液质联用(LCMS)原理简析.
液相色谱质谱LCMS联用的原理及应用

进样系统 离子源 质量分析器 检测接收器
┗━━━━━╋━━━━━━┛
真空系统
真空系统
质谱仪的离子源、质量分析器和检测器必须在 高真空状态下工作,以减少本底的干扰,避免 发生不必要的离子-分子反应。所以质谱反应属 于单分子分解反应。利用这个特点,我们用液 质联用的软电离方式可以得到化合物的准分子 离子,从而得到分子量。
ESI(Electrospray Ionization):电喷雾电离—属最软的电离 方式。适宜极性分子的分析,能分析小分子及大分子(如蛋 白质分子多肽等)
APCI(Atmospheric Pressure Chemical Ionization):大气压 化学电离—同上,更适宜做弱极性小分子。
APPI(Atmospheric Pressure PhotoSpray Ionization):大气 压光喷雾电离—同上,更适宜做非极性分子。
碎片离子:
准分子离子经过一级或多级裂解生成的产 物离子.
碎片峰的数目及其丰度则与分子结构有关, 数目多表示该分子较容易断裂,丰度高的碎 片峰表示该离子较稳定,也表示分子比较容 易断裂生成该离子。
OH H N C3H
C3H
Ephedrine, MW = 165
多电荷离子:
指带有2个或更多电荷的离子,常见于蛋白质或多肽等
丰度比出现在质谱中,这对于利用质谱确定化 合物及碎片的元素组成有很大方便, 还可利用 稳定同位素合成标记化合物,如:氘等标记化合 物,再用质谱法检出这些化合物,在质谱图外貌 上无变化,只是质量数的位移,从而说明化合物 结构,反应历程等
如何看质谱图:
(1)确定分子离子,即确定分子量
氮规则:含偶数个氮原子的分子,其质量数是 偶数,含奇数个氮原子的分子,其质量数是奇 数。与高质量碎片离子有合理的质量差,凡质 量差在3~8和10~13,21~25之间均不可能,则 说明是碎片或杂质。
LCMS原理详细讲解

断裂程度;APCI源的探头处于高温,对热不稳定 的化合物就足以使其分解.
灵敏度:通常认为电喷雾有利于分析极性大的小 分子和生物大分子及其它分子量大的化合物,而 APCI更适合于分析极性较小的化合物。
EI(Electron Impact Ionization):电子轰击电离—硬电离。
CI(Chemical Ionization):化学电离—核心是质子转移。
FD(Field Desorption):场解吸—目前基本被FAB取代。
FAB(Fast Atom Bombardment):快原子轰击—或者铯离子 (LSIMS,液体二次离子质谱 ) 。
1 4 7 7 2 9 .0 0
146500
147000
147500 Mass ,a mu
148000
148500
149000
同位素离子
由元素的重同位素构成的离子称为同位素离子. 各种元素的同位素,基本上按照其在自然界的
丰度比出现在质谱中,这对于利用质谱确定化 合物及碎片的元素组成有很大方便, 还可利用 稳定同位素合成标记化合物,如:氘等标记化合 物,再用质谱法检出这些化合物,在质谱图外貌 上无变化,只是质量数的位移,从而子源→第一分析器→碰撞室→第二分析器→接收器
MS1
MS2
Q1
q2
Q3
QqQ仪器可以方便的改变离子的动能,因此 扫描速度快,体积小,常作为台式进入常规 实验室,缺点是质量范围及分辨率有限,不 能进行高分辨测定,只能做到单位质量分辨。 (通过高分辨能得到化合物的分子式)
质量分析器的分类:
双聚焦扇形磁场-电场串联仪器(sector).
lc-ms原理

lc-ms原理
液相色谱质谱联用(liquid chromatography-mass spectrometry,LC-MS)是一种结合了液相色谱(LC)和质谱(MS)的分析
技术。
它通过将样品经过液相色谱分离后,再通过质谱进行物质的鉴定和定量分析。
在LC-MS中,样品首先通过液相色谱进行分离。
液相色谱通
过将样品溶解在移动相中,由于不同组分间的相互作用力不同,使得各组分以不同速度通过色谱柱。
这样,样品中的组分就得以分离。
分离后的组分进入质谱部分进行分析。
质谱部分是LC-MS的关键。
质谱是一种对化学物质进行精确
鉴定和定量分析的仪器。
它通过将分离后的化合物通过电离源获得正电离,然后根据化合物的质量-电荷比(m/z)进行质谱
分析。
不同的化合物的质谱图有所区别,可以通过比对质谱图来确定待测物质的身份。
质谱的电离方式有多种,例如电喷雾电离(electrospray ionization,ESI)和化学电离(chemical ionization,CI)等。
这些电离方式可根据不同样品的性质来选择。
通过质谱仪器的激光脱附电离(laser desorption ionization,LDI)还可以对固
体样品进行分析。
LC-MS的应用范围广泛。
它可以用于药物代谢研究、药物残
留检测、环境分析、食品安全等领域。
独特的分离和鉴定能力使得LC-MS成为许多科学研究和工业领域的重要分析工具。
LCMS原理详细讲解PPT课件

光电离APPI)与基质辅助激光解吸电离。前者常采
用四极杆或离子阱质量分析器,统称API-MS。后者
常用飞行时间作为质量分析器,所构成的仪器称为
基质辅助激光解吸电离飞行时间质谱仪(MALDI-
TOF-MS)。API-MS的特点是可以和液相色谱、毛
细管电泳等分离手段联用,扩展了应用范围,包括
药物代谢、临床和法医学、环境分析、食品检验、
-
1 4 6 8 9 2 .0 0
17
146500
147000
147500 Mass, amu
148000
148500
149000
同位素离子
由元素的重同位素构成的离子称为同位素离子. 各种元素的同位素,基本上按照其在自然界的
丰度比出现在质谱中,这对于利用质谱确定化 合物及碎片的元素组成有很大方便, 还可利用 稳定同位素合成标记化合物,如:氘等标记化合 物,再用质谱法检出这些化合物,在质谱图外貌 上无变化,只是质量数的位移,从而说明化合物 结构,反应历程等
-
36
-
37
实验室现有的质量分析GC不需要?
-
3
液质联用与气质联用的区别:
气质联用仪(GC-MS)是最早商品化的联用仪器, 适宜分析小分子、易挥发、热稳定、能气化的 化合物;用电子轰击方式(EI)得到的谱图, 可与标准谱库对比。
液质联用(LC-MS)主要可解决如下几方面的问 题:不挥发性化合物分析测定;极性化合物的 分析测定;热不稳定化合物的分析测定;大分 子量化合物(包括蛋白、多肽、多聚物等)的 分析测定;没有商品化的谱库可对比查询,只 能自己建库或自己解析谱图。
样品流速:APCI源可从0.2到2 ml/min;而电喷 雾源允许流量相对较小,一般为0.2-1 ml/min.
lc ms原理

lc ms原理
LC-MS是液相色谱质谱联用技术的简称,它是将液相色谱分
离技术与质谱检测技术相结合的一种分析方法。
LC-MS的基
本原理是先通过液相色谱将待测样品中的化合物分离开来,然后将分离后的物质通过质谱进行检测和鉴定。
在LC-MS中,液相色谱负责将复杂的混合物按照其化学性质
进行分离,分离出目标化合物的纯度增加了质谱分析的精确性。
然后,液相色谱分离出的物质进入质谱仪进行分析,利用质谱的原理可以确定化合物的分子量和分子结构。
具体来说,LC-MS的分析步骤包括样品进样、柱渗透分离、
离子化和质谱检测等。
首先,待测样品通过进样器进入柱渗透分离系统,样品中的化合物根据其亲水性、疏水性等性质在柱上进行分离。
然后,分离后的化合物进入质谱离子源,通过电喷雾等方法将化合物转化为气态离子。
接着,在质谱仪中,离子会经过质子化、去质子化或加电子的过程,形成不同的离子化态,进而被分离、聚焦、加速和聚集。
最后,离子进入质谱检测器,通过测量的离子信号强度可以推断待测样品中的化合物的浓度和种类。
LC-MS具有分离能力强、灵敏度高、选择性好等优点,适用
于分析复杂的生物样品、环境污染物、新药开发等领域。
然而,由于仪器设备复杂、分析流程多等原因,LC-MS技术的操作
和维护相对较为困难,需要经验丰富的分析人员进行操作和数据处理。
LCMS原理详细讲解.

目前的有机质谱和生物质谱仪,除了GC-MS的EI和
CI源,离子化方式有大气压电离(API)(包括大气 压电喷雾电离ESI、大气压化学电离APCI、大气压 光电离APPI)与基质辅助激光解吸电离。前者常采 用四极杆或离子阱质量分析器,统称API-MS。后者 常用飞行时间作为质量分析器,所构成的仪器称为 基质辅助激光解吸电离飞行时间质谱仪(MALDITOF-MS)。API-MS的特点是可以和液相色谱、毛 细管电泳等分离手段联用,扩展了应用范围,包括 药物代谢、临床和法医学、环境分析、食品检验、 组合化学、有机化学的应用等;MALDI-TOF-MS的 特点是对盐和添加物的耐受能力高,且测样速度快, 操作简单。
质谱原理简介:
质谱分析是先将物质离子化,按离子的质荷比
分离,然后测量各种离子谱峰的强度而实现分 析目的的一种分析方法。以检器检测到的离 子信号强度为纵坐标,离子质荷比为横坐标所 作的条状图就是我们常见的质谱图。
常见术语:
质荷比: 离子质量(以相对原子量单位计)与它所带电
荷(以电子电量为单位计)的比值,写作m/Z. 峰: 质谱图中的离子信号通常称为离子峰或简称峰. 离子丰度: 检测器检测到的离子信号强度. 基峰: 在质谱图中,指定质荷比范围内强度最大的 离子峰称作基峰. 总离子流图;质量色谱图;准分子离子;碎片离子; 多电荷离子;同位素离子
Ionic
IonSpray离子喷雾 Analyte Polarity
APCI大气压化学电离
GC/MS
Neutral 101 102
Molecular Weight
103
104
105
现代有机和生物质谱进展
在20世纪80及90年代,质谱法经历了两次飞跃。
液相色谱-质谱联用仪原理

液相色谱-质谱联用仪原理液相色谱-质谱联用仪(LC-MS)是一种结合了液相色谱(LC)和质谱(MS)的分析技术,用于分离、识别和定量分析复杂样品中的化合物。
它的原理如下:1.液相色谱(LC):LC是一种基于溶液中化合物的分配行为进行分离的技术。
样品通过液相色谱柱,在流动相(溶剂)的作用下,不同的化合物会以不同的速率通过柱子。
这样,样品中的化合物就可以被分离出来。
2.质谱(MS):质谱是一种分析技术,通过测量化合物的质荷比(m/z)和相对丰度来确定化合物的分子结构和组成。
在质谱中,化合物首先被电离形成离子,然后通过一系列的质量分析器进行分离和检测。
3.LC-MS联用原理:LC-MS联用仪将液相色谱和质谱相连接,使得从液相色谱柱出来的化合物可以直接进入质谱进行分析。
联用仪的关键部分是接口,它将液相色谱柱的流出物引入质谱。
接口通常采用喷雾电离技术,将液相中的化合物通过气雾化形成气相离子,并将其引入质谱。
常见的接口类型包括电喷雾离子源(ESI)和大气压化学电离(APCI)等。
4.分析过程:样品首先通过液相色谱柱进行分离,不同的化合物进入质谱前的接口。
接口中的喷雾电离源将液相中的化合物转化为气相离子,并将其引入质谱。
在质谱中,离子会根据其质荷比通过一系列的分析器进行分离和检测,最终生成质谱图谱。
质谱图谱提供了化合物的质荷比和相对丰度信息,可以用于确定化合物的结构和组成。
液相色谱-质谱联用仪的原理使得它能够在分离的同时对样品进行快速、高效的分析。
它在生物医药、环境监测、食品安全等领域具有广泛的应用,可以帮助科学家们解决复杂样品中的化学分析难题。
液相色谱-质谱联用(lcms)的原理及应用

width: 740px"><div align=center><font color=#ff0000 size=3><strong> 液相色谱-质谱联用(lc/ms)的原理及应用</strong></div><div align=center> </div><div align=left><br><strong>液相色谱—质谱联用的原理及应用</strong> <br>简介<br>1977年,LC/MS开始投放市场</font></div><p><font color=#ff0000 size=3>1978年,LC/MS首次用于生物样品分析</font></p><p><font color=#ff0000 size=3>1989年,LC/MS/MS取得成功</font></p> <p><font color=#ff0000 size=3>1991年,API LC/MS用于药物开发</font></p><p><font color=#ff0000 size=3>1997年,LC/MS/MS用于药物动力学高通量筛选</font></p><p><font color=#ff0000 size=3>2002年美国质谱协会统计的药物色谱分析各种不同方法所占的比例。
1990年,HPLC高达85%,而2000年下降到15%,相反,LC/MS所占的份额从3%提高到大约80%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液质联用(LCMS)原理简析1.质谱法质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质谱的样品一般要汽化,再离子化。
不纯的样品要用色谱和质谱联用仪,是通过色谱进样。
即色谱分离,质谱是色谱的检测器。
离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列成谱被记录下来,以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图就是我们常见的质谱图。
2.质谱仪质谱仪由以下几部分组成数据及供电系统┏━━━━┳━━━━━╋━━━━━━┓进样系统离子源质量分析器检测接收器┗━━━━━╋━━━━━━┛真空系统质谱仪一般由进样系统、离子源、分析器、检测器组成。
还包括真空系统、电气系统和数据处理系统等辅助设备。
(1)离子源:使样品产生离子的装置叫离子源。
液质的离子源有ESI,APCI,APPI,统称大气压电离(API)源,实验室常用液质的离子源为ESI源。
电喷雾(ESI)的特点通常小分子得到[M+H]+ ]+,[M+Na]+ 或[M-H]-单电荷离子,生物大分子产生多电荷离子。
电喷雾电离是最软的电离技术,通常只产生分子离子峰,因此可直接测定混合物,并可测定热不稳定的极性化合物;其易形成多电荷离子的特性可分析蛋白质和DNA等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)得到化合物的部分结构。
(2)质量分析器: 由它将离子源产生的离子按m/z分开。
离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一起,组成质谱。
质量分析器有:磁场和电场、四极杆、离子阱、飞行时间质谱、傅立叶变换离子回旋共振等。
实验室目前液质的质量分析器类型:三重四极杆(QqQ):离子源→第一分析器→碰撞室→第二分析器→接收器MS1 MS2Q1 q2 Q3QqQ仪器可以方便的改变离子的动能,因此扫描速度快,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限,不能进行高分辨测定,只能做到单位质量分辨。
在液质联机中使用的碎片化手段,能量都是以碰撞的形式输送给分子离子,这个能量足以使得处在能量亚稳态分子中的某些化学键断裂并使一些特定的分子发生结构重排。
(3)碰撞诱导解离CID质谱:QqQ检测器中的碰撞反应在CID中进行。
选择一定质量的离子作为母体离子,进入碰撞室,室内充有靶子反应气体(本实验室选择高纯氦) ,发生离子—分子碰撞反应,从而产生‘子离子’,再经MS2的分析器及接受器得到子离子质谱,一般称做CID (collision-induced dissociation)谱。
(4)检测器:离子检测器由收集器和放大器组成。
打在收集器上的正离子流产生与离子流丰度成正比的信号。
(5)真空系统:质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的离子-分子反应。
所以质谱反应属于单分子分解反应。
利用这个特点,我们用液质联用的软电离方式可以得到化合物的准分子离子,从而得到分子量。
由机械真空泵(前极低真空泵),扩散泵或分子泵(高真空泵)组成真空机组,抽取离子源和分析器部分的真空。
只有在足够高的真空下,离子才能从离子源到达接收器,真空度不够则灵敏度低。
实验时要注意观察质谱的真空度状态,如有异常,及时向相关老师汇报。
3. 质谱仪的联用技术质谱仪可以与其他仪器联用,如气相色谱-质谱联用(GC/MS)、高效液相色谱-质谱联用(HPLC/MS);也可以质谱-质谱联用(MS-MS)。
(1)G C/MS、HPLC/MS仪:基于色谱和质谱的仪器灵敏度相当,加之使分离效果好的色谱成为质谱的进样器,而速度快、分离好、应用广的质谱仪作为色谱的鉴定器,使它们成为目前最好的用于分析微量的有机混合物的仪器。
(2)液质联用与气质联用的区别:气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。
液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合物分析测定;极性化合物的分析测定;热不稳定化合物的分析测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;一般没有商品化的谱库可对比查询,只能自己建库或自己解析谱图。
所以目前液质联用在环境领域主要应用于有标准物质参照情况下的定性分析。
(3)MS-MS:质谱-质谱法是70年代后期迅猛发展起来的。
这种方法是指用质谱作质量分离的质谱技术(mass separetion-mass spectracharacterization)。
它可以研究母离子和子离子的关系,让大的离子进一步裂解,获得裂解过程及离子组成的信息。
它有几种称呼,如质谱-质谱法(MS-MS或MS/MS),串联质谱,二维质谱法,序贯质谱。
本实验室的质谱检测器为三重四极杆检测器,属于MS/MS型质谱检测器。
(4)有机质谱局限性:异构体,立体化学方面区分能力差。
重复性稍差,要严格控制操作条件。
所以不能象低场NMR,IR 等自己动手,须专人操作。
有离子源产生的记忆效应,污染等问题。
价格昂贵,分析成本高,操作复杂。
4. 质谱仪性能指标(1)质量范围:即仪器测量质量数的范围。
(2)分辨率:即表示仪器分开两个相邻质量离子的能力,通常用R表示,实验室内的TSQ Quantum分别率为0.7。
(3)质量测量精度:离子质量测定的精度,一般对质量几百的离子,测量误差应<0.003质量单位。
5.基本术语(1)质谱图:质谱图一般都采用“条图”,或称为棒状图。
在图中横轴表示质荷比(m/z,因为Z接近于1,故实际上m/z多为离子的质量)。
纵轴则表示峰的相对强度(RA,相对丰度)。
(2)质荷比: 离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值,写作m/Z。
(3)峰: 质谱图中的离子信号通常称为离子峰或简称峰。
(4)离子丰度: 检测器检测到的离子信号强度。
峰越高表示形成的离子越多,也就是说,谱线的强度是与离子的多少成正比的。
(5)基准峰:在质谱图中,指定质荷比范围内强度最大的离子峰称作基峰,其离子峰的峰高作为100%,而以对它的百分比来表示其他离子峰的强度。
(6)总离子流图:在选定的质量范围内,所有离子强度的总和对时间或扫描次数所作的图,也称TIC图.(7)质量色谱图:指定某一质量(或质荷比)的离子其强度对时间所作的图。
利用质量色谱图来确定特征离子,在复杂混合物分析及痕量分析时是LC/MS测定中最有用的方式。
当样品浓度很低时LC/MS的TIC 上往往看不到峰,此时,根据得到的分子量信息,输入M+1或M+23等数值,观察提取离子的质量色谱图,检验直接进样得到的信息是否在LC/MS上都能反映出来,确定LC条件是否合适,以后进行SRM等其他扫描方式的测定时可作为参考。
6. 影响离子丰度的主要因素:峰的强度反映出该碎片离子的多少,峰强表示该种离子多,峰弱表示该种离子少。
影响离子丰度的主要因素:1.键的相对强度:2.产物离子的稳定性:这是影响产物离子丰度的最重要因素。
3.原子或基团相对的空间排列(空间效应):空间因素影响竞争性的单分子反应途径,也影响产物的稳定性。
4. Stevenson 规则:5.最大烷基的丢失等。
7.质谱中离子的类型质谱中的离子有多种类型,最基本的有:(1)分子离子2.03.04.001020304050607080901002.03.04.05.06.00102030405060708090100指与分子存在简单关系的离子,通过它可以确定分子量。
液质中最常见的准分子离子峰是[M+H]+ 或[M-H]-。
在ESI中, 有时会生成质量大于分子量的离子如M+1, M+23, M+39, M+18......称准分子离子,表示为:[M+H]+,[M+Na]+等。
分子离子有时又叫母离子,是一切碎片离子的母离子,即一切碎片离子是通过分子离子再进一步裂解得到的。
写质谱裂解反应要从分子离子写起。
(2)碎片离子:准分子离子经过一级或多级裂解生成的产物离子。
碎片峰的种类、数目及其丰度则与分子结构、仪器类型、分析条件等因素有关,数目多表示该分子较容易断裂,丰度高的碎片峰表示该离子较稳定,也表示分子比较容易断裂生成该离子。
(3)多电荷离子:指带有2个或更多电荷的离子,常见于蛋白质或多肽等离子.有机质谱中,单电荷离子是绝大多数,只有那些不容易碎裂的基团或分子结构-如共轭体系结构-才会形成多电荷离子。
它的存在说明样品是较稳定的。
(4)同位素离子由元素的重同位素构成的离子称为同位素离子.各种元素的同位素,基本上按照其在自然界的丰度比出现在质谱中,这对于利用质谱确定化合物及碎片的元素组成有很大方便, 还可利用稳定同位素合成标记化合物,如:氘等标记化合物,再用质谱法检出这些化合物,在质谱图外貌上无变化,只是质量数的位移,从而说明化合物结构,反应历程等。
8.扫描模式的选择(1)正负离子模式:一般的商品仪器中,ESI和APCI接口都有正负离子测定模式可供选择。
一般不要选择两种模式同时进行。
正、负离子模式建议根据文献选择。
选择的一般原则为:正离子模式:适合于碱性样品,可用乙酸或甲酸对样品加以酸化。
样品中含有仲氨或叔氨时可优先考虑使用正离子模式。
负离子模式:适合于酸性样品,可用氨水或三乙胺对样品进行碱化。
样品中含有较多的强伏电性基团,如含氯、含溴和多个羟基时可尝试使用负离子模式。
(2)全扫描方式(Q1扫描)全扫描数据采集可以得到化合物的准分子离子,从而可判断出化合物的分子量,用于鉴别是否有未知物,并确认一些判断不清的化合物,如合成化合物的质量及结构。
(3)母离子扫描母离子分析可用来鉴定和确认类型已知的化合物,尽管它们的母离子的质量可以不同,但在分裂过程中会生成共同的子离子,这种扫描功能在药物代谢研究中十分重要。
LC-MS中常见的本底离子m/z 50-150, 溶剂离子,[(H2O)nH+ ,n= 3-112]m/z 102, H+乙腈 +乙酸, C4H7NO2H+,102.0549m/z149, 管路中邻苯二甲酸酯的酸酐, C8H4O3H+,149.0233m/z 288, 2mm 离心管的产生的特征离子m/z 279, 管路中邻苯二甲酸二丁酯 C16H22O4H+, 279.1591 m/z 316, 2mm 离心管的产生的特征离子m/z 384, 瓶的光稳定剂产生的离子m/z391, 管路中邻苯二甲酸二辛酯, C24H38O4H+, 391.2843 m/z413, 邻苯二甲酸二辛酯+钠, C24H38O4Na+, 413.2668m/z 538, 乙酸+氧 +铁(喷雾管), Fe3O(O2CCH3)6, 537.8793(3)选择离子扫描(SRM模式)也称为子离子扫描( MS/MS ),用于结构判断(得到化合物的二级谱图即碎片离子)和选择离子对作多种反应监测(SRM)。