相速度和群速度 (Phase velocity and group velocity )
微波:波速、相速、群速和能量传输速度的区别与联系

波速、相速、群速、能量传输速度1、定义波速(wave celerity):单位时间内波形传播的距离,以波长与波周期之比表示.V=入/T.相速(phase velocity):相速度,单一频率的正弦电磁波波的等相面(例如波峰面或波谷面)在介质中传播的速度v=c/n,c为自由空间中的光速,n为介质对该频率电磁波的折射指数。
在理想介质中,电磁波的相速仅与介质参数有关.群速(group velocity):(1)、波列作为整体的传播速度(2)波群传播的速度。
波的群速度,简称群速,是指波的包络传播的速度。
实际上就是波实际前进的速度。
群速是一个代表能量的传播速度。
概念引入原因:实用系统的信号总是由许多频率分量组成,在色散介质中,各单色分量将以不同的相速传播,因此要确定信号在色散介质中的传播速度就发生困难,为此引入群速的概念,它描述信号的能量传播速度。
能量传播速度:群速是波群的能量传播速度.2、相互关系(1)相关概念非色散介质:无线电波在介质中传播时,介电常数ε与频率无关,波的传播速度也与频率无关的介质;色散介质:与此相反,如果介电常数ε或传播速度v与频率有关的介质.正常色散:一切无色透明介质在可见光区域均表现为正常色散。
特点:波长变大时,由v=λf,频率不变,则V增大。
而n=c/v,则折射率值n变小,角色散率D变小。
反常色散:在某些波段会出现,波长变大时折射率值增大的现象,这称为反常色散。
反常色散同样是物质的普遍性质。
反常色散与选择吸收密切相关,即在发生物质的选择吸收波段附近出现反常色散。
角色散率:由夫琅和费衍射理论知,产生衍射亮条纹的条件(光栅方程):dsinθ=kλ(k= 1, 2,…, n)光栅方程对λ微分,就可得到光栅的角色散率:ψ=Δθ/Δλ=k/dcos.角色散率是光栅、棱镜等分光元件的重要参数,随着k的增大,色散率也就越大。
它表示单位波长间隔内两单色谱线之间的角间距,当光栅常数d愈小时,角色散愈大;光谱的级次愈高,角色散也愈大。
相速度与群速度

§6-4 光的相速度和群速度折射率是光在真空中和介质中传播速度的比值,即v c n /=,通常可以通过测定光线方向的改变并应用折射定律()21sin /sin i i n =来求它,但原则上也可分别实测c 和v 来求它们的比值,用近代实验室方法,不难以任何介质中的光速进行精确的测定,例如水的折射率为,用这两种方法测得的结果是符合的,但对二硫化碳,用光线方向的改变的折射法测得的折射率为,而1885年迈克耳孙用实测光速求得的比值则为,其间差别很大,这绝不是由实验误差所造成的,瑞利找到了这种差别的原因,他对光速概念的复杂性进行了说明,从而引出了相速度和群速度的概念。
按照波动理论,这种通常的光速测定法相当于测定由下列方程所决定的波速的数值: ⎪⎭⎫ ⎝⎛-=v r t A E ωcos 不难看出,这里v 所代表的是单色平面波的一定的位相向前移动的速度,因为位相不变的条件为 常量=-vr t 由此得到 01=-dr vdt 或 dt dr v = (6-1) 所以这个速度称为位相速度(简称相速),这速度的量值可用波长和频率来计算。
波的表达式部是t 和r 的函数,可以写成下列形式:()kr t A E -=ωcos式中v πω2= 和λπ/2=k 都是不随 t 和 r 而改变的量,故位相不变的条件为kr t -ω=常量0=-kdr dt ω由此得或 λωv kv dt dr === (6-2) (6-2)式表示的位相速度乃是严格的单色波地(ω有单一的确定值)所特有的一种速度,单色波以t 和r 的余弦函数表达,ω为常量,这种严格的单色波的空间延续和时间延续都是无穷无尽的余弦(或正弦)波,但是这种波仅是理想的极限情况,实际所到的永远是形式不同的脉动,这种脉动仅在空间某一有限范围内、在一定的时间间隔内发生,在时间和空间上都是有起点和终点的,任何形式的脉动都可看成是由无限多个不同频率、不同振幅的单色正弦波或余弦波叠加而成的,即可将任何脉动写成傅里叶级数或傅里叶积分的形式,在无色散介质中所有这些组成脉动的单色平面波都以同一相速度传播,那么该脉动在传播过程中将永远保持形状不变,整个脉动也永远以这一速度向前传播,但是除真空以外,任何介质通常都具有色散的特征,就是说,各个单色平面波各以不同的相速传播,其大小随频率而变,所以由它们叠加而成的脉动在传播过程中将不断改变其形状,在这种情况下,关于脉动的传播速度问题就变得比较复杂了,观察种脉动时,可以先认定它上面的某一特殊点,例如振幅最在大的一点,而把这一点在空间的传播速度看作是代表整个脉动的传播速度,但是由于脉动形状的改变,所选定的这一特殊点在脉动范围内也将不断改变其位置,因而该点的传播速度和任何一个作为组成部分的单针平面波的相速都将有所不同,按照瑞利的说法,这脉动称为波群,因而脉动的传播速度称为群速度,简称群速,现在仅就一个简化的例子来讨论两种速度的关系。
物理光学 不同频率光波的叠加与分析

合成波的强度随时间和位置在0~4a2之间变化,这种强
度时大时小的现象称为拍。
拍频等于 2,m 即等于振幅调制频率的两倍,或等于两
叠加单色光波频率之差。一个拍的空间长度为 12 /(2 1)
拍频的应用:利用已知的一个光频率1,测量另一个 未知的光频率2。
11
12Biblioteka 132.5 光波的傅里叶分析
1.相同频率而有任意振幅和位相的单色光波 的叠加时,所得到的合成波仍然是单色光波。
2.两个不同频率的单色光波叠加起来,其结 果就不再是单色波,波形曲线不再是正弦或余 弦曲线。
3.反过来,任意一个复杂波也可以分解成一 组单色波。
2.5.1 周期性波的分析
该矩形波的傅里叶级数为:
f (z) 4 (sin kz 1 sin 3kz 1 sin 5kz )
3
5
其中第一项成为基波,它的空间角频率为
k=2π/λ,空间频率为1/λ,是基频。第二项、 第三项是三次谐波和五次谐波[空间频率 m/λ(m≥2)是谐频]。
通常用一种空间频谱图解方法来表示傅里叶 分析的结果。
合成的光波:E 2acos(kmz mt)cos(kz t)
令km z mt 常数,得: vg
, k很小时,vg
d
dk
m
km
1 2
k1 k2
k
z或 t
在时间域上:2 m
2 :在空间域上 km
群速度和相速度之间的关系
由 vg
d
dk
可得到vg与v之间的关系(用色散表示)。
vg
d
dk
d (kv) dk
相速度和群速度

(r)
(70)
ds =
d t r0
该 (r) 就是等相位面的传播速度,简称为相速度。
2020/8/20
r0r0 cos
由于等相位面的梯度平
行于 r0,因此 =0。则
r0 /
2020/8/20
1. 单色光波的速度 对于波矢量为 k 的平面单色光波,其空间相位项为
因此
(r)=kr0
k
(k1
k 2 )=
1 2
k
=
1 2
( 1
2)
k
=
1 2
(k1
k2)
2. 复色波的速度 该式表明:这个二色波是如图所示的、频率为 、 振幅随时间和空间在 0 到 2E0 之间缓慢变化的光波。 这种复色波可以叫做波群或振幅调制波。
x
振动的合成.exe
2020/8/20
2. 复色波的速度 对于上述复色波,其传播速度包含两种含义:
g
d
dk
(75)
由波数 k= / ,g 可表示为
g
dz dt
=m
km
=
k
gd(d kk)
+kd
dk
(76)
2020/8/202)复色波 Nhomakorabea群速度由 k=2 / ,有dk=-(2 / 2)d ,可将上式变为
g=dd
(77)
2020/8/20
gd(d kk)
+kd
dk
k=2 /
dk=-(2 / 2)d
式中, ( r 是) 随距离变化的相位项,相应于 t(r)=常数
的空间曲面为该单色光波的等相位面,满足该式的 r 是这个相位状态在不同时刻的位置。
相速度和群速度教学提纲

振动的合成.exe
2020/10/23
2. 复色波的速度 对于上述复色波,其传播速度包含两种含义:
等相位面的传播速度,称为相速度; 等振幅面的传播速度,称为群速度。
形象一点说,你拿电钻在一个很坚固的墙上钻洞, 你会觉得电钻的钻头的螺纹在旋转时似乎以高速前 进,但这只是你的错觉,因为你看到的是螺纹的 “相速度”,虽然很快,但是你的电钻却很慢很慢 地向墙内推进,也就是说电钻的总的向前推进的速 度就是“群速度”。
E( z , t ) = 2 E 0 c o (s m t k m z )
1
1
m = 2 ( 1 2 )= 2
km
=
1 2
(k1
k 2 )=
1 2
k
=
1 2
( 1
2)
1 k = 2 (k1 k2 )
2. 复色波的速度 该式表明:这个二色波是如图所示的、频率为 、 振幅随时间和空间在 0 到 2E0 之间缓慢变化的光波。 这种复色波可以叫做波群或振幅调制波。
在无色散介质(dn/d =0)中,复色波的相速度等 于群速度,实际上,只有真空才属于这种情况。
折射率随着波长 增加(或光频率的 减少)而减小的色 散叫正常色散。
2020/10/23
n
1.025 1.000
0.975 0.997 0.998 0.999 1.000 1.0011.002 1.003
/0
由复色波表示式(73)可见,它的振幅是时间和
空间的余弦函数,在任一时刻,满足 mtkmz常 数
的 z 值,代表了某等振幅面的位置,该等振幅面位 置对时间的变化率即为等振幅面的传播速度—— 复色波的群速度,且
2020/10/23
《相速度和群速度》课件

它并不等于波的能量 或信息传播的速度, 这是群速度的概念。
相速度的物理意义
相速度决定了波在介质中的传 播速度,即波峰和波谷的运动 速度。
它决定了波的相位变化和干涉 、衍射等物理现象的发生。
在某些情况下,相速度可以接 近无穷大,例如在无损介质中 传播的波。
相速度的计算方法
根据波动方程和介质的物理性质,可以求解波的相速度。
影响因素不同
相速度只与介质性质有关,而群速度不仅与介质性质有关,还与频 率有关。
在某些介质中的行为不同
在色散介质中,相速度可以超过光速,而群速度不能超过光速。
相速度与群速度的联系
在某些情况下,两者可能相等
01
在无色散介质中,波的相速度和群速度是相等的。
两者都是描述波动现象的重要参数
02
相速度和群速度分别从不同的角度描述了波动现象,对于理解
展望
未来研究方向
随着科技的发展,相速度和群速 度的研究将更加深入,未来可以 进一步探索其在不同领域的应用
,如量子力学、生物医学等。
技术发展与挑战
随着通信、信号处理等技术的快速 发展,对相速度和群速度的研究将 面临更多挑战,需要不断探索新的 理论和方法。
跨学科合作与交流
相速度和群速度的研究涉及到多个 学科领域,未来需要加强跨学科的 合作与交流,促进相关领域的发展 。
波动现象的本质和传播规律具有重要意义。
两者都是波动方程的解
03
无论是相速度还是群速度,都是波动方程的解,用于描述波动
在介质中的传播行为。
PART 04
相速度和群速度的应用
REPORTING
通信领域的应用
相速度的应用
在通信领域中,相速度控制着信号的相位信息传递。通过调 整相速度,可以实现对信号的相位调制,如调相(PM)和调 频(FM)等,从而实现更高效、更可靠的数据传输。
相速度和群速度方案

(4)
由(4)式 vg vp/(1 / n dn / d)
分析:
当 dn/ d o时,有 vg vp 当 dn/ d o时,有 vg vp 当 dn/ d o时,有 vg vp
无色散 正常色散 反常色散
因此,一般情况下(正常色散),群速度小 于相速度。
吸收带
1.在吸收带附近长波一边的折射率比短波的大. 2.在吸收带内,n是无法测量的.
群速度与波长的关系
vg
( c ) /(1
n
n
dn )
d
dn dn d d d d
2c /
dn 2c 2c 2 d 2 (2c / )2 2c
d 2k d 2
d d
dk d
d [1 d vg
]
2 2c
d [1 (n d c
dn )] d
2 2c2
d [n d
dn ] d
2 [ dn d 2n dn )] 3 d 2n 2c d d2 d 2c2 d2
(10)
GVD
k '' ()
3 2c2
d 2n
d2
单位:s2 m
LOGO
Add your company slogan
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
兰姆波相速度和群速度

兰姆波的相速度和群速度是两个重要的概念,用于描述兰姆波在材料中传播时的特性。
相速度是指波包上相位固定的一点沿传播方向的传播速度,即波的相位传播速度。
在兰姆波的频散曲线中,相速度不是常数,而是随着频率的变化而变化。
群速度是指脉冲包络上具有某种特性(如幅值最大)的点的传播速度,是波群的能量传播速度,即波的传播速度。
在兰姆波的频散曲线中,群速度也是随频率变化的。
总的来说,相速度和群速度都是描述兰姆波在材料中传播特性的重要参数,在实际应用中可以根据需要选择不同的参数进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 复色波的速度 该式表明:这个二色波是如图所示的、频率为 、 振幅随时间和空间在 0 到 2E0 之间缓慢变化的光波。 这种复色波可以叫做波群或振幅调制波。 x
振动的合成.exe
2. 复色波的速度
对于上述复色波,其传播速度包含两种含义: 等相位面的传播速度,称为相速度; 等振幅面的传播速度,称为群速度。 形象一点说,你拿电钻在一个很坚固的墙上钻洞, 你会觉得电钻的钻头的螺纹在旋转时似乎以高速前 进,但这只是你的错觉,因为你看到的是螺纹的 “相速度”,虽然很快,但是你的电钻却很慢很慢 地向墙内推进,也就是说电钻的总的向前推进的速 度就是“群速度”。
n
折射率随着波长 增加(或光频率的 减少)而减小的色 散叫正常色散。
由 k=2 / ,有dk=-(2 / 2)d ,可将上式变为
d g = d (77)
d(k ) d g +k dk dk
k=2 / dk=-(2 / 2)d
(76)
2)复色波的群速度
由=c/n,有d =- (c/n2)dn,上式还可表示为
dz m g = = dt km k
EE (z, t )cos (t kz)
E (z,t )=2E0 cos (mt km z)
(73)
m t km z =常数
dz m k m 0 dt dz m dt km
1 1 m = (1 2 )= 2 2 1 1 km = (k1 k2 )= k 2 2 dz m
2. 复色波的速度
2,则 若 E01 E02 E0 且 1 2 1、
EE (z, t )cos (t kz) (73)
式中
E (z ,t )=2E0 cos (m t km z) 1 1 m = (1 2 )= 2 2 1 1 km = (k1 k2 )= k 2 2 1 = (1 2 ) 2 1 k = (k1 k2 ) 2
式中, (r ) 是随距离变化的相位项,相应于
t (r )=常数
的空间曲面为该单色光波的等相位面,满足该式的 r 是这个相位状态在不同时刻的位置。
1. 单色光波的速度 将上式两边对时间求导数,得
dt dr 0
设 r0 为 dr 方向上的单位矢量,并写成 dr= r0 ds,则
(r )
ds = d t r0
(70)
该 (r)ቤተ መጻሕፍቲ ባይዱ就是等相位面的传播速度,简称为相速度。
r0 r0 cos
由于等相位面的梯度平 行于 r0,因此 =0。则
r0 /
1. 单色光波的速度
对于波矢量为 k 的平面单色光波,其空间相位项为
dt km
dz m g = = dt km k
2)复色波的群速度
当Δ 很小时,可以写成
d g dk (75)
dz m g = = dt km k
由波数 k= / ,g 可表示为
d(k ) d g +k dk dk
(76)
2)复色波的群速度
ds = d t r0
t (r )=常数 d d r 0
dr dt dr 0 dt dt d r 0
dt dr 0
dr= r0 ds
ds = d t r0
1. 单色光波的速度 当 r0 垂直于等相位面,即 r0 / 时,上式值 最小,其值为
(r ) = k r 0
因此
k
所以,平面单色光波的相速度为 c k r r
(r )
(70)
(71)
n
c
r r
1. 单色光波的速度
应当注意,相速度是单色光波所特有的一种速度, 由于它表示的不是光波能量的传播速度,所以当 n r r 1 时,例如在色散介质的反常色散区, 就有相速度大于真空中光速度 的情况,这并不违 背相对论的结论。
1)复色波的相速度 若令(73)式的复色波相位为常数( t kz 常数 ), 则某时刻等相位面的位置 z 对时间的变化率即为等 相位的传播速度——复色波的相速度,且
dz = dt k
(74)
EE (z, t )cos (t kz)
(73)
2)复色波的群速度 由复色波表示式(73)可见,它的振幅是时间和 空间的余弦函数,在任一时刻,满足 m t km z 常数 的 z 值,代表了某等振幅面的位置,该等振幅面 位置对时间的变化率即为等振幅面的传播速度— —复色波的群速度,且
k c
r r
(71)
2. 复色波的速度 如前所述,实际上的光波都不是严格的单色光波,而 是复色波,它的光电场是所包含各个单色光波电场的 叠加,即
E E0l cos(l t kl z )
l =1 N
(72)
二色波的光电场为
E E01 cos(1t k1 z) +E02 cos(2t k2 z)
1.4 相速度和群速度 (Phase velocity and group velocity )
在前面的讨论中,提到了光波速 这个物理量,下面 讨论它的具体含义。 1. 单色光波的速度 2. 复色波的速度
1. 单色光波的速度
假设单色光波电场的表示式为
E E0 cos[(t (r )] ( 69)
dn g = 1+ n d (78)
d g = d
(77)
该式表明,在折射率 n 随波长变化的色散介质中, 复色波的相速度不等于群速度。
2)复色波的群速度
对于正常色散介质(dn/d<0),>g; 对于反常色散介质(dn/d>0), <g ; 在无色散介质(dn/d =0)中,复色波的相速度等 于群速度,实际上,只有真空才属于这种情况。