快速排序,从而实现整个序列的排序。

在多关键字排序中,可以先对主要关键字进行快速排序,然后对于主要关键字相同的数据项,再按照次要关键字进行快速排序。

例如,对于学生成绩数据,先按照总成绩进行快速排序,对于总成绩相同的学生,再按照语文成绩进行快速排序。

基于分配的多关键字排序方法,例如桶排序和基数排序,则是通过将数据分配到不同的桶或位置来实现排序。

以基数排序为例,它适用于关键字可以分解为多个位或数位的情况。

例如,对于整数关键字,可以按照个位、十位、百位等逐位进行排序。

在设计多关键字排序的数据结构时,需要考虑数据的特点和排序的需求。

如果数据量较小,并且对排序的时间复杂度要求不高,简单的冒泡排序或插入排序可能就足够了。

数据结构第9章 排序

数据结构第9章 排序

数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。

如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。

2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。

如果排序依据的是主关键字,排序的结果将是唯一的。

3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。

4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。

内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。

整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。

本章仅讨论常用的内部排序方法。

5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。

6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。

对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。

因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。

辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。

理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。

7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。

在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。

《数据结构》课程设计--流程图PPT教学课件

《数据结构》课程设计--流程图PPT教学课件

2020/12/09
3
开始 显示主菜单 选择操作 进入对应操作
结束
int menu_stu(int num)
2020/12/09
4
开始
显示查询菜单
选择查询类型
输入查询关键字
关键字存在?
N
Y
选择查询内容
显示查询结果
结束
查询学生成绩
2020/12/09
5
开始 显示排序菜单 选择排序内容 显示排序结果
结束
学生成绩排序
2020/12/09
6
开始
输入旧密码
旧密码正确?
N
Y
输入 新密码
再次输入新密码
两次输入正确?
N
Y
密码修改成功
结束
2020/12/09
修改学生密码
7
开始
选择输入的学期
选择输入的学科
顺序输入每个学生成绩
成绩合法?
N
Y 成绩输入完成
结束
录入学生成绩
2020/12/09
ቤተ መጻሕፍቲ ባይዱ
8
2020/12/09
开始
查找需修改学生
查找成功?
N
Y 修改学生成绩
结束
修改学生成绩
9
2020/12/09
10
开始 显示欢迎界面 加载学生数据 加载老师数据
初始化指针 进入登陆界面
结束
void main()
2020/12/09
1
开始
输入账号
存在该用户?
N
Y
判断用户类型
输入密码
密码正确?
N
Y
进入主菜单
结束
2020/12/09

《数据结构排序》课件

《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。

排序的数据结构课程设计

排序的数据结构课程设计

排序的数据结构课程设计一、教学目标本课程旨在让学生理解排序算法的原理和应用,掌握常见的排序算法,如冒泡排序、选择排序、插入排序等,培养学生分析问题、解决问题的能力,并提高学生的逻辑思维和编程实践能力。

1.理解排序算法的概念和作用;2.掌握冒泡排序、选择排序、插入排序等常见排序算法的原理和实现;3.了解排序算法的应用场景。

4.能够运用排序算法解决实际问题;5.能够编写程序实现常见的排序算法;6.能够分析排序算法的效率和适用条件。

情感态度价值观目标:1.培养学生对计算机科学和编程的兴趣和热情;2.培养学生勇于探索、积极思考的科学精神;3.培养学生团队协作、相互帮助的良好学习习惯。

二、教学内容本课程的教学内容主要包括排序算法的原理、实现和应用。

具体安排如下:第1课时:排序算法概述1.1 排序的概念和作用1.2 排序算法的分类和评价指标第2课时:冒泡排序2.1 冒泡排序的原理2.2 冒泡排序的实现2.3 冒泡排序的效率分析第3课时:选择排序3.1 选择排序的原理3.2 选择排序的实现3.3 选择排序的效率分析第4课时:插入排序4.1 插入排序的原理4.2 插入排序的实现4.3 插入排序的效率分析第5课时:排序算法的应用5.1 排序算法在实际问题中的应用5.2 排序算法的选择和优化三、教学方法本课程采用讲授法、讨论法和实验法相结合的教学方法。

1.讲授法:通过教师的讲解,让学生掌握排序算法的原理和实现;2.讨论法:通过小组讨论,让学生深入理解排序算法,提高解决问题的能力;3.实验法:通过编写程序,让学生动手实践,培养学生的编程能力和实际应用能力。

四、教学资源1.教材:《数据结构与算法》;2.参考书:《算法导论》、《排序与搜索》;3.多媒体资料:课件、教学视频;4.实验设备:计算机、编程环境。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分,以全面、客观、公正地评价学生的学习成果。

1.平时表现:通过课堂参与、提问、小组讨论等环节,评估学生的学习态度和理解能力,占总评的30%。

《数据结构排序》PPT课件

《数据结构排序》PPT课件

讨论:若记录是链表结构,用直接插入排序行否?折半插入 排序呢?
答:直接插入不仅可行,而且还无需移动元素,时间效率更 高!但链表无法“折半”!
折半插入排序的改进——2-路插入排序见教材P267。 (1)基本思想: P267 (2)举 例:P268 图10.2 (3)算法分析:移动记录的次数约为n2/8
13 20 39 39 42 70 85
i=8
0
1
2
3
4
5
6
7
8
Hj
折半插入排序的算法分析 • 折半查找比顺序查找快,所以折半插入排序
就平均性能来说比直接插入排序要快。
• 在插入第 i 个对象时,需要经过 log2i +1
次关键码比较,才能确定它应插入的位置。 • 折半插入排序是一个稳定的排序方法。
for ( j=i-1;j>=high+1;--j) L.r [j+1] = L.r [j];// 记录
后移
L.r [high+1] = L.r [0];
// 插入
} // for
} // BInsertSort
初始
30 13 70 85 39 42 6 20
012345678
i=2 13
30
13
数逐渐变多,由于前面工作的基础,大多数对象已基本有 序,所以排序速度仍然很快。
时间效率: O(n1.25)~O(1.6n1.25)——经验公式
空间效率:O(1)——因为仅占用1个缓冲单元 算法的稳定性:不稳定——因为49*排序后却到了49的前面
希尔排序算法(主程序)
参见教材P272
void ShellSort(SqList &L,int dlta[ ],int t){
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮海工学院计算机工程学院
课程设计报告
设计名称:数据结构课程设计
选题名称:多关键字排序
姓名:周宣学号:110821120 专业班级:网络工程081
系(院):计算机工程学院
设计时间:2009.12.28~2010.1.12
设计地点:软件工程实验室、教室
{
printf("文件打开失败!\n");
exit(1);
}
fscanf(fp,"%d",&n); //读入记录数
for(i=0;i<n;i++)
fscanf(fp,"%d %d %d %d %d",
&score[i][4],
&score[i][0],
&score[i][1],
&score[i][2],
&score[i][3]); //按格式读入记录fclose(fp);
}
11’算法分析
1)L SD算法:
这是一种“低位优先”的排序方法,借助一趟基数排序的方法,先按最低位的值对记录进行初步排序,在此基础上再按次低位的值进行进一步排序。

以此类推,有低位到高位,每一趟都是在前一趟的基础上,根据关键字的某一位对所有的记录进行排序,直至最高位,这样就完成了基数排序的全过程。

从算法中可以看出,对于n个记录(每个记录含d个子关键字,每个子关键字的取值范围为RADIX个值)进行链式排序的时间复杂度为O(d(n+RADIX)),其中每一趟分配算法的时间复杂度为O(n),每一趟收集的算法的时间复杂度为O(RADIX),整个排序进行d趟分配和收集,所需辅助空间为2*RADIX个队列指针。

由于需要链表作为存储结构,则相对于其他以顺序结构存储记录的排序方法而言,还增加了n个指针域的空间。

2)冒泡法排序:
该排序是比较简单的交换类排序方法,通过相邻数据元素的交换,逐步将带排序列变成有序序列的过程。

最坏情况下,待排序的记录按关键字的逆序进行排列,此时,每一趟冒泡排序需要进行i次比较,3i次移动。

经过n-1趟冒泡排序后,总的比较次数为N=∑i=n(n-1)/2,n=1,2,…,n-1.总的移动次数为3n(n-1)/2次,因此该算法的时间复杂度为O(n*n),空间复杂度为O(1)。

另外,冒泡排序法是一种稳定的每部排序法。

四测试成果
五附录(源程序清单)
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<string.h>
struct LSD //抽象类型定义,队列的结构类型,由于是按LSD法进行的排序,所以命名为LSD
{
int *cur; //当前位置
struct LSD *next;
};
#define LENGTH sizeof(struct LSD)
void CreatScore(int score[10000][5]); //随机创建学生记录表score。

正常高考中该表是已知的,不必创建
void savesources(int score[10000][5],int n); //将模拟创建的高考学生信息记录存放到文件中
void load(int score[10000][5]); //从学生高考记录源文件中读取记录到该二维数组中
void Collect(struct LSD d[301],int *c[10000]); //LSD法排序中的收集函数,即将分配好的记录收集到c指针数组保存
void InitDivide(struct LSD d[301]); //用于初始化临时分配数组,在每一次收集后必须做的工作
double DCSort(struct LSD d[301],int *c[10000],int n); //分配(Divide)和收集(Collect)排序的方法double BubbleSort(int score[10000][5],int n); //冒泡法排序
void saveresults(int score[10000][5],int n); //按照用户的要求(总成绩在前多少名的学生记录),将这n条学生的记录存放到新的文件中
void Print(); //将排序结果文件中的记录数据输出到屏幕上
int main()
else
printf("文件打开成功!\n");
char t;
while(fscanf(fp,"%c",&t)&&!feof(fp))
{
if(t!=EOF)
printf("%c",t);
} //如果读到结束符,循环结束,输出结束
fclose(fp); //关闭文件
}
六用户手册
本程序的运行环境为DOS系统,执行文件为“LSDSort.exe”
进入程序后的界面如下:
用户此时可以按路径D:\\recordresources.txt文档中查看模拟高考成绩表自动计算出分配收集法和冒泡法分别所需要的时间,综合比较两种方法
按照提示输入自己要求的各个成绩的优先关系序列,然后程序自动进入排序系统,最后程序就将分配和收集的过程以及冒泡法排序的过程分别输出,最后得到排序结果。

然后会到下面的界面:
即提示用户输入录取的学生数目,由于把全部成绩输出对于高校录取并没有用,所以只要按一定的人数提取记录就可以了
4.课程设计心得
这次课程设计收获很大,从一开始的迷迷糊糊不明白题意,到现在很清楚该设计的各个方面,我在无数次的调试过程中学到了很多有用的东西
1、模块化的思想。

使程序模块化之后,可以很方便的调用和对某个模块的修改,我由于一开始对题目的要求不到位,在最后验收的时候发现一些功能未实现的问题,如果我的程序很乱,函数之间没有清晰的调用关系,参数传递混乱的话,我就很难修改它,但是我用了模块化的思想,在很短的时间之内就将程序添加了文件流操作的功能,使程序更加满足实际要求,也更加清晰。

现在可以很容易添加一个不同的功能模块。

2、调试技巧。

在调试过程中同学们遇到了很多不同的错误,比如:错误提示如下
Cpp1.obj : error LNK2001: unresolved external symbol "void __cdecl CreatScore(int (* const)[5])" (?CreatScore@@YAXQAY04H@Z)
Debug/Cpp1.exe : fatal error LNK1120: 1 unresolved externals。

根据以前的经验知道这是连接上出了错,而且以前遇到类似的错误是因为传递的参数不同而导致的,现在也想到估计是同样的问题,但是看程序,参数传递正常。

后来在找CreatScore时发现我不知道什么时候把它剪切了,这就好像是声明了程序要用CreatScore,而且也用了,但是并没有说明CreatScore是什么,它是怎样实现的。

3、调试技巧。

调试的时候我一般都是用F10和F20进行调试,问老师的时候又学到了设置断点的方法调试程序,这样可以通过猜想,对某一段代码进行调试,省去了很多步骤。

4、分析问题的技巧。

这个和设置断点的方法类似,例如在判断打开文件是否成功时,由于有三个函数要打开和关闭文件,而且从无提示都一样:文件打开失败。

这样在运行程序时,如果文件真的打开失败了,就很难知道哪块函数出问题了,所以可以设置不同的提示信息,来很清楚的追踪到程序的运行,还有就是发送错误报告,这种问题出现时总感觉不知道如何下手修改,因为很难知道错误的发生点,这是我们就可以设置输出提示信息:“程序已经运行到这里了”这样我们就可以从它是否输出该提示信息来了解程序是否正常运行。

相关文档
最新文档